首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we presented cellular morphological changes, time-resolved biochemical composition, photosynthetic performance and proteomic profiling to capture the photosynthetic physiological response of Scenedesmus acuminatus under low nitrogen (3.6 mM NaNO3, N?) and high nitrogen supplies (18.0 mM NaNO3, N+). S. acuminatus cells showed extensive lipid accumulation (53.7% of dry weight) and were enriched in long-chain fatty acids (C16 & C18) under low nitrogen supply. The activity of PSII and photosynthetic rate decreases, whereas non-photochemical quenching and dark respiration rates were increased in the N? group. In addition, the results indicated a redistribution of light excitation energy between PSII and PSI in S. acuminatus exists before lipid accumulation. The iTRAQ results showed that, under high nitrogen supply, protein abundance of the chlorophyll biosynthesis, the Calvin cycle and ribosomal proteins decreased in S. acuminatus. In contrast, proteins associated with the photosynthetic machinery, except for F-type ATPase, were increased in the N+ group (N+, 3 vs. 9 days and 3 days, N+ vs. N?). Under low nitrogen supply, proteins involved in central carbon metabolism, fatty acid synthesis and branched-chain amino acid metabolism were increased, whereas the abundance of proteins of the photosynthetic machinery had decreased, with exception of PSI (N?, 3 vs. 9 days and 9 days, N+ vs. N?). Collectively, the current study has provided a basis for the metabolic engineering of S. acuminatus for biofuel production.  相似文献   

2.
Periphyton plays a vital ecological role in shallow, well-lit ecosystems which are vulnerable to rapidly changing environmental conditions, including raising temperature due to global warming. Nevertheless, little is known on the effect of increased temperatures on the taxonomic structure and functioning of periphytic communities. In this study, the influence of short-term temperature increase on the species composition and photosynthetic activity of the Baltic periphytic communities was investigated. The collected communities were exposed to increased temperature of 23 °C (ca. 4 °C above the summer average) for 72 h. After this time, species composition of the communities was studied under light microscope and their photosynthetic performance was evaluated using PAM fluorometry. Results showed that the biomass of cyanobacteria slightly increased. There were significant changes in the abundance of diatom species, among which Fragilaria fasciculata and Navicula ramosissima, were negatively affected by the elevated temperature and their cell number significantly decreased, whereas, Diatoma moniliformis and N. perminuta were stimulated by the increased temperature. Additionally, a shift towards higher abundance of smaller taxa was also observed. The higher quantum yield of photosystem II (PSII) (higher ΦPSII) accompanied by the lower value of non-photochemical quenching (NPQ) observed in communities kept at 23 °C showed more efficient photosynthesis. This was further confirmed by the changes in rapid light curves (higher photosynthetic capacity, rETRmax, and photoacclimation index, Ek). The obtained data constitute evidence that short periods of increased temperature significantly affect the structure and functioning of the Baltic periphyton.  相似文献   

3.
The filamentous Cyanobacterium Arthrospira is commercially produced and is a functional, high-value, health food. We identified 5 low temperature and low light intensity tolerant strains of Arthrospira sp. (GMPA1, GMPA7, GMPB1, GMPC1, and GMPC3) using ethyl methanesulfonate mutagenesis and low temperature screening. The 5 Arthrospira strains grew rapidly below 14?°C, 43.75 μmol photons m?2 s?1 and performed breed conservation at 2.5?°C, 8.75 μmol photons m?2 s?1. We used morphological identification and molecular genetic analysis to identify GMPA1, GMPA7, GMPB1 and GMPC1 as Arthrospira platensis, while GMPC3 was identified as Arthrospira maxima. Growth at different culture temperatures was determined at regular intervals using dry biomass. At 16?°C and 43.75 μmol photons m?2 s?1, the maximum dry biomass production and the mean dry biomass productivity of GMPA1, GMPB1, and GMPC1 were 2057?±?80 mg l?1, 68.7?±?2.5 mg l?1 day?1, 1839?±?44 mg l?1, 60.6?±?1.8 mg l?1 day?1, and 2113?±?64 mg l?1, 77.7?±?2.5 mg l?1 day?1 respectively. GMPB1 was chosen for additional low temperature tolerance studies and growth temperature preference. In winter, GMPB1 grew well at mean temperatures <10?°C, achieving 3258 mg dry biomass from a starting 68 mg. In summer, GMPB1 grew rapidly at mean temperatures more than 28?°C, achieving 1140 mg l?1 dry biomass from a starting 240 mg. Phytonutrient analysis of GMPB1 showed high levels of C-phycocyanin and carotenoids. Arthrospira metabolism relates to terpenoids, and the methyl-d-erythritol 4-phosphate pathway is the only terpenoid biosynthetic pathway in Cyanobacteria. The 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) gene from GMPB1 was cloned and phylogenetic analysis showed that GMPB1 is closest to the Cyanobacterium Oscillatoria nigro-viridis PCC711. Low temperature tolerant Arthrospira strains could broaden the areas suitable for cultivation, extend the seasonal cultivation time, and lower production costs.  相似文献   

4.
The native alpine plant Saussurea superba is widely distributed in Qinghai–Tibetan Plateau regions. The leaves of S. superba grow in whorled rosettes, and are horizontally oriented to maximize sunlight exposure. Experiments were conducted in an alpine Kobresia humilis meadow near Haibei Alpine Meadow Ecosystem Research Station (37°29′–37°45′N, 101°12′–101°33′E; alt. 3200 m). Leaf growth, photosynthetic pigments and chlorophyll fluorescence parameters were measured in expanding leaves of S. superba. The results indicate that leaf area increased progressively from inner younger leaves to outside fully expanded ones, and then slightly decreased in nearly senescent leaves, due to early unfavorable environmental conditions, deviating from the ordinary growth pattern. The specific leaf area decreased before leaves were fully expanded, and the leaf thickness was largest in mature leaves. There were no significant changes in the content of chlorophylls (Chl) and carotenoids (Car), but the ratios of Chl a/b and Car/Chl declined after full expansion of the leaves. The variation of Chl a/b coincided well with changes in photochemical quenching (q P) and the fraction of open PSII reaction centers (q L). The maximum quantum efficiency of PSII photochemistry after 5 min dark relaxation (F (v)/F (m)) continuously increased from younger leaves to fully mature leaves, suggesting that mature leaves could recover more quickly from photoinhibition than younger leaves. The light-harvesting capacity was relatively steady during leaf expansion, as indicated by the maximum quantum efficiency of open PSII centers (\(F_{\text{v}}^{{\prime }}\)/\(F_{\text{m}}^{{\prime }}\)). UV-absorbing compounds could effectively screen harmful solar radiation, and are a main protection way on the photosynthetic apparatus. The decline of q P and q L during maturation, together with limitation of quantum efficiency of PSII reaction centers (L (PFD)), shows a decrease of oxidation state of QA in PSII reaction centers under natural sunlight. Furthermore, light-induced (Φ NPQ) and non-light-induced quenching (Φ NO) were consistent with variation of L (PFD). It is concluded that the leaves of S. superba could be classified into four functional groups: young, fully expanded, mature, and senescent. Quick recovery from photoinhibition was correlated with protection by screening pigments, and high level of light energy trapping was correlated with preservation of photosynthetic pigments. Increasing of Φ NPQ and Φ NO during leaves maturation indicates that both thermal dissipation of excessive excitation energy in safety and potential threat to photosynthetic apparatus were strengthened due to the declination of q P and q L, and enhancement of L (PFD).  相似文献   

5.
The antioxidant balance, photochemical activity of photosystem II (PSII), and photosynthetic pigment content, as well as the expression of genes involved in the light signalling of callus lines of Eutrema salsugineum plants (earlier Thellungiella salsuginea) under different spectral light compositions were studied. Growth of callus in red light (RL, maximum 660 nm), in contrast to blue light (BL, maximum 450 nm), resulted in a lower H2O2 content and thiobarbituric acid reactive substances (TBARS). The BL increased the activities of key antioxidant enzymes in comparison with the white light (WL) and RL and demonstrated the minimum level of PSII photochemical activity. The activities of catalase (CAT) and peroxidase (POD) had the highest values in BL, which, along with the increased H2O2 and TBARS content, indicate a higher level of oxidative stress in the cells. The expression levels of the main chloroplast protein genes of PSII (PSBA and PSBD), the NADPH-dependent oxidase gene of the plasma membrane (RbohD), the protochlorophyllide oxidoreductase genes (POR B, C) involved in the biosynthesis of chlorophyll, and the key photoreceptor signalling genes (CIB1, CRY2, PhyB, PhyA, and PIF3) were determined. Possible mechanisms of light quality effects on the physiological parameters of callus cells are discussed.  相似文献   

6.
The effect of five constant temperatures of 21, 24, 27, 30 and 33 °C on adult life span, reproduction, oviposition behavior and larval developmental time of a bitter gourd inhabited coleopteran insect Epilachna dodecastigma (Wied.) (Coccinellidae) was determined in laboratory conditions under 70 ± 5 % relative humidity and a photoperiod of 12 L : 12 D. Larval developmental time of E. dodecastigma decreased as temperature increased from 21 to 33 °C. Life table data revealed that overall mortality was lowest at 27 °C and highest at 21 °C. Females lived longer than males at all temperatures; but longevity decreased with increase in temperature. Pre-oviposition period decreased significantly with increase in temperature up to 27 °C and thereafter increased at a slower rate; whereas oviposition period decreased significantly with increase in temperature. Fecundity and egg viability increased significantly with an increase in temperature up to 27 °C and thereafter decreased at a slower rate. The intrinsic rate of increase (r m ) was 0.1703, 0.1984, 0.2235, 0.2227 and 0.2181 day?1 at 21, 24, 27, 30 and 33 °C, respectively. The net reproductive rate and finite rate of increase was highest at 27 °C (R o  = 112.05; λ = 1.4233) and lowest at 21 °C (R o  = 51.23; λ = 1.2581).  相似文献   

7.
To explore the possible physiological mechanism of salt tolerance in peanut, we investigated the effect of salinity on antioxidant enzyme activity, fatty acid composition, and chlorophyll fluorescence parameters. Seedlings at the initial growth stage had been treated with 0, 100, 150, 200, 250, and 300 mM NaCl for 7 days. Results showed that fresh mass and dry mass decreased with the rise of the NaCl concentration. They decreased significantly when the NaCl concentration was more than 200 mM. The PSII’s highest photochemical efficiency (F v/F m) was not affected before treating 250 mM NaCl. However, the PSII (ΦPSII)’s actual photochemical efficiency of decreased after treating 200 mM NaCl. Both the initial fluorescence (F o) and non-photochemical quenching (NPQ) increased after 200 mM NaCl treatment. PSI oxidoreductive activity (ΔI/I o) was not affected before 200 mM NaCl. The malondialdehyde (MDA) content increased with the rise of the NaCl concentration. The activities of ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities increased first and then decreased, while the content of H2O2 and O 2 decreased first and then increased. Treated with 150 mM NaCl, the linolenic acid (18:3) and linoleic acid (18:2) of monogalactosyldiacylglycerols (MGDG), digalactosyldiacylglycerols (DGDG), sulphoquinovosyldiacylglycerols (SQDG) as well as phosphatidylglycerols (PG), the ratio of DGDG/MGDG increased, and the opposite results were obtained with 300 mM NaCl. The double bond index (DBI) of MGDG, DGDG, SQDG, and PG also increased after treating 150 mM NaCl. These conclusions verified that increased unsaturated fatty acid content in membrane lipid of peanut leaves could improve salt tolerance by alleviating photoinhibition of PSII and PSI.  相似文献   

8.
Carbon balancing within the plant species is an important feature for climatic adaptability. Photosynthesis and respiration traits are directly linked with carbon balance. These features were studied in 20 wild rice accessions Oryza spp., and cultivars. Wide variation was observed within the wild rice accessions for photosynthetic oxygen evolution or photosynthetic rate (A), dark (R d), and light induced respiration (LIR) rates, as well as stomatal density and number. The mean rate of A varied from 10.49 μmol O2 m?2 s?1 in cultivated species and 13.09 μmol O2 m?2 s?1 in wild spp., The mean R d is 2.09 μmol O2 m?2 s?1 and 2.31 μmol O2 m?2 s?1 in cultivated and wild spp., respectively. Light induced Respiration (LIR) was found to be almost twice in wild rice spp., (16.75 μmol O2 m?2 s?1) compared to cultivated Oryza spp., Among the various parameters, this study reveals LIR and A as the key factors for positive carbon balance. Stomatal contribution towards carbon balance appears to be more dependent on abaxial surface where several number of stomata are situated. Correlation analysis indicates that R d and LIR increase with the increase in A. In this study, O. nivara (CR 100100, CR 100097), O. rufipogon (IR 103404) and O. glumaepatula (IR104387) were identified as potential donors which could be used in rice breeding program. Co-ordination between gas exchange and patchiness in stomatal behaviour appears to be important for carbon balance and environmental adaptation of wild rice accessions, therefore, survival under harsh environment.  相似文献   

9.
Lactococcus lactis subsp. lactis CRL 1584 isolated from a bullfrog hatchery produces a bacteriocin that inhibits both indigenous Citrobacter freundii (a Red-Leg Syndrome related pathogen) and Lactobacillus plantarum, and Listeria monocytogenes as well. Considering that probiotics requires high cell densities and/or bacteriocin concentrations, the effect of the temperature on L. lactis growth and bacteriocin production was evaluated to find the optimal conditions. Thus, the growth rate was maximal at 36 °C, whereas the highest biomass and bacteriocin activity was achieved between 20 and 30 °C and 20–25 °C, respectively. The bacteriocin synthesis was closely growth associated reaching the maximal values at the end of the exponential phase. Since bacteriocins co-production has been evidenced in bacterial genera, a purification of the bacteriocin/s from L. lactis culture supernatants was carried out. The active fraction was purified by cationic-exchange chromatography and then, a RP-HPLC was carried out. The purified sample was a peptide with a 3353.05 Da, a molecular mass that matches nisin Z, which turned out to be the only bacteriocin produced by L. lactis CRL 1584. Nisin Z showed bactericidal effect on C. freundii and L. monocytogenes, which increased in the presence l-lactic acid?+?H2O2. This is the first report on nisin Z production by L. lactis from a bullfrog hatchery that resulted active on a Gram-negative pathogen. This peptide has potential probiotic for raniculture and as food biopreservative for bullfrog meat.  相似文献   

10.
A putative gene (gadlbhye1) encoding glutamate decarboxylase (GAD) was cloned from Lactobacillus brevis HYE1 isolated from kimchi, a traditional Korean fermented vegetable. The amino acid sequences of GADLbHYE1 showed 48% homology with the GadA family and 99% identity with the GadB family from L. brevis. The cloned GADLbHYE1 was functionally expressed in Escherichia coli using inducible expression vectors. The expressed recombinant GADLbHYE1 was successfully purified by Ni–NTA affinity chromatography, and had a molecular mass of 54 kDa with optimal hydrolysis activity at 55 °C and pH 4.0. Its thermal stability was determined to be higher than that of other GADs from L. brevis, based on its melting temperature (75.18 °C). Kinetic parameters including Km and Vmax values for GADLbHYE1 were 4.99 mmol/L and 0.224 mmol/L/min, respectively. In addition, the production of gamma-aminobutyric acid in E. coli BL21 harboring gadlbhye1/pET28a was increased by adding pyridoxine as a cheaper coenzyme.  相似文献   

11.
Fopius arisanus (Sonan) is a solitary parasitoid of eggs and the first instar larvae of Tephritidae. Due to the occurrence of Ceratitis capitata (Wiedemann) in various regions and under several climatic conditions, this study aimed to evaluate the effect of different temperatures on the embryonic development (egg–adult) and determine thermal requirements and the number of annual generations F. arisanus on eggs of C. capitata. In the laboratory, eggs of C. capitata (24 h) were submitted to parasitism of F. arisanus during 6 h. Later, the eggs were placed in plastic containers (50 mL) (50 eggs/container) on a layer of artificial diet and packed in chambers at temperatures 15, 18, 20, 22, 25, 28, 30, and 32 ± 1°C, RH 70 ± 10%, and a photophase of 12 h. The largest number of offspring, emergence rate, and weight of adults of F. arisanus were observed at 25°C. The highest sex ratios (sr > 0.75) were recorded at 15 and 18°C, being statistically higher than the temperatures 20°C (0.65), 22°C (0.64), 25°C (0.65), 28°C (0.49), and 30°C (0.47). At 32°C, there was no embryonic development of F. arisanus. The egg–adult period was inversely proportional to temperature. Based on the development of the biological cycle (egg–adult), the temperature threshold (T t) was 10.3°C and thermal constant (K) of 488.34 degree-days, being the number of generations/year directly proportional to the temperature increase. The data show the ability of F. arisanus to adapt to different thermal conditions, which is important for biological control programs of C. capitata.  相似文献   

12.
In horticultural practice accelerated plant development and particularly earlier flowering, has been reported with microalgae applications. Therefore, the objective of this work was to study the effects of foliar spraying with Scenedesmus sp. and Arthrospira platensis hydrolysates on Petunia x hybrida plant development and leaf nutrient status. Three treatments were tested: T1 (foliar application with water, the control), T2 (foliar application with Arthrospira), and T3 (foliar application with Scenedesmus). Foliar spraying was applied five times (0, 14, 28, 35, and 42 days after transplanting). The concentration of both microalgae was 10 g L?1. At the end of the trial biometric parameters and nutrient concentration in photosynthetic organs (the leaves) were measured. The results of this assay show that foliar application of Scenedesmus accelerated plant development in terms of higher rates of root growth, leaf and shoot development, and earliness of flowering. Arthrospira enhanced the root dry matter, the number of flowers per plant, and the water content. Nevertheless, a reduction was found in the conductive tissue (stem + petiole) dry weight with Arthrospira compared with Scenedesmus and the control. The results also show that microalgae hydrolysate supply can improve the plant nutrient status. Based on these results, it is advisable to use Scenedesmus hydrolysates in foliar applications to increase the blooming of Petunia x hybrida.  相似文献   

13.
14.
The increased frequency of heat waves due to climate change poses a threat to all organisms. Microalgae are the basis of aquatic food webs, and high temperatures have significant impacts on their adaptation and survival rates. Algae respond to environmental changes by modulating their photosynthetic rates and biochemical composition. This study aims to examine the effect of elevated temperature on similar taxa of marine Chlorella originating from different latitudes. Strains from the Antarctic, temperate zone, and the tropics were grown at various temperatures, ranging from 4 to 38, 18 to 38, and 28 to 40 °C, respectively. A pulse-amplitude modulated (PAM) fluorometer was used to assess their photosynthetic responses. Parameters including maximum quantum efficiency (F v/F m), relative electron transport rate (rETR), and light harvesting efficiency (α) were determined from the rapid light curves (RLCs). In addition, the composition of fatty acids was compared to evaluate changes induced by the temperature treatments. Increasing the temperature from 35 to 38 °C for both Antarctic and temperate strains and from 38 to 40 °C for the tropical strain resulted in severe inhibition of photosynthesis and suppressed growth. Although all the strains demonstrated the ability to recover from different stress levels, the tropical strain was able to recover most rapidly while the Antarctic strain had the slowest recovery. The results underline that the thermal threshold for the analysed Chlorella strains temperature ranges between 38 and 40 °C. Furthermore, the analysed strains exhibited different trends in their response to elevated temperatures and recovery capabilities.  相似文献   

15.
Using measures of gas exchange and photosynthetic chain activity, we found some differences between grapevine inflorescence and leaf in terms of photosynthetic activity and photosynthesis regulations. Generally, the leaf showed the higher net photosynthesis (P N) and lower dark respiration than that of the inflorescence until the beginning of the flowering process. The lower (and negative) P N indicated prevailing respiration over photosynthesis and could result from a higher metabolic activity rather than from a lower activity of the photosynthetic apparatus. Considerable differences were observed between both organs in the functioning and regulation of PSI and PSII. Indeed, in our conditions, the quantum yield efficiency and electron transport rate of PSI and PSII were higher in the inflorescence compared to that of the leaf; nevertheless, protective regulatory mechanisms of the photosynthetic chain were clearly more efficient in the leaf. This was in accordance with the major function of this organ in grapevine, but it highlighted also that inflorescence seems to be implied in the whole carbon balance of plant. During inflorescence development, the global PSII activity decreased and PSI regulation tended to be similar to the leaf, where photosynthetic activity and regulations remained more stable. Finally, during flowering, cyclic electron flow (CEF) around PSI was activated in parallel to the decline in the thylakoid linear electron flow. Inflorescence CEF was double compared to the leaf; it might contribute to photoprotection, could promote ATP synthesis and the recovery of PSII.  相似文献   

16.

Objective

To investigate the aerotolerance of Lactobacillus rhamnosus hsryfm 1301 and its influencing factors.

Results

The growth rate of L. rhamnosus hsryfm 1301 weakened noticeably when the concentration of supplemented H2O2 reached 1 mM, and only 2% of all L. rhamnosus hsryfm 1301 cells survived in MRS broth supplemented with 2 mM H2O2 for 1 h. After pretreatment with 0.5 mM H2O2, the surviving cells of L. rhamnosus hsryfm 1301 in the presence of 5 mM H2O2 for 1 h increased from 3.7 to 7.8 log CFU. Acid stress, osmotic stress, and heat stress at 46 °C also enhanced its aerotolerance, while heat stress at 50 °C reduced the tolerance of L. rhamnosus hsryfm 1301 to oxidative stress. Moreover, treatment with 0.5 mM H2O2 increased the heat stress tolerance of L. rhamnosus hsryfm 1301 by approximately 150-fold.

Conclusions

Lactobacillus rhamnosus hsryfm 1301 possesses a stress-inducible defense system against oxidative stress, and the cross-adaptation to different stresses is a promising target to increase the stress tolerance of L. rhamnosus hsryfm 1301 during probiotic food and starter culture production.
  相似文献   

17.
X. K. Yuan 《Photosynthetica》2016,54(3):475-477
In order to investigate the effect of day/night temperature difference (DIF) on photosynthetic characteristics of tomato plants (Solanum lycopersicum, cv. Jinguan 5) at fruit stage, an experiment was carried out in climate chambers. Five day/night temperature regimes (16/34, 19/31, 25/25, 31/19, and 34/16°C) with respective DIFs of -18, -12, 0, +12, and +18 were used and measured at mean daily temperature of 25°C. The results showed that chlorophyll (Chl) a, Chl b, net photosynthetic rate (PN), stomatal conductance (gs), maximum quantum yield of PSII photochemistry (Fv/Fm), effective quantum yield of PSII photochemistry (?PSII), and photochemical quenching (qp) significantly increased under positive DIF, while they decreased with negative DIF. In contrast, the Chl a/b ratio and nonphotochemical quenching (NPQ) decreased under positive DIF, while increased with negative DIF. Chl a, Chl b, PN, gs, Fv/Fm, ?PSII, and qp were larger under +12 DIF than those at +18 DIF, while Chl a/b and NPQ showed an opposite trend.  相似文献   

18.
The yeast strain XJ5-1 isolated from the Taklimakan desert soil was identified to be a strain of Aureobasdium melanogenum and could produce a large amount of melanin when it was grown in the PDA medium, but its melanin biosynthesis and expression of the PKS gene responsible for the melanin biosynthesis was significantly repressed in the presence of (NH4)2SO4. However, A. melanogenum P5 strain isolated from a mangrove ecosystem grown in both the presence and the absence of (NH4)2SO4 did not produce any melanin. The cell size of A. melanogenum XJ5-1 strain was much higher than that of A. melanogenum P5 strain. The melanized cells of the yeast strain XJ5-1 had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), heat treatment (40 °C), salt shock (200.0 g/L NaCl), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than the non-melanized cells of the same yeast strain XJ5-1. At the same time, the melanized cells of the yeast strain XJ5-1 also had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than A. melanogenum P5 strain, but had similar resistance to heat treatment (40 °C) and salt shock (200.0 g/L NaCl) compared to those of A. melanogenum P5 strain. All the results revealed that many characteristics of A. melanogenum XJ5-1 isolated from the Taklimakan desert soil was different from those of A. melanogenum P5 strain isolated from the mangrove ecosystem.  相似文献   

19.
Heat stress is one of the main abiotic stresses that limit plant growth. The effects of high temperature on oxidative damage, PSII activity and D1 protein turnover were studied in three wheat varieties with different heat susceptibility (CS, YN949 and AK58). The results showed that heat stress induced lower lipid peroxidation in AK58 and YN949 than CS, which was related to different changes of SOD, CAT, POD and H2O2. Similarly, AK58 and YN949 performed better PSII photochemical efficiency (Fv/Fm, ΦPSII and ETR) under high temperature, which was attributed to rapid synthesis and degradation of D1 protein. Moreover, higher expression of D1 protein turnover-related genes (PsbA, STN8, PBCP, Deg1, Deg2, Deg5, Deg8, FtsH1/5 and FtsH2/8) and SOD activity in AK58 and YN949 under normal conditions also established a basis for acclimatizing high temperatures, thereby alleviating PSII photoinhibition and reducing oxidative damage when exposed to heat stress.  相似文献   

20.
Tomato (Solanum lycopersicum L.) being a widespread and most commonly consumed vegetable all over the world has an important economic value for its producers and related food industries. It is a serious matter of concern as its production is affected by arsenic present in soil. So, the present study, investigated the toxicity of As(V) on photosynthetic performance along with nitrogen metabolism and its alleviation by exogenous application of nitrate. Plants were grown under natural conditions using soil spiked with 25 mg and 20 mM, As(V) and nitrate, respectively. Our results revealed that plant growth indices, photosynthetic pigments, and other major photosynthetic parameters like net photosynthetic rate and maximum quantum efficiency (F v /F m ) of photosystem II (PSII) were significantly (P ≤ 0.05) reduced under As(V) stress. However, nitrate application significantly (P ≤ 0.05) alleviated As(V) toxicity by improving the aforesaid plant responses and also restored the abnormal shape of guard cells. Nitrogen metabolism was assessed by studying the key nitrogen-metabolic enzymes. Exogenous nitrate revamped nitrogen metabolism through a major impact on activities of NR, NiR, GS and GOGAT enzymes and also enhanced the total nitrogen and NO content while malondialdehyde content, and membrane electrolytic leakage were remarkably reduced. Our study suggested that exogenous nitrate application could be considered as a cost effective approach in ameliorating As(V) toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号