首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.

Background

Acid stress impacts the persistence of lactobacilli in industrial sourdough fermentations, and in intestinal ecosystems. However, the contribution of glutamate to acid resistance in lactobacilli has not been demonstrated experimentally, and evidence for the contribution of acid resistance to the competitiveness of lactobacilli in sourdough is lacking. It was therefore the aim of this study to investigate the ecological role of glutamate decarboxylase in L. reuteri.

Results

A gene coding for a putative glutamate decarboxylase, gadB, was identified in the genome of L. reuteri 100-23. Different from the organization of genetic loci coding for glutamate decarboxylase in other lactic acid bacteria, gadB was located adjacent to a putative glutaminase gene, gls3. An isogenic deletion mutant, L. reuteri ?gadB, was generated by a double crossover method. L. reuteri 100-23 but not L. reuteri ?gadB converted glutamate to γ-aminobutyrate (GABA) in phosphate butter (pH 2.5). In sourdough, both strains converted glutamine to glutamate but only L. reuteri 100-23 accumulated GABA. Glutamate addition to phosphate buffer, pH 2.5, improved survival of L. reuteri 100-23 100-fold. However, survival of L. reuteri ?gadB remained essentially unchanged. The disruption of gadB did not affect growth of L. reuteri in mMRS or in sourdough. However, the wild type strain L. reuteri 100-23 displaced L. reuteri ?gadB after 5 cycles of fermentation in back-slopped sourdough fermentations.

Conclusions

The conversion of glutamate to GABA by L. reuteri 100-23 contributes to acid resistance and to competitiveness in industrial sourdough fermentations. The organization of the gene cluster for glutamate conversion, and the availability of amino acids in cereals imply that glutamine rather than glutamate functions as the substrate for GABA formation. The exceptional coupling of glutamine deamidation to glutamate decarboxylation in L. reuteri likely reflects adaptation to cereal substrates.
  相似文献   

3.
Salt tolerance mechanisms were studied in three Irano-Turanian halophytic species from the Brassicaceae ??(Lepidium latifolium, L. perfoliatum and Schrenkiella parvula) and compared with the glycophyte Arabidopsis thaliana. According to seed germination under salt stress, L. perfoliatum was the most tolerant species, while L. latifolium and S. parvula were rather susceptible. Contrastingly, based on biomass production L. perfoliatum was more salt sensitive than the other two species. In S. parvula biomass was increased up to 2.8-fold by 100 mM NaCl; no significant growth reduction was observed even when exposed to 400 mM NaCl. Stable activities of antioxidative defense enzymes, nil or negligible accumulation of superoxide anion and hydrogen peroxide, as well as stable membrane integrity in the three halophytes revealed that no oxidative stress occurred in these tolerant species under salt stress. Proline levels increased in response to salt treatment. However, it contributed only by 0.3?2.0% to the total osmolyte concentration in the three halophytes (at 400 mM NaCl) and even less (0.04%) in the glycophyte, A. thaliana (at 100 mM NaCl). Soluble sugars in all three halophytes and free amino acids pool in S. parvula decreased under salt treatment in contrast to the glycophyte, A. thaliana. The contribution of organic osmolytes to the total osmolyte pool increased by salt treatment in the roots, while decreased in halophyte and glycophyte, A. thaliana leaves. Interestingly, this reduction was compensated by a higher relative contribution of K in the leaves of the halophytes, but of Na in A. thaliana. Taken together, biomass data and biochemical indicators show that S. parvula is more salt tolerant than the two Lepidium species. Our data indicate that L. latifolium, as a perennial halophyte with a large biomass, is highly suitable for both restoration of saline habitats and saline agriculture.  相似文献   

4.
Kung-Som is a popular traditional Thai fermented shrimp product. It is rich in glutamic acid, which is the major substrate for the biosynthesis of gamma-aminobutyric acid (GABA) by lactic acid bacteria (LAB). In the present study, LAB from Kung-Som were isolated, screened for GABA formation, and the two isolates that transform glutamic acid most efficiently into GABA were identified. Based on the API-CHL50 fermentation profile and a phylogenetic tree of 16S rDNA sequences, strain CS3 and CS5 were identified as Lactobacillus futsaii, which was for the first time shown to be a promising GABA producer. L. futsaii CS3 was the most efficient microorganism for the conversion of 25 mg/mL monosodium glutamate (MSG) to GABA, with a maximum yield of more than 99% conversion rate within 72 h. The open reading frame (ORF) of the glutamate decarboxylase (gad) gene was identified by PCR. It consists of 1410 bp encoding a polypeptide of 469 amino acids with a predicted molecular weight of 53.64 kDa and an isoelectric point (pI) of 5.56. Moreover, a good quality of the constructed model of L. futsaii CS3 was also estimated. Our results indicate that L. futsaii CS3 could be of interest for the production of GABA-enriched foods by fermentation and for other value-added products.  相似文献   

5.
Salt stress is a critical factor that affects the growth and development of plants. Salicylic acid (SA) is an important signal molecule that mitigates the negative effects of salt stress on plants. To elucidate salt tolerance in large pink Dianthus superbus L. (Caryophyllaceae) and the regulatory mechanism of exogenous SA on D. superbus under different salt stresses, we conducted a pot experiment to evaluate leaf biomass, leaf anatomy, soluble protein and sugar content, and the relative expression of salt-induced genes in D. superbus under 0.3, 0.6, and 0.9% NaCl conditions with and without 0.5 mM SA. The result showed that exposure of D. superbus to salt stress lead to a decrease in leaf growth, soluble protein and sugar content, and mesophyll thickness, together with an increase in the expression of MYB and P5CS genes. Foliar application of SA effectively increased leaf biomass, soluble protein and sugar content, and upregulated the expression of MYB and P5CS in the D. superbus, which facilitated in the acclimation of D. superbus to moderate salt stress. However, when the plants were grown under severe salt stress (0.9% NaCl), no significant difference in plant physiological responses and relevant gene expression between plants with and without SA was observed. The findings of this study suggest that exogenous SA can effectively counteract the adverse effects of moderate salt stress on D. superbus growth and development.  相似文献   

6.
After analyzing tomato plants transformed with GalUR gene for their ascorbic acid contents, it was found that some transgenic lines contained higher levels of ascorbic acid compared to control plants. In the present study, callus induction rate was 50.2 % in the explant and shoot regeneration rate was 51.5 % from the callus with transformation efficiency of 3.0 %. Based on PCR and Southern blot analysis, three independent transformants containing the insert gene were selected. Phenotypic traits of these transgenic progeny were similar to those of control tomatoes. Tomatoes (H15) with high fruit ascorbic acid contents were selected for next generation (GalUR T3) analysis. Transgenic tomatoes with increased ascorbic acid contents were found to be more tolerant to abiotic stresses induced by viologen, NaCl, or mannitol than non-transformed plants. In leaf disc senescence assay, the tolerance of these transgenic plants was better than control plants because they could retain higher chlorophyll contents. Under salt stress of less than 200 mM NaCl, these transgenic plants survived. However, control plants were unable to survive such high salt stress. Ascorbic acid contents in the transgenic plants were inversely correlated with MDA contents, especially under salt stress conditions. The GalUR gene was expressed in H15 tomatoes, but not in control plants. Higher expression levels of antioxidant genes (APX and CAT) were also found in these transgenic plants compared to that in the control plants. However, no detectable difference in SOD expression was found between transgenic plants and control plants. Results from this study suggest that the increase in ascorbic acid contents in plants could up-regulate the antioxidant system to enhance the tolerance of transgenic tomato plants to various abiotic stresses.  相似文献   

7.

Objective

To evaluate the quantity of Spirulina cultured in seawater, salt-tolerant strains were screened out and their growth and antioxidant accumulation were studied in different salt concentrations

Results

Salt tolerance of five Spirulina strains were investigated with modified Zarrouk medium (with 200–800 mM NaCl). All strains grew well with 400 mM NaCl; their growth rates were almost same as in the control medium. Spirulina strains FACHB-843 (SP843) and FACHB-972 (SP972) had the highest salt tolerance their growth rates in 600 mM NaCl were nearly same as the control. Both strains produced more carotene, phycocyanin, polysaccharides, proline and betaine in 400–600 mM NaCl than the control. Salt stress also induced them to produce higher activities of superoxide dismutase and peroxidase. Total antioxidant capacities of SP843 and SP972 peaked at 600 and 400 mM NaCl, respectively.

Conclusion

Spirulina strains cultured with seawater accumulate more bioactive substances and will have a higher nutritive value.
  相似文献   

8.
9.
Production of gamma-aminobutyric acid (GABA) from crop biomass such as cassava in high concentration is desirable, but difficult to achieve. A safe biotechnological route was investigated to produce GABA from cassava powder by C. glutamicum G01 and L. plantarum GB01-21. Liquefied cassava powder was first transformed to glutamic acid by simultaneous saccharification and fermentation with C. glutamicum G01, followed by biotransformation of glutamic acid to GABA with resting cells of L. plantarum GB01-21 in the reaction medium. After optimizing the reaction conditions, the maximum concentration of GABA reached 80.5 g/L with a GABA productivity of 2.68 g/L/h. This is the highest yield ever reported of GABA production from cassava-derived glucose. The bioprocess provides the added advantage of employing nonpathogenic microorganisms, C. glutamicum and L. plantarum, in microbial production of GABA from cassava biomass, which can be used in the food and pharmaceutical industries.  相似文献   

10.
The salt-tolerant green microalga Dunaliella salina can survive both hyper- and hypo-osmotic shock. Upon osmotic shock, the cells transiently and rapidly decreased or increased in size within minutes and slowly over hours acquired their original cell size and volume. Cell size distribution differs significantly in the cultures grown in the salinity range from 1.5 to 15 % NaCl. By using Nile Red fluorescence to detect neutral lipids, it became clear that only hyper-osmotic shock on cells induced transient neutral lipid appearance in D. salina, while those transferred from 9 to 15 % NaCl stimulated the most neutral lipid accumulation. These cells grew well in 9 % NaCl, but they cannot recover a shift to 15 % NaCl and cell division is accordingly slowed down. The transient appearance of neutral lipid could be dependent on the inhibition of cell division experiencing the NaCl shift. Moreover, the effect of nutrient limitation slows down cell division and photosynthesis as a secondary result, which triggers the cells to accumulate neutral storage lipids when they entered the stationary phase, which is seen in all the batch cultures of D. salina grown in the salinity range of 3–15 %. The changes in salt concentration did not significantly influence the overall fatty acid composition in D. salina cells. Although there shows both increased amounts of total lipids and neutral lipids in the cells grown in salinity higher than 9 % NaCl, lipid productivity is however compromised by the slower cell growth rate and lower cell density under this condition.  相似文献   

11.
The halotolerant cyanobacterium Anabaena sp was grown under NaCl concentration of 0, 170 and 515 mM and physiological and proteomic analysis was performed. At 515 mM NaCl the cyanobacterium showed reduced photosynthetic activities and significant increase in soluble sugar content, proline and SOD activity. On the other hand Anabaena sp grown at 170 mM NaCl showed optimal growth, photosynthetic activities and comparatively low soluble sugar content, proline accumulation and SOD activity. The intracellular Na+ content of the cells increased both at 170 and 515 mM NaCl. In contrast, the K+ content of the cyanobacterium Anabaena sp remained stable in response to growth at identical concentration of NaCl. While cells grown at 170 mM NaCl showed highest intracellular K+/Na+ ratio, salinity level of 515 mM NaCl resulted in reduced ratio of K+/Na+. Proteomic analysis revealed 50 salt-responsive proteins in the cyanobacterium Anabaena sp under salt treatment compared with control. Ten protein spots were subjected to MALDI-TOF–MS/MS analysis and the identified proteins are involved in photosynthesis, protein folding, cell organization and energy metabolism. Differential expression of proteins related to photosynthesis, energy metabolism was observed in Anabaena sp grown at 170 mM NaCl. At 170 mM NaCl increased expression of photosynthesis related proteins and effective osmotic adjustment through increased antioxidant enzymes and modulation of intracellular ions contributed to better salinity tolerance and optimal growth. On the contrary, increased intracellular Na+ content coupled with down regulation of photosynthetic and energy related proteins resulted in reduced growth at 515 mM NaCl. Therefore reduced growth at 515 mM NaCl could be due to accumulation of Na+ ions and requirement to maintain higher organic osmolytes and antioxidants which is energy intensive. The results thus show that the basis of salt tolerance is different when the halotolerant cyanobacterium Anabaena sp is grown under low and high salinity levels.  相似文献   

12.
Bruguiera cylindrica is a major mangrove species in the tropical mangrove ecosystems and it grows in a wide range of salinities without any special features for the excretion of excess salt. Therefore, the adaptation of this mangrove to salinity could be at the physiological and biochemical level. The 3-month-old healthy plantlets of B. cylindrica, raised from propagules were treated with 0 mM, 400 mM, 500 mM and 600 mM NaCl for 20 days under hydroponic culture conditions provided with full strength Hoagland medium. The modulation of various physiochemical changes in B. cylindrica, such as chlorophyll a fluorescence, total chlorophyll content, dry weight, fresh weight and water content, Na+ accumulation, oxidation and antioxidation (enzymatic and non-enzymatic) features were studied. Total chlorophyll content showed very minute decrease at 500 mM and 600 mM NaCl treatment for 20 days and the water content percentage was decreased both in leaf and root tissues with increasing concentration. A significant increase of Na+ content of plants from 84.505 mM/plant dry weight in the absence of NaCl to 543.38 mM/plant dry weight in plants treated with 600 mM NaCl was recorded. The malondialdehyde and the metabolites content associated with stress tolerance (amino acid, total phenols and proline) showed an increasing pattern with increasing NaCl concentration as compared to the control in both leaf and root tissues but the increase recorded in plantlets subjected to 500 mM was much less, indicating the tolerance potential of this species towards 500 mM NaCl. The significant decrease of sugar content was found only in 600 mM NaCl on 20 days of treatment, showing that the process of sugar synthesis was negatively affected but the same process remains less affected at 500 mM NaCl. A slight reduction in ascorbate and glutathione content and very less increase in carotenoid content were observed at 500 mM and 600 mM NaCl stress. Antioxidant enzymes (APX, GPX, SOD and CAT) showed an enhanced activity in all the treatments and the increased activity was more significant in 600 mM treated plants. The result establishes that B. cylindrica tolerates high NaCl concentration, to the extent of 500 mM NaCl without any major inhibition on photosynthesis and metabolite accumulation. Understanding the modulation of various physiological and biochemical changes of B. cylindrica at high levels of NaCl will help us to know the physiochemical basis of tolerance strategy of this species towards high NaCl.  相似文献   

13.
Effects of isoflavones on plant salt tolerance were investigated in soybean (Glycine max L. Merr. cultivar N23674) and tobacco (Nicotiana tabacum L.). Leaf area, fresh weight, net photosynthetic rate (Pn), and transpiration rate (Tr) of soybean N23674 plants treated with 80 mM NaCl were significantly reduced, while a gene (GmIFS1) encoding for 2-hydroxyisoflavone synthase was highly induced, and isoflavone contents significantly increased in leaves and seeds. To test the impact of isoflavones to salt tolerance, transgenic soybean cotyledon hairy roots expressing GmIFS1 (hrGmIFS1) were produced. Salt stress slightly increased isoflavone content in hairy roots of the transgenic control harboring the empty vector but substantially reduced the maximum root length, root fresh weight, and relative water content (RWC). The isoflavone content in hrGmIFS1 roots, however, was significantly higher, and the above-mentioned root growth parameters decreased much less. The GmIFS1 gene was also transformed into tobacco plants; plant height and leaf fresh weight of transgenic GmIFS1 tobacco plants were much greater than control plants after being treated with 85 mM NaCl. Leaf antioxidant capacity of transgenic tobacco was significantly higher than the control plants. Our results suggest that salt stress-induced GmIFS1 expression increased isoflavone accumulation in soybean and improved salt tolerance in transgenic soybean hairy roots and tobacco plants.  相似文献   

14.
15.
16.
17.
In the current investigation, the biological activities of essential oils obtained from organs of Ruta chalepensis plants grown under salt stress (0, 50 and 100 mM NaCl) were analyzed. Their chemical composition was often investigated by GC/FID and GC–MS and the antimicrobial activities towards eight bacteria (Salmonella All, Salmonella K, Escherichia coli 45AG, Escherichia coli 45AI, Staphylococcus aureus 9402, Staphylococcus aureus 02B145, Listeria 477 and Pseudomonas aeruginosa ATCC 10145) and five fungi strains (Aspergillus, Saccharomycee crvisiale, Streptomyces griseus, Fusarium solani and Penicillium thomii) were studied. Results revealed that salt increased essential oil production in leaves at 50 and 100 mM NaCl. A total of 20 compounds were identified in leaves, undecan-2-one, nonan-2-one and geijerene being the dominant ones. In stems, 21 compounds were found; they were dominated by decan-2-one, geijerene, nonan-2-one and undecan-2-one. In contrast, roots exhibited a large variation with 25 volatile compounds and octyl acetate, methyl decanoate, phytyl acetate were the major ones. Salt stress induced significant antibacterial activity changes, mainly in leaves and stems. In leaves, the minimum inhibitory and bactericidal concentration decreased at 100 mM NaCl against Listeria 477, the two strains of E. coli (45AG and 45AI) and P. aeruginosa but it increased versus other bacteria. In stems, salt increased oil antibacterial activity against all strains except P. aeruginosa ATCC 10145. Root oil showed the least antibacterial activity under saline conditions versus Listeria 477 and P. aeruginosa ATCC 10145. As regards antifungal activity, NaCl reduced the antifungal activity of essential oils against the majority of fungi strains.  相似文献   

18.
Legumes can host rhizobia and mycorrhizal fungi, and this triple symbiosis might be exploited to improve saline soil fertility. Therefore, a greater understanding of the interaction of rhizobia and arbuscular mycorrhizal fungus during legume growth in saline soil is required. We investigated the efficiency of salt tolerance conferred by rhizobia in mycorrhizal Sesbania cannabina. Greenhouse experiments were conducted in which S. cannabina plants inoculated with Glomus mosseae BGC NM03D (GM), and two rhizobia strains Agrobacterium pusense YIC4105 (4105) and Neorhizobium huautlense YIC4083 (4083), were exposed to 100 and 200 mM NaCl. Under 200 mM NaCl stress, plants inoculated with 4105, rather than 4083, showed significant increases in shoot and root dry mass compared with non-inoculated plants. Simultaneously, a significant increase over GM-inoculated plants in mycorrhizal colonization and dependency was recorded for 4105 + GM-inoculated plants compared with 4083 + GM-inoculated plants. In addition, under NaCl stress, significant increases in the number and mass of nodules, nitrogenase activity, and leghemoglobin content of nodules occurred in 4105 + GM-inoculated plants compared with 4083 + GM-inoculated plants. Furthermore, the activities of antioxidant enzymes in rhizobia-inoculated plants were significantly higher in the GM + 4105 group than the 4083 + GM group. The malondialdehyde content of plants from the 4105 + GM group was significantly lower than in the 4083 + GM group. Thus, the results revealed a synergistic relationship among the 4105 and GM in alleviating salt stress in S. cannabina. Salt-tolerant rhizobia might improve the salinity tolerance of S. cannabina by enhancing the antioxidant system.  相似文献   

19.
This study aimed to disclose the acid tolerance mechanism of Lactobacillus plantarum by comparing L. plantarum ZDY 2013 with the type strain L. plantarum ATCC 8014 in terms of cell membrane, energy metabolism, and amino acid metabolism. L. plantarum ZDY 2013 had a superior growth performance under acidic condition with 100-fold higher survival rate than that of L. plantarum ATCC 8014 at pH 2.5. To determine the acid tolerance physiological mechanism, cell integrity was investigated through scanning electron microscopy. The study revealed that L. plantarum ZDY 2013 maintained cell morphology and integrity, which is much better than L. plantarum ATCC 8014 under acid stress. Analysis of energy metabolism showed that, at pH 5.0, L. plantarum ZDY 2013 enhanced the activity of Na+/K+-ATPase and decreased the ratio of NAD+/NADH in comparison with L. plantarum ATCC 8014. Similarly, amino acid metabolism of intracellular arginine, glutamate, and alanine was improved in L. plantarum ZDY 2013. Correspondingly, the activity of arginine deiminase and glutamate decarboxylase of L. plantarum ZDY 2013 increased by 1.2-fold and 1.3-fold compared with L. plantarum ATCC 8014 in acid stress. In summary, it is demonstrated that the special physiological behaviors (integrity of cell membrane, enhanced energy metabolism, increased amino acid and enzyme level) of L. plantarum ZDY 2013 can protect the cells from acid stress.  相似文献   

20.
The effects of the salt stress (200 mM NaCl) and exogenous jasmonic acid (JA) on levels of osmolytes and flavonoids in leaves of four-week-old Arabidopsis thaliana L. plants of the wild-type (WT) Columbia-0 (Col-0) and the mutant jin1 (jasmonate insensitive 1) with impaired jasmonate signaling were studied. The increase in proline content caused by the salt stress was higher in the Col-0 plants than in the mutant jin1. This difference was especially marked if the plants had been pretreated with exogenous 0.1 μM JA. The sugar content increased in response to the salt stress in the JA-treated WT plants but decreased in the jin1 mutant. Treatment with JA of the WT plants but not mutant defective in jasmonate signaling also enhanced the levels of anthocyanins and flavonoids absorbed in UV-B range in leaves. The presence of JA increased salinity resistance of the Col-0 plants, since the accumulation of lipid peroxidation products and growth inhibition caused by NaCl were less pronounced. Under salt stress, JA almost did not render a positive effect on the jin1 plants. It is concluded that the protein JIN1/MYC2 is involved in control of protective systems under salt stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号