首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in regulating the fate decision of MSCs. However, the exact functional role and underlying mechanisms of how TLR4 regulate bone marrow MSC proliferation and differentiation are unclear. Here, we found that activated TLR4 by its ligand LPS promoted the proliferation and osteogenic differentiation of MSCs in vitro. TLR4 activation by LPS also increased cytokine IL-6 and IL-1β production in MSCs. In addition, LPS treatment has no effect on inducing cell death of MSCs. Deletion of TLR4 expression in MSCs completely eliminated the effects of LPS on MSC proliferation, osteogenic differentiation and cytokine production. We also found that the mRNA and protein expression of Wnt3a and Wnt5a, two important factors in regulating MSC fate decision, was upregulated in a TLR4-dependent manner. Silencing Wnt3a with specific siRNA remarkably inhibited TLR4-induced MSC proliferation, while Wnt5a specific siRNA treatment significantly antagonized TLR4-induced MSC osteogenic differentiation. These results together suggested that TLR4 regulates bone marrow MSC proliferation and osteogenic differentiation through Wnt3a and Wnt5a signaling. These finding provide new data to understand the role and the molecular mechanisms of TLR4 in regulating bone marrow MSC functions. These data also provide new insight in developing new therapy in bone regeneration using MSCs by modulating TLR4 and Wnt signaling activity.  相似文献   

2.
Successful cell therapy will depend on the ability to monitor transplanted cells. With cell labeling, it is important to demonstrate efficient long term labeling without deleterious effects on cell phenotype and differentiation capacity. We demonstrate long term (7 weeks) retention of superparamagnetic iron oxide particles (SPIO) by mesenchymal stem cells (MSCs) in vivo, detectable by MRI. In vitro, multilineage differentiation (osteogenic, chondrogenic and adipogenic) was demonstrated by histological evaluation and molecular analysis in SPIO labeled and unlabeled cells. Gene expression levels were comaparable to unlabeled controls in adipogenic and chondrogenic conditions however not in the osteogenic condition. MSCs seeded into a scaffold for 21 days and implanted subcutaneously into nude mice for 4 weeks, showed profoundly altered phenotypes in SPIO labeled samples compared to implanted unlabeled control scaffolds, indicating chondrogenic differentiation. This study demonstrates long term MSC traceability using SPIO and MRI, uninhibited multilineage MSC differentiation following SPIO labeling, though with subtle but significant phenotypical alterations.  相似文献   

3.
4.
Mesenchymal stem cells are good candidates for the clinical application of bone repair because of their osteogenic differentiation potential, but in vivo osteoinduction potential should be verified for culture expanded cells before clinical application. This study analyzed in vivo bone formation by MSCs quantitatively after implantation of MSCs planted porous biphasic ceramic cubes into athymic mice. MSCs were divided into osteogenic differentiation-induced and normal groups and also tested in vitro to evaluate the degree of differentiation into osteoblasts. The osteogenic induced group showed higher alkaline phosphatase and calcium level in vitro and corresponding higher level of bone formation in vivo compared to control group. Whereas there was no bone formation observed in fibroblast-implanted negative control group. In critical sized bone defect models, commonly used for evaluation of bone regeneration ability, it is difficult to distinguish between osteoinduction and osteoconduction, and quantitative analysis is not simple. However, this method for evaluating osteoinduction is both accurate and simple. In conclusion, the analysis of in vivo bone formation using porous ceramic cubes is a powerful and simple method for evaluating the osteoinduction ability of target cells and, furthermore, can be applied for evaluation of scaffolds for their osteoinductive properties.  相似文献   

5.
Mesenchymal stem cells (MSCs) are bone marrow stromal cells that can differentiate into multiple lineages. We previously demonstrated that BMP9 is one of the most potent BMPs to induce osteogenic differentiation of MSCs. BMP9 is one of the least studied BMPs. Whereas ALK1, ALK5, and/or endoglin have recently been reported as potential BMP9 type I receptors in endothelial cells, little is known about type I receptor involvement in BMP9-induced osteogenic differentiation in MSCs. Here, we conduct a comprehensive analysis of the functional role of seven type I receptors in BMP9-induced osteogenic signaling in MSCs. We have found that most of the seven type I receptors are expressed in MSCs. However, using dominant-negative mutants for the seven type I receptors, we demonstrate that only ALK1 and ALK2 mutants effectively inhibit BMP9-induced osteogenic differentiation in vitro and ectopic ossification in MSC implantation assays. Protein fragment complementation assays demonstrate that ALK1 and ALK2 directly interact with BMP9. Likewise, RNAi silencing of ALK1 and ALK2 expression inhibits BMP9-induced BMPR-Smad activity and osteogenic differentiation in MSCs both in vitro and in vivo. Therefore, our results strongly suggest that ALK1 and ALK2 may play an important role in mediating BMP9-induced osteogenic differentiation. These findings should further aid us in understanding the molecular mechanism through which BMP9 regulates osteogenic differentiation of MSCs.  相似文献   

6.
7.
8.
AIM: To investigate adenoviral transduction in mesenchymal stem cells(MSCs) and effects on stemness in vitro and function as a cell therapy in vivo.METHODS: Bone marrow-derived adult and fetal MSC were isolated from an equine source and expanded in monolayer tissue culture. Polyethylenimine(PEI)-mediated transfection of pc DNA3-e GFP or adenoviral transduction of green fluorescent protein(GFP) was evaluated in fetal MSCs. Adenoviral-mediated transduction was chosen for subsequent experiments. All experiments were carried out at least in triplicate unless otherwise noted. Outcome assessment was obtained by flow cytometry or immunohystochemistry and included transduction efficiency, cell viability, stemness(i.e., cell proliferation, osteogenic and chondrogenic cell differentiation), and quantification of GFP expression. Fetal and adult MSCs were then transduced with an adenoviral vector containing the gene for the bone morphogenic protein 2(BMP2). In vitro BMP2 expression was assessed by enzyme linked immunosorbent assay. In addition, MSC-mediated gene delivery of BMP2 was evaluated in vivo in an osteoinduction nude mouse quadriceps model. New bone formation was evaluated by microradiography and histology.RESULTS: PEI provided greater transfection and viability in fetal MSCs than other commercial chemical reagents. Adenoviral transduction efficiency was superior to PEI-mediated transfection of GFP in fetal MSCs(81.3% ± 1.3% vs 35.0% ± 1.6%, P < 0.05) and was similar in adult MSCs(78.1% ± 1.9%). Adenoviral transduction provided significantly greater expression of GFP in fetal than adult MSCs(7.4 ± 0.1 vs 4.4 ± 0.3 millions of mean fluorescence intensity units, P < 0.01) as well as significantly greater in vitro BMP2 expression(0.16 pg/cell-day vs 0.10 pg/cell-day, P < 0.01). Fraction of fetal MSC GFP positive cells decreased significantly faster than adult MSCs(1.15% ± 0.05% vs 11.4% ± 2.1% GFP positive at 2 wk post-transduction, P < 0.05). Cell proliferation and osteogenic differentiation in vitrowere not affected by Ad transduction in both fetal and adult MSCs, but fetal MSCs had reduced chondrogenic differentiation in vitro when compared to adult(P < 0.01). Chondrogenic differentiation was also significantly reduced in Ad-GFP transduced cells(P < 0.05). AdBMP2 transduced adult MSCs induced new bone formation in more thighs than Ad-BMP2 transduced fetal MSCs(83% vs 17% of the six treated thighs per group, P < 0.05) and resulted in increased femur midshaft diameter due to greater extent of periosteal new bone(1.57 ± 0.35 mm vs 1.27 ± 0.08 mm, P < 0.05).CONCLUSION: Fetal MSCs may be genetically manipulated ex vivo with adenoviral vectors. Nonetheless, the abbreviated expression of the exogenous gene may limit their applications in vivo.  相似文献   

9.
Li Z  Liu C  Xie Z  Song P  Zhao RC  Guo L  Liu Z  Wu Y 《PloS one》2011,6(6):e20526

Background

Mesenchymal stem cells (MSCs) hold great promise for the treatment of difficult diseases. As MSCs represent a rare cell population, ex vivo expansion of MSCs is indispensable to obtain sufficient amounts of cells for therapies and tissue engineering. However, spontaneous differentiation and aging of MSCs occur during expansion and the molecular mechanisms involved have been poorly understood.

Methodology/Principal Findings

Human MSCs in early and late passages were examined for their expression of genes involved in osteogenesis to determine their spontaneous differentiation towards osteoblasts in vitro, and of genes involved in self-renewal and proliferation for multipotent differentiation potential. In parallel, promoter DNA methylation and hostone H3 acetylation levels were determined. We found that MSCs underwent aging and spontaneous osteogenic differentiation upon regular culture expansion, with progressive downregulation of TERT and upregulation of osteogenic genes such as Runx2 and ALP. Meanwhile, the expression of genes associated with stem cell self-renewal such as Oct4 and Sox2 declined markedly. Notably, the altered expression of these genes were closely associated with epigenetic dysregulation of histone H3 acetylation in K9 and K14, but not with methylation of CpG islands in the promoter regions of most of these genes. bFGF promoted MSC proliferation and suppressed its spontaneous osteogenic differentiation, with corresponding changes in histone H3 acetylation in TERT, Oct4, Sox2, Runx2 and ALP genes.

Conclusions/Significance

Our results indicate that histone H3 acetylation, which can be modulated by extrinsic signals, plays a key role in regulating MSC aging and differentiation.  相似文献   

10.
Chitosan/β-glycerophosphate/collagen (C/GP/Co) is a promising injectable scaffold in the bone tissue engineering. In this study, we prepared this scaffold and evaluated its biocompatibility and effects on the osteogenic differentiation of mesenchymal stem cells (MSCs). After fabrication, the C/GP/Co hydrogel was examined in a scanning electron microscope (SEM) and showed a porous microstructure. Its biocompatibility was assessed by cell morphology and cell viability assays. Cell morphological observations were performed by fluorescent microscope in 2D cultivation and by laser confocal scanning microscope (LCSM) in 3D cultivation, respectively. Cell viability in 2D and that in 3D cultivation were both evaluated by the Cell Counting Kit-8 (CCK-8) assay. Its effect on osteogenic differentiation of MSCs in vitro was clarified by alkaline phosphatase (ALP) activity, Alizarin Red staining, and real-time polymerase chain reaction (Real-time PCR). An additional experiment of the ectopic bone formation in nude mice was conducted to investigate its effects on osteogenic differentiation of MSCs after subcutaneous injection. The results proved that C/GP/Co hydrogel exhibited good biocompatibility and enhanced the in vitro osteogenic differentiation of MSCs. In the experiment of ectopic bone formation, this hydrogel demonstrated its capability of supporting neovascularization and differentiation of MSCs toward osteogenic lineage. Therefore, C/GP/Co hydrogel scaffold holds a great promise for the bone tissue engineering applications.  相似文献   

11.
In this study, we investigate the translational potential of a novel combined construct using an FDA-approved decellularized porcine small intestinal submucosa extracellular matrix (SIS-ECM) seeded with human or porcine mesenchymal stem cells (MSCs) for cardiovascular indications. With the emerging success of individual component in various clinical applications, the combination of SIS-ECM with MSCs could provide additional therapeutic potential compared to individual components alone for cardiovascular repair. We tested the in vitro effects of MSC-seeding on SIS-ECM on resultant construct structure/function properties and MSC phenotypes. Additionally, we evaluated the ability of porcine MSCs to modulate recipient graft-specific response towards SIS-ECM in a porcine cardiac patch in vivo model. Specifically, we determined: 1) in vitro loading-capacity of human MSCs on SIS-ECM, 2) effect of cell seeding on SIS-ECM structure, compositions and mechanical properties, 3) effect of SIS-ECM seeding on human MSC phenotypes and differentiation potential, and 4) optimal orientation and dose of porcine MSCs seeded SIS-ECM for an in vivo cardiac application. In this study, histological structure, biochemical compositions and mechanical properties of the FDA-approved SIS-ECM biomaterial were retained following MSCs repopulation in vitro. Similarly, the cellular phenotypes and differentiation potential of MSCs were preserved following seeding on SIS-ECM. In a porcine in vivo patch study, the presence of porcine MSCs on SIS-ECM significantly reduced adaptive T cell response regardless of cell dose and orientation compared to SIS-ECM alone. These findings substantiate the clinical translational potential of combined SIS-ECM seeded with MSCs as a promising therapeutic candidate for cardiac applications.  相似文献   

12.
Bortezomib (BZB) is a chemotherapeutic agent approved for treating multiple myeloma (MM) patients. In addition, there are several reports showing that bortezomib can induce murine mesenchymal stem cells (MSCs) to undergo osteogenic differentiation and increase bone formation in vivo. MSCs are the multipotent stem cells that have capacity to differentiate into several mesodermal derivatives including osteoblasts. Nowadays, MSCs mostly bone marrow derived have been considered as a valuable source of cell for tissue replacement therapy. In this study, the effect of bortezomib on the osteogenic differentiation of human MSCs derived from both bone marrow (BM-MSCs) and postnatal sources such as placenta (PL-MSCs) were investigated. The degree of osteogenic differentiation of BM-MSCs and PL-MSCs after bortezomib treatment was assessed by alkaline phosphatase (ALP) activity, matrix mineralization by Alizarin Red S staining and the expression profiles of osteogenic differentiation marker genes, Osterix, RUNX2 and BSP. The results showed that 1 nM and 2 nM BZB can induce osteogenic differentiation of BM-MSCs and PL-MSCs as demonstrated by increased ALP activity, increased matrix mineralization and up-regulation of osteogenic differentiation marker genes, Osterix, RUNX2 and BSP as compared to controls. The enhancement of osteogenic differentiation of MSCs by bortezomib may lead to the potential therapeutic applications in human diseases especially patients with osteopenia.  相似文献   

13.
Transplantation of mesenchymal stem cells (MSCs) is a promising therapy for ischemic injury; however, inadequate survival of implanted cells in host tissue is a substantial impediment in the progress of cellular therapy. Secreted Frizzled-related protein 2 (sFRP2) has recently been highlighted as a key mediator of MSC-driven myocardial and wound repair. Notably, sFRP2 mediates significant enhancement of MSC engraftment in vivo. We hypothesized that sFRP2 improves MSC engraftment by modulating self-renewal through increasing stem cell survival and by inhibiting differentiation. In previous studies we demonstrated that sFRP2-expressing MSCs exhibited an increased proliferation rate. In the current study, we show that sFRP2 also decreased MSC apoptosis and inhibited both osteogenic and chondrogenic lineage commitment. sFRP2 activity occurred through the inhibition of both Wnt and bone morphogenic protein (BMP) signaling pathways. sFRP2-mediated inhibition of BMP signaling, as assessed by levels of pSMAD 1/5/8, was independent of its effects on the Wnt pathway. We further hypothesized that sFRP2 inhibition of MSC lineage commitment may reduce heterotopic osteogenic differentiation within the injured myocardium, a reported adverse side effect. Indeed, we found that sFRP2-MSC-treated hearts and wound tissue had less ectopic calcification. This work provides important new insight into the mechanisms by which sFRP2 increases MSC self-renewal leading to superior tissue engraftment and enhanced wound healing.  相似文献   

14.
Mesenchymal stem cells (MSCs) play a crucial role in regulating normal skeletal homeostasis and, in case of injury, in bone healing and reestablishment of skeletal integrity. Recent scientific literature is focused on the development of bone regeneration models where MSCs are combined with biomimetic three-dimensional scaffolds able to direct MSC osteogenesis. In this work the osteogenic potential of human MSCs isolated from adipose tissue (hADSCs) has been evaluated in vitro in combination with collagen/Mg doped hydroxyapatite scaffolds. Results demonstrate the high osteogenic potential of hADSCs when cultured in specific differentiation induction medium, as revealed by the Alizarin Red S staining and gene expression profile analysis. In combination with collagen/hydroxyapatite scaffold, hADSCs differentiate into mature osteoblasts even in the absence of specific inducing factors; nevertheless, the supplement of the factors markedly accelerates the osteogenic process, as confirmed by the expression of specific markers of pre-osteoblast and mature osteoblast stages, such as osterix, osteopontin (also known as bone sialoprotein I), osteocalcin and specific markers of extracellular matrix maturation and mineralization stages, such as ALPL and osteonectin. Hence, the present work demonstrates that the scaffold per se is able to induce hADSCs differentiation, while the addition of osteo-inductive factors produces a significant acceleration of the osteogenic process. This observation makes the use of our model potentially interesting in the field of regenerative medicine for the treatment of bone defects.  相似文献   

15.
Mesenchymal stem cells (MSC) can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM) proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A) levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy.  相似文献   

16.
《Cytotherapy》2020,22(12):762-771
Background aimsMesenchymal stromal cells (MSCs) isolated from various tissues are under investigation as cellular therapeutics in a wide range of diseases. It is appreciated that the basic biological functions of MSCs vary depending on tissue source. However, in-depth comparative analyses between MSCs isolated from different tissue sources under Good Manufacturing Practice (GMP) conditions are lacking. Human clinical-grade low-purity islet (LPI) fractions are generated as a byproduct of islet isolation for transplantation. MSC isolates were derived from LPI fractions with the aim of performing a systematic, standardized comparative analysis of these cells with clinically relevant bone marrow-derived MSCs (BM MSCs).MethodsMSC isolates were derived from LPI fractions and expanded in platelet lysate-supplemented medium or in commercially available xenogeneic-free medium. Doubling rate, phenotype, differentiation potential, gene expression, protein production and immunomodulatory capacity of LPIs were compared with those of BM MSCs.ResultsMSCs can be readily derived in vitro from non-transplanted fractions resulting from islet cell processing (i.e., LPI MSCs). LPI MSCs grow stably in serum-free or platelet lysate-supplemented media and demonstrate in vitro self-renewal, as measured by colony-forming unit assay. LPI MSCs express patterns of chemokines and pro-regenerative factors similar to those of BM MSCs and, importantly, are equally able to attract immune cells in vitro and in vivo and suppress T-cell proliferation in vitro. Additionally, LPI MSCs can be expanded to therapeutically relevant doses at low passage under GMP conditions.ConclusionsLPI MSCs represent an alternative source of GMP MSCs with functions comparable to BM MSCs.  相似文献   

17.
18.
Various diseases and toxic factors easily impair cellular and organic functions in mammals. Organ transplantation is used to rescue organ function, but is limited by scarce resources. Mesenchymal stem cell (MSC)‐based therapy carries promising potential in regenerative medicine because of the self‐renewal and multilineage potency of MSCs; however, MSCs may lose biological functions after isolation and cultivation for a long time in vitro. Moreover, after they are injected in vivo and migrate into the damaged tissues or organs, they encounter a harsh environment coupled with death signals due to the inadequate tensegrity structure between the cells and matrix. Preconditioning, genetic modification and optimization of MSC culture conditions are key strategies to improve MSC functions in vitro and in vivo, and all of these procedures will contribute to improving MSC transplantation efficacy in tissue engineering and regenerative medicine. Preconditioning with various physical, chemical and biological factors is possible to preserve the stemness of MSCs for further application in studies and clinical tests. In this review, we mainly focus on preconditioning and the corresponding mechanisms for improving MSC activities in vitro and in vivo; we provide a glimpse into the promotion of MSC‐based cell therapy development for regenerative medicine. As a promising consequence, MSC transplantation can be applied for the treatment of some terminal diseases and can prolong the survival time of patients in the near future.  相似文献   

19.
Liu G  Shu C  Cui L  Liu W  Cao Y 《Cryobiology》2008,56(3):209-215
Bone marrow mesenchymal stem cells (MSCs) have become the main cell source for bone tissue engineering. It has been reported that cryopreserved human MSCs can maintain their potential for proliferation and osteogenic differentiation in vitro. There are, however, no reports on osteogenesis with cryopreserved human MSCs in vivo. The aim of this study was to determine whether cryopreservation had an effect on the proliferation capability and osteogenic differentiation of human MSCs on scaffolds in vitro and in vivo. MSCs were isolated from human bone marrow, cultured in vitro until passage 2, and then frozen and stored at −196 °C in liquid nitrogen with 10% Me2SO as cryoprotectant for 24 h. The cryopreserved MSCs were then thawed rapidly, seeded onto partially demineralized bone matrix (pDBM) scaffolds and cultured in osteogenic media containing 10 mM sodium β-glycerophosphate, 50 μM l-ascorbic acid, and 10 nM dexamethasone. Non-cryopreserved MSCs seeded onto the pDBM scaffolds were used as control groups. Scanning electronic microscopy (SEM) observation, DNA content assays, and measurements of alkaline phosphatase (ALP) activity and osteocalcin (OCN) content were applied, and the results showed that the proliferation potential and osteogenic differentiation of MSCs on pDBM in vitro were not affected by cryopreservation. After 2 weeks of subculture, the MSCs/pDBM composites were subcutaneously implanted into the athymic mice. The constructs were harvested at 4 and 8 weeks postimplantation, and histological examination showed tissue-engineered bone formation in the pDBM pores in both groups. Based on these results, it can be concluded that cryopreservation allows human MSCs to be available for potential therapeutic use to tissue-engineer bone.  相似文献   

20.
The two mesenchymal stem cell (MSC) populations that have gained most attention in relation to bone tissue engineering are adipose tissue (AT) MSCs and bone marrow (BM) MSCs. The purpose of this study was to investigate the ability of human BM-MSCs and AT-MSCs to survive, proliferate and deposit collagen type 1 when cultured on polycaprolactone nanofiber scaffolds and to ascertain the effect of medium composition on collagen type 1 formation and expression of osteogenic genes. The cells were seeded on polycaprolactone nanofiber scaffolds and cultured in three different types of media that differed by the presence of ascorbic acid, β-glycerophosphate and dexamethasone, that are typical components used for osteogenic differentiation of MSCs in vitro.In summary, AT-MSCs were proliferating significantly faster than BM-MSCs. AT-MSCs also showed better ability to deposit collagen type 1 and had a higher expression of early osteogenic markers, whereas BM-MSCs had higher expression of late osteogenic markers. This suggests that MSCs from diverse sources have different attributes and with respect to osteogenic differentiation, AT-MSCs are more immature compared to BM-MSCs. Collagen formation was depending on medium composition and the organization of collagen type 1 appeared to be influenced by the presence of dexamethasone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号