首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 517 毫秒
1.
As in many other turtles, the sexual differentiation of gonads in embryos of Emys orbicularis is temperature-sensitive, 100% phenotypic males being obtained below 27.5 degrees C and 100% phenotypic females above 29.5 degrees C. The expression of the serologically defined H-Y (SD-H-Y) antigen at both low and high temperatures has been shown to be different in gonads and in blood : in gonads, it is closely associated with ovarian structure, whereas in blood it is independent of sexual phenotype and appears to indicate sexual genotype. Both sexes differentiate at 28.5 degrees C, suggesting that at this intermediate (threshold) temperature, sexual differentiation of gonads conforms with sexual genotype. To test this hypothesis, the expression of SD-H-Y antigen has been carried out in blood cells of Emys individuals raised from eggs incubated at the threshold temperature (28.5 degrees C). All phenotypic males typed SD-H-Y negative, whereas most phenotypic females typed SD-H-Y positive. From this concordance between sexual phenotype of gonads and SD-H-Y phenotype of blood, we postulate that a ZZ male/ZW female mechanism of genotypic sex determination is revealed at the threshold temperature for gonad differentiation in Emys.  相似文献   

2.
H-Y antigen was investigated in 14 turtle species belonging to five different families. In 13 species the female was typed as H-Y antigen positive, only in Chinemys reevesi was the male H-Y antigen positive. Since in all vertebrate species studied till now, the expression of H-Y antigen is strictly correlated with the heterogametic sex, it can be assumed that in turtles both types of sex determining mechanisms are realized, namely the ZZ/ZW-and the XX/XY mechanism; both mechanisms are realized in species belonging to one and the same turtle family. However, most turtle species seem to be endowed with a ZZ/ZW sex determining mechanism.  相似文献   

3.
To determine whether phylogenetically conservative H-Y antigen plays any part in gonadal differentiation among the nonmammalian vertebrates, we studied expression and binding of H-Y in the frog, Xenopus laevis. Soluble H-Y obtained from mouse testis and soluble H-W from chicken ovary bound specifically to cells of the ZZ testis from normal Xenopus males. In addition, H-Y (H-W) appeared selectively in the ovaries of ZZ genetic males that had been induced to become functional females by exposure to estradiol. Our observations suggest that H-Y (H-W) antigen may be involved in differentiation of the ZW ovary, and also that synthesis of H-Y may be regulated by sex steroids in the primitive ZWZZ species.  相似文献   

4.
Avian species follow the ZW/ZZ system of sex determination, which the female is heterogametic and expresses H-Y (or, more appropriately, 'H-W') antigen. We present the results of an investigation into the effects of the antiestrogen, tamoxifen, on gonadal differentiation and H-Y antigen expression in chickens. When given at doses of 0.25-2 mg per egg immediately before incubation, tamoxifen blocked regression of the right gonad in a significant number of 14-day-old female embryos. The nonregressed right gonad had a testis-like external appearance and, in some cases, contained what appeared to be spermatogenic tubules. Tamoxifen had no histologically detectable effect on the differentiation of the left ovary or the testes. In spite of tamoxifen's histological effects on right female gonads, it did not masculinize the steroidogenic capabilities of these gonads. Whether obtained from drug- or vehicle-treated embryos, the left and right female gonads always contained appreciable amounts of estrogen. In contrast, testes obtained from either drug- or vehicle-treated embryos did not contain detectable amounts of estrogen. Tamoxifen reduced the H-Y antigen levels in female liver and gonads. In both left and right female gonads, the reduction was to male levels. In female livers, tamoxifen reduced H-Y antigen to levels intermediate between those of normal males and females. Thus, the expression of H-Y antigen in both gonadal and nongonadal tissue is estrogen dependent, but the dependency appears to be more stringent for gonadal tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In the acceptance that, during early gonadogenesis, variations of germ cell (GC) proliferation express interactions between germ and somatic cells, early events occurring before histological differentiation of gonadal sex has been detected and timed through GC counts on larvae of Pleurodeles waltl (urodele amphibia) issued from male ZZ or female ZW monosexual offspring. Gonads differentiate in accordance with sexual genotype in ZZ and ZW larvae at room temperature and in ZZ larvae at 32 degrees C whereas they are sex-reversed at 32 degrees C in ZW larvae, becoming phenotypic neomales. At both the rearing temperatures, in genital ridges, GCs do not proliferate during a period called P0 period ending earlier in ZZ than in ZW larvae. The time when proliferation starts depends on sexual genotypes and determines a ZZP0 period shorter than ZWP0 period. After P0 period, at room temperature, a moderate increase in GC number determining a P1 period is observed in both ZZ and ZW larvae, whereas a strong proliferation, determining a P2 period, occurs on a differential pattern in ZZ and ZW larvae; thus, before sexual differentiation of gonads, ZW females have more GCs than ZZ males. At 32 degrees C, GC proliferation is moderate during P1 period and does not accelerate during P2 period in ZW larvae differentiating neotestes; they have a lower GC number than ZZ larvae reared at 32 degrees C. Thus, during P2 period, at both room temperature and at 32 degrees C, GC number correlates with future phenotype of gonads. Results suggest that differential molecular events arise during early gonadogenesis and that testes may differentiate in different ways according to whether phenotype conforms to genotype or sex reversion occurs.  相似文献   

6.
Summary Presence of H-Y antigen has been correlated with testicular differentiation, and absence of H-Y with failure of testicular differentiation, in a variety of mammalian species. To determine more precisely the relationship between expression of H-Y antigen and development of the testis, we studied the cells of phenotypic females with the 46,XY male karyotype. Blood leukocytes were typed H-Y+ in five XY females with gonadal dysgenesis, although in other studies blood leukocytes from XY females with gonadal dysgenesis were typed H-Y-. Thus mere presence of H-Y antigen is not sufficient to guarantee normal differentiation of the testis. In the present paper we review evidence for an additional factor in gonadal organogenesis, the H-Y antigen receptor. We infer that testicular development requires engagement of H-Y and its receptor. It follows that XY gonadal dysgenesis is the consequence of functional absence of the H-Y testis inducer as in the following conditions: failure of synthesis of H-Y or failure of specific binding of H-Y.  相似文献   

7.
Summary H-Y antigen was determined in eight transsexual patients. Two of the four male-to-female transsexual patients typed as H-Y antigen-negative, while the other two typed as expected from their phenotypic and gonadal sex, namely H-Y antigen-positive. Of the four female-to-male transsexual patients, three typed as H-Y antigen-positive and one was H-Y antigen-negative, as expected. The presence of normal testes in H-Y antigen-negative males is assumed to result from a mutation of nucleotide sequences of the H-Y structural gene for antigenic determinants. Thus, an H-Y is produced with normal receptor-binding activity which can sustain the testis determination of the bipotent gonadal anlage. In the case of H-Y antigen-positive females with normal ovaries a deletion of the autosomally located H-Y structural gene is assumed. This deletion should affect sequences for repressor-binding (as was suggested for H-Y antigen-positive XX-males) and for receptor-binding activity of the H-Y antigen molecule. The resulting H-Y antigen is unable to bind to the gonadal receptor of the bipotent gonadal anlage. Thus an ovary is determined. The relevance of H-Y antigen for the aetiology of transsexualism is discussed.  相似文献   

8.
Temperature sex-reversal in amphibians and reptiles   总被引:5,自引:0,他引:5  
The sexual differentiation of gonads has been shown to be temperature-sensitive in many species of amphibians and reptiles. In two close species of salamanders, Pleurodeles poireti and P. waltl, both displaying a ZZ/ZW mechanism of genotypic sex determination (GSD), the rearing of larvae at high temperatures (30 degrees-32 degrees C) produces opposite effects: ZZ genotypic males of Pleurodeles poireti become phenotypic females whereas ZW genotypic females of P. waltl become phenotypic males. Sex-reversal of these individuals has been irrefutably demonstrated through genetic, cytogenetic, enzymatic and immunological studies. In many turtles, both sexes differentiate only within a critical range of temperature: above this range, all the individuals become phenotypic females, whereas below it, 100% become phenotypic males. The inverse occurs in some crocodiles and lizards. In many species of these three orders of reptiles, females are obtained at low and high temperatures, and males at intermediate ones. Preliminary studies in turtles (Emys orbicularis) indicate that within the critical range of temperature, sexual phenotype conforms with GSD, but that above and below this range, GSD is overriden. Temperature shifts during larval development in salamanders and during embryonic development in reptiles allowed the determination of thermosensitive stages for gonadal differentiation. Estrogens synthesized in the gonads at these stages appear to be involved in their sexual differentiation, higher levels being produced at feminizing temperatures than at masculinizing ones. The phenomenon of temperature sensitivity of gonadal differentiation occurs in species showing a very early stage in the evolution of sex chromosomes. Its adaptive value, chiefly in reptiles, remains an open question.  相似文献   

9.
Summary H-Y antigen expression was studied on leukocytes and gonad-derived fibroblasts from a patient affected by mixed gonadal dysgenesis. Blood leukocytes and fibroblasts derived from the testis were typed H-Y positive, but the fibroblasts derived from the streak gonad were H-Y negative. Although the patient's karyotype was a mosaic, 45,XO/46,X+mar, as detected in-peripheral blood cells and testis-derived fibroblasts, all the fibroblasts derived from the streak gonad were 45,XO. These data suggests that the marker chromosome was in fact a Y-derived chromosome. Moreover, they showed that, at the gonadal level, a minority of H-Y positive 46,X+mar cells were able to organize a testis. Nevertheless, a large number of XO cells probably did not receive the testicular forming influence of the H-Y antigen and of the other masculinizing factors.  相似文献   

10.
Summary Nine XX true hermaphrodites and two XX males were discovered in a family of American cocker spaniels. The true hermaphrodites were partially-masculinized females with ovotestes; the XX males had malformed male external genitalia and cryptorchid aspermatogenic testes. Wolffian and Mullerian duct derivatives were present in both true hermaphrodites and XX males. All four sires of sex-reversed dogs were normal XY males; five of the dams were anatomically normal females and one was an XX true hermaphrodite. A second true hermaphrodite reproduced as a female, producing anatomically normal offspring.All matings that produced sex-reversed offspring were consanguineous. Matings of the parents of sex-reversed cocker spaniels to normal beagles with no family history of intersexuality produced only normal offspring. Examination of G-banded karyotypes of the affected animals, their parents, and siblings, revealed no structural anomalies of the chromosomes that were consistently associated with sex-reversal.In assays for serologically-detectable H-Y antigen, the group of XX true hermaphrodites and the group of XX males had mean levels of the antigen not significantly different from that in normal male controls. Female parents of sex-reversed dogs and some of their female siblings were typed H-Y antigen positive, but the mean level of the antigen in this group was less than that of normal male controls.It is proposed that XX sex reversal in cocker spaniels is due to a mutant gene which when homozygous in females, results in a level of H-Y antigen similar to that found in normal males and the gonads develop as ovotestes or testes. When the gene is heterozygous in females, the level of serologically-detectable H-Y antigen is lowr than that found in normal males and the gonads develop as normal ovaries. The persistence of Mullerian structures in the presence of testicular tissue suggests that Mullerian inhibiting substance is deficient or ineffective in its action in this condition.Supported by NIH Postdoctoral Fellowship IF32 HL05515, University of Pennsylvania Genetics Center Grant, No. GM 20138, and NIH grants AI-19456, HD 17049, and HD 14357; and a grant from the Mrs. Cheever Porter Foundation.  相似文献   

11.
It has been proposed that H-Y antigen is the synthetic product of sex-determining genes, and that H-Y antigen controls ontogenetic differentiation of the heterogametic sex throughout vertebrates. The coral-reef fish Anthias squamipinnis is a protogynous hermaphrodite in which all individuals mature initially as females. Males result when adult females change sex as a consequence of alterations in behavioral interactions within social groups. Three assay methods were used to measure H-Y antigen levels in the spleens, gonads, and epidermal tissue of 16 adult females and in 16 males that had been induced to change sex from a prior female phase by the removal of a pre-existing male from each of 16 social groups. In 15 male-female pairs, the H-Y antigen levels were higher in male than in female spleen, gonad, and epidermis tissues. The precise temporal relationship between the onset of sex change and the increase in the H-Y antigen level was not examined. If, as we strongly suspect, the temporal relationship proves to be close, the inference will be that the behavioral cues inducing sex change also influence the synthetic activity of genes controlling H-Y antigen production.  相似文献   

12.
13.
Summary Soluble H-Y antigen is taken up by cells of the homogametic gonad of cattle, dog, chicken and South African clawed frog. After in vitro exposure to mouse testis supernatant or male fetal calf serum, XX ovary cells or ZZ testis cells, which are normally H-Y-, acquire the H-Y+ (H-W+) phenotype and absorb mouse H-Y antibody in standard serological assays. In addition, H-Y antigens of the different species can compete for attachment to target cells of a single species. In a new competitive binding radioassay, uptake of tritiated human H-Y is blocked in XX bovine fetal ovarian cells exposed to non-labeled H-Y of mouse or fetal bull. Because H-Y antigens of the different species are cross-reactive serologically, positive reaction of H-Y from one species with gonadal cells of another signifies structural conservatism of the H-Y/H-W gonadal receptor. It follows that establishment of the H-Y/H-W-receptor complex is a common and critical early event in primary sex differentiation of the vertebrates, directing the initially indifferent embryonic gonad towards the heterogametic mode, which may be testicular or ovarian, depending on the species.  相似文献   

14.
Yoshimoto S  Ito M 《The FEBS journal》2011,278(7):1020-1026
Genetic sex-determining systems in vertebrates include two basic types of heterogamety, which are represented by the XX/XY and ZZ/ZW types. Both types occur among amphibian species. Little is known, however, about the molecular mechanisms underlying amphibian sex determination. Recently, a W-linked gene, DM-W, was isolated as a paralog of DMRT1 in the African clawed frog Xenopus laevis, which has a female heterogametic ZZ/ZW-type sex-determining system. The DNA-binding domain of DM-W shows high sequence identity with that of DMRT1, but DM-W does not contain a domain with homology to DMRT1's transactivation domain. Importantly, phenotypic analysis of transgenic individuals bearing a DM-W-expression or -knockdown vector strongly suggested that DM-W acts as a female sex-determining gene in this species. In this minireview, we briefly describe the sex-determining systems in amphibians, discuss recent findings from the discovery of the DM-W gene in terms of its molecular evolution and its function in sex determination and ovary formation, and introduce a new model for the ZZ/ZW-type sex determination elicited by DM-W and DMRT1 in X. laevis. Finally, we discuss sex-determining systems and germ-cell development during vertebrate evolution, especially in view of a conserved role of DMRT1 in gonadal masculinization.  相似文献   

15.
A recent study in the lepidopteran Ostrinia scapulalis shows that endosymbionts can actively manipulate the sex determination mechanism of their host. Wolbachia bacteria alter the sex-specific splicing of the doublesex master switch gene. In ZZ males of this female heterogametic system, the female isoform of doublesex is produced in the presence of the bacteria. The effect is a lethal feminization of genotypic males. Curing of ZW females leads to males that die, indicating that the bacteria have an obligate role in proper sex determination and development of their host. Microbial intervention with host sex determination may be a driving force behind the evolutionary turnover of sex determination mechanisms.  相似文献   

16.
H-Y antigen was investigated in three amphibian species with different degrees of sex-chromosome differentiation: Bufo bufo, Triturus vulgaris, and Pyxicephalus adspersus. No heteromorphic sex chromosomes were found in B. bufo, but an examination of the progeny of hermaphrodites (Ponse, 1942) indicated that the female of this species was heterogametic (ZW). Sex chromosomes differing only by a very small heterochromatic region at their telomeres were found in the male of T. vulgaris (XY). Pyxicephalus adspersus revealed high differentiated ZW sex chromosomes. The results of the H-Y antigen studies on these three species indicate that H-Y antigen is expressed only in the heterogametic sex, irrespective of differences in morphological differentiation of the sex chromosomes. Therefore, H-Y antigen could be a valuable tool in determining the heterogametic sex, not only in Amphibia but possibly also in other vertebrate species that have either evolved no heteromorphic sex chromosomes or where sex-reversal experiments are not possible.  相似文献   

17.
Sex determination and sexual differentiation in the avian model   总被引:2,自引:0,他引:2  
Chue J  Smith CA 《The FEBS journal》2011,278(7):1027-1034
The sex of birds is determined by the inheritance of sex chromosomes (ZZ male and ZW female). Genes carried on one or both of these sex chromosomes control sexual differentiation during embryonic life, producing testes in males (ZZ) and ovaries in females (ZW). This minireview summarizes our current understanding of avian sex determination and gonadal development. Most recently, it has been shown that sex is cell autonomous in birds. Evidence from gynandromorphic chickens (male on one side, female on the other) points to the likelihood that sex is determined directly in each cell of the body, independently of, or in addition to, hormonal signalling. Hence, sex-determining genes may operate not only in the gonads, to produce testes or ovaries, but also throughout cells of the body. In the chicken, as in other birds, the gonads develop into ovaries or testes during embryonic life, a process that must be triggered by sex-determining genes. This process involves the Z-linked DMRT1 gene. If DMRT1 gene activity is experimentally reduced, the gonads of male embryos (ZZ) are feminized, with ovarian-type structure, downregulation of male markers and activation of female markers. DMRT1 is currently the best candidate gene thought to regulate gonadal sex differentiation. However, if sex is cell autonomous, DMRT1 cannot be the master regulator, as its expression is confined to the urogenital system. Female development in the avian model appears to be shared with mammals; both the FOXL2 and RSPO1/WNT4 pathways are implicated in ovarian differentiation.  相似文献   

18.
In order to study the divergence of teleost sex chromosomes, subtractive cloning was carried out between genomic DNA of males and females of the rainbow trout (XX/XY) and of Leporinus elongatus (ZW/ZZ). Inserts cloned in a plasmid vector were individually tested on Southern blots of DNA of males and females for sex specificity. No sex-specific insert was obtained from trout, but two out of ten inserts cloned from L. elongatus showed sex-specific patterns in this species: one corresponds to a sequence present on both Z and W chromosomes, while the other is W specific. Sequences of these two inserts show neither clear homology with other known sequences, nor an open reading frame. They cross-hybridize with the genomic DNA of Leporinus friderici, but without sex-specific patterns. Twenty-four L. elongatus adults were sexed by gonadal observation, chromosomed examination and Southern hybridization with one or the other insert. Ten males and 11 females had chromosomes and hybridization patterns typical of their sex. One ZW female was recognized as a male with the W-specific probe. This was also the case for two unusual ZW males, one having a male hybridization pattern with the other probe. These three atypical individuals may result from single genetic exchanges between four regions of the Z and the W, giving rise to three atypical W chromosomes. Finding males with such atypical heterochromosomes in a female heterogametic species may indicate that a gradual transition occurs between the heterogametic systems.  相似文献   

19.
Sex inversion as a model for the study of sex determination in vertebrates   总被引:1,自引:0,他引:1  
As a consequence of genetic sex determination, the indifferent gonadal blastema normally becomes either a testis or an ovary. This applies to mammals and to the majority of non-mammalian vertebrates. With the exception of placental mammals, however, partial or complete sex inversion can be induced in one sex by sexual steroid hormones of the opposite sex during a sensitive period of gonadogenesis. There is evidence that also during normal gonadogenesis in these species, in the XY/XX mechanism of sex determination testicular differentiation is induced by androgens, and in the ZZ/ZW mechanism, ovarian differentiation by oestrogens. In either case, the hormones may act via serological H-Y antigen as a morphogenetic factor. In contrast, in placental mammals including man, primary gonadal differentiation is independent of sexual steroid hormones, and factors directing differential gonadal development have not yet been conclusively identified. However, various mutations at the chromosome or gene level, resulting respectively in sex inversion or intersexuality, have provided clues as to some genes involved and their possible nature. In this context also, serological H-Y antigen is discussed as a possible factor acting on primordial gonadal cells and inducing differential growth or morphogenesis or both. The data available at present allow a tentative outline of the genetics of sex determination in placental mammals.  相似文献   

20.
Summary H-Y antigen was investigated in 18 specimens representing six different sex chromosome constitutions of the wood lemming (Myopus schisticolor). The control range of H-Y antigen was defined by the sex difference between normal XX females (H-Y negativeper definitionem) and normal XY males (H-Y positive, full titer). H-Y antigen titers of the X*Y and X*0 females were in the male control range, while in the X*X and X0 females the titers were intermediary. Data were obtained with two different H-Y antigen assays: the Raji cell cytotoxicity test and the peroxidase-antiperoxidase (PAP) method. Fibroblasts, gonadal cells, and spleen cells were checked. Presence of full titers of H-Y antigen in the absence of testis differentiation is readily explained by the assumption of a deficiency of the gonadspecific receptor of H-Y antigen. Since sex reversal is inherited as an X-linked trait, genes for this receptor are most likely X-linked. The implications of our findings are discussed in connection with earlier findings concerning H-Y antigen in XY gonadal dysgenesis in man and the X0 situation in man and mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号