首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ProP and ProU transport systems of Escherichia coli mediate the uptake of several osmoprotectants including glycine betaine. Here we report that both ProP and ProU are involved in the transport of the potent osmoprotectant proline betaine. A set of isogenic E. coli strains carrying deletions in either the proP or proU loci was constructed. The growth properties of these mutants in high osmolarity minimal media containing 1 mM proline betaine demonstrated that the osmoprotective effect of this compound was dependent on either an intact ProP or ProU uptake system. Proline betaine competes with glycine betaine for binding to the proU-encoded periplasmic substrate binding protein (ProX) and we estimate a KD of 5.2 μM for proline betaine binding. This value is similar to the binding constant of the ProX protein determined previously for the binding of glycine betaine (KD of 1.4 μM). Our results thus demonstrate that the binding-protein-dependent ProU transport system of E. coli mediates the efficient uptake of the osmoprotectants glycine betaine and proline betaine.  相似文献   

2.
Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) is a cyclic amino acid, identified as a compatible solute in moderately halophilic bacteria. Exogenously provided ectoine was found to stimulate growth of Escherichia coli in media of inhibitory osmotic strength. The stimulation was independent of any specific solute, electrolyte or nonelectrolyte. It is accumulated in E. coli cells proportionally to the osmotic strength of the medium, and it is not metabolized. Its osmoprotective ability was as potent as that of glycine betaine. The ProP and ProU systems are both involved in ectoine uptake and accumulation in E. coli. ProP being the main system for ectoine transport. The intracellular ectoine pool is regulated by both influx and efflux systems.  相似文献   

3.
The ProP and ProU transport systems of Escherichia coli mediate the uptake of several osmoprotectants including glycine betaine. Here we report that both ProP and ProU are involved in the transport of the potent osmoprotectant proline betaine. A set of isogenic E. coli strains carrying deletions in either the proP or proU loci was constructed. The growth properties of these mutants in high osmolarity minimal media containing 1 mM proline betaine demonstrated that the osmoprotective effect of this compound was dependent on either an intact ProP or ProU uptake system. Proline betaine competes with glycine betaine for binding to the proU-encoded periplasmic substrate binding protein (ProX) and we estimate a KD of 5.2 M for proline betaine binding. This value is similar to the binding constant of the ProX protein determined previously for the binding of glycine betaine (KD of 1.4 M). Our results thus demonstrate that the binding-protein-dependent ProU transport system of E. coli mediates the efficient uptake of the osmoprotectants glycine betaine and proline betaine.  相似文献   

4.
The regulation of glycine betaine accumulation has been investigated in Salmonella typhimurium. The size of the glycine betaine pool in the cells is determined by the external osmotic pressure and is largely independent of the external glycine betaine concentration. Analysis of the activity of the ProP and ProU transport systems suggests that other systems must be active in the regulation of the glycine betaine pool. Addition of p-chloromercuribenzoate (PCMB) or p-chloromercuribenzene sulphonate (PCMBS) to cells that have accumulated glycine betaine provokes rapid loss of glycine betaine. The route of glycine betaine efflux under the influence of PCMB is independent of either the ProP or ProU transport systems. Rapid loss of the accumulated pool of glycine betaine in the presence of PCMB is specific to glycine betaine and proline; accumulated pools of serine and lysine are not significantly affected by the -SH reagent. A specific glycine betaine/proline efflux system is postulated on the basis of these data and its role in the regulation of glycine betaine and proline accumulation is discussed.  相似文献   

5.
Culham DE  Romantsov T  Wood JM 《Biochemistry》2008,47(31):8176-8185
H (+)-solute symporters ProP and LacY are members of the major facilitator superfamily. ProP mediates osmoprotectant (e.g., proline) accumulation, whereas LacY transports the nutrient lactose. The roles of K (+), H (+), H 2O, and DeltaPsi in H (+)-proline and H (+)-lactose symport were compared using right-side-out cytoplasmic membrane vesicles (MVs) from bacteria expressing both transporters and proteoliposomes (PRLs) reconstituted with pure ProP-His 6. ProP activity increased as LacY activity decreased when osmotic stress (increasing osmolality) was imposed on MVs. The activities of both transporters decreased to similar extents when Na (+) replaced K (+) in MV preparations. Thus, K (+) did not specifically control ProP activity. As with LacY, an increasing extravesicular pH stimulated ProP-mediated proline efflux much more than ProP-mediated proline exchange from de-energized MVs. In contrast to that of LacY, ProP-mediated exchange was only 2-fold faster than ProP-mediated efflux and was inhibited by respiration. In the absence of the protonmotive force (Deltamu H (+) ), efflux of lactose from MVs was much more sensitive to increasing osmolality than lactose exchange. Thus, H 2O may be directly involved in proton transport via LacY. In the absence of Deltamu H (+) , proline efflux and exchange from MVs were osmolality-independent. In PRLs with a DeltapH of 1 (lumen alkaline), ProP-His 6 was inactive when the membrane potential (DeltaPsi) was zero, was active but insensitive to osmolality when DeltaPsi was -100 mV, and became osmolality-sensitive as DeltaPsi increased further to -137 mV. ProP-His 6 had the same membrane orientation in PRLs as in cells and MVs. ProP switches among "off", "on", and "osmolality-sensitive" states as the membrane potential increases. Kinetic parameters determined in the absence of Deltamu H (+) represent a ProP population that is predominantly off.  相似文献   

6.
Hybridization to a PCR product derived from conserved betaine choline carnitine transporter (BCCT) sequences led to the identification of a 3.4-kb Sinorhizobium meliloti DNA segment encoding a protein (BetS) that displays significant sequence identities to the choline transporter BetT of Escherichia coli (34%) and to the glycine betaine transporter OpuD of Bacillus subtilis (30%). Although the BetS protein shows a common structure with BCCT systems, it possesses an unusually long hydrophilic C-terminal extension (169 amino acids). After heterologous expression of betS in E. coli mutant strain MKH13, which lacks choline, glycine betaine, and proline transport systems, both glycine betaine and proline betaine uptake were restored, but only in cells grown at high osmolarity or subjected to a sudden osmotic upshock. Competition experiments demonstrated that choline, ectoine, carnitine, and proline were not effective competitors for BetS-mediated betaine transport. Kinetic analysis revealed that BetS has a high affinity for betaines, with K(m)s of 16 +/- 2 microM and 56 +/- 6 microM for glycine betaine and proline betaine, respectively, in cells grown in minimal medium with 0.3 M NaCl. BetS activity appears to be Na(+) driven. In an S. meliloti betS mutant, glycine betaine and proline betaine uptake was reduced by about 60%, suggesting that BetS represents a major component of the overall betaine uptake activities in response to salt stress. beta-Galactosidase activities of a betS-lacZ strain grown in various conditions showed that betS is constitutively expressed. Osmotic upshock experiments performed with wild-type and betS mutant cells, treated or not with chloramphenicol, indicated that BetS-mediated betaine uptake is the consequence of immediate activation of existing proteins by high osmolarity, most likely through posttranslational activation. Growth experiments underscored the crucial role of BetS as an emerging system involved in the rapid acquisition of betaines by S. meliloti subjected to osmotic upshock.  相似文献   

7.
Transporter ProP of Escherichia coli mediates the cellular accumulation of organic zwitterions in response to increased extracellular osmolality. We compared and characterized the osmoregulation of ProP activity in cells and proteoliposomes to define the osmotic shift-induced cellular change(s) to which ProP responds. ProP-(His)(6) activity in cells and proteoliposomes was correlated with medium osmolality, not osmotic shift, turgor pressure, or membrane strain. Both K(M) and V(max) for proline uptake via ProP-(His)(6) increased with increasing medium osmolality, as would be expected if osmolality controls the proportions of transporter with inactive and active conformations. The osmolality yielding half-maximal ProP-(His)(6) activity was higher in proteoliposomes than in cells. The osmolality response of ProP is also attenuated in bacteria lacking soluble protein ProQ. Indeed, the catalytic constant (k(cat)) for ProP-(His)(6) in proteoliposomes approximated that of ProP in intact bacteria lacking ProQ. Thus, the proteoliposome system may replicate a primary osmosensory response that can be further amplified by ProQ. ProP-(His)(6) is designated as an osmosensor because its activity is dependent on the osmolality, but not the composition, of the assay medium to which the cell surface is exposed. In contrast, ProP-(His)(6) activity was dependent on both the osmolality and the composition of the lumen in osmolyte-loaded proteoliposomes. For proteoliposomes containing inorganic salts, glucose, or poly(ethylene glycol) 503, transporter activity correlated with total lumenal cation concentration. In contrast, for proteoliposomes loaded with larger poly(ethylene glycol)s, the osmolality, the lumenal cation concentration, and the lumenal ionic strength at half-maximal transporter activity decreased systematically with poly(ethylene glycol) radius of gyration (range 0.8-1.8 nm). These data suggest that ProP-(His)(6) responds to osmotically induced changes in both cytoplasmic K(+) levels and the concentration of cytoplasmic macromolecules.  相似文献   

8.
The plant pathogen Pseudomonas syringae may cope with osmotic stress on plants, in part, by importing osmoprotective compounds. In this study, we found that P. syringae pv. tomato strain DC3000 was distinct from most bacterial species in deriving greater osmoprotection from exogenous choline than from glycine betaine. This superior osmoprotection was correlated with a higher capacity for uptake of choline than for uptake of glycine betaine. Of four putative osmoregulatory ABC transporters in DC3000, one, designated OpuC, functioned as the primary or sole transporter for glycine betaine and as one of multiple transporters for choline under high osmolarity. Surprisingly, the homolog of the well-characterized ProU transporter from Escherichia coli and Salmonella enterica serovar Typhimurium did not function in osmoprotection. The P. syringae pv. tomato OpuC transporter was more closely related to the Bacillus subtilis and Listeria monocytogenes OpuC transporters than to known osmoprotectant transporters in gram-negative bacteria based on sequence similarity and genetic arrangement. The P. syringae pv. tomato OpuC transporter had a high affinity for glycine betaine, a low affinity for choline, and a broad substrate specificity that included acetylcholine, carnitine, and proline betaine. Tandem cystathionine-beta-synthase (CBS) domains in the ATP-binding component of OpuC were required for transporter function. The presence of these CBS domains was correlated with osmoregulatory function among the putative transporters examined in DC3000 and was found to be predictive of functional osmoregulatory transporters in other pseudomonads. These results provide the first functional evaluation of an osmoprotectant transporter in a Pseudomonas species and demonstrate the usefulness of the CBS domains as predictors of osmoregulatory activity.  相似文献   

9.
Addition of osmoprotective compounds has a positive effect on growth and monoclonal antibody production in hyperosmotic hybridoma cell cultures. In order to better understand the processes involved in the osmoprotective response, uptake of the osmoprotective compounds glycine betaine, proline, sarcosine and glycine in mouse hybridoma cell line 6H11 during exposure to hyperosmotic stress was studied. Hyperosmotic stress (510 mOsmol/kg) was introduced through the addition of NaCl (100 mM) to the growth medium, and amino acid transport activity was measured immediately after transfer of the cells to the hyperosmotic medium. The osmoprotective capability of the four osmoprotectants tested was negatively affected if methylaminosobutyric acid (MeAiB), a specific substrate for amino acid transport system A, was simultaneously included in the hyperosmotic medium in equimolar amounts with one of the osmoprotective compounds. This was due to accumulation of MeAiB in the stressed cells, giving a significant reduction in the concentration of the osmoprotective compound inside the cells. Furthermore, addition of excess meAiB gave approx. 905 reduction in the initial rate of uptake of glycine betaine, while 40–50% reduction in the initial rate of uptake of proline, glycine and sarcosine. Similarly, addition of proline, glycine or sarcosine also gave a significant reduction in the initial rate of glycine betaine uptake. These results suggest that the four osmoprotective compounds share, at least in part, a common, MeAiB inhibitable carrier for transport into osmotically stressed hybridoma cells. This carrier is probably equal to amino acid transport system A.  相似文献   

10.
We combined the use of low inoculation titers (300 +/- 100 CFU/ml) and enumeration of culturable cells to measure the osmoprotective potentialities of dimethylsulfoniopropionate (DMSP), dimethylsulfonioacetate (DMSA), and glycine betaine (GB) for salt-stressed cultures of Escherichia coli. Dilute bacterial cultures were grown with osmoprotectant concentrations that encompassed the nanomolar levels of GB and DMSP found in nature and the millimolar levels of osmoprotectants used in standard laboratory osmoprotection bioassays. Nanomolar concentrations of DMSA, DMSP, and GB were sufficient to enhance the salinity tolerance of E. coli cells expressing only the ProU high-affinity general osmoporter. In contrast, nanomolar levels of osmoprotectants were ineffective with a mutant strain (GM50) that expressed only the low-affinity ProP osmoporter. Transport studies showed that DMSA and DMSP, like GB, were taken up via both ProU and ProP. Moreover, ProU displayed higher affinities for the three osmoprotectants than ProP displayed, and ProP, like ProU, displayed much higher affinities for GB and DMSA than for DMSP. Interestingly, ProP did not operate at substrate concentrations of 200 nM or less, whereas ProU operated at concentrations ranging from 1 nM to millimolar levels. Consequently, proU(+) strains of E. coli, but not the proP(+) strain GM50, could also scavenge nanomolar levels of GB, DMSA, and DMSP from oligotrophic seawater. The physiological and ecological implications of these observations are discussed.  相似文献   

11.
Among the Rhizobiaceae, Bradyrhizobium japonicum strain USDA110 appears to be extremely salt sensitive, and the presence of glycine betaine cannot restore its growth in medium with an increased osmolarity (E. Boncompagni, M. Osteras, M. C. Poggi, and D. Le Rudulier, Appl. Environ. Microbiol. 65:2072-2077, 1999). In order to improve the salt tolerance of B. japonicum, cells were transformed with the betS gene of Sinorhizobium meliloti. This gene encodes a major glycine betaine/proline betaine transporter from the betaine choline carnitine transporter family and is required for early osmotic adjustment. Whereas betaine transport was absent in the USDA110 strain, such transformation induced glycine betaine and proline betaine uptake in an osmotically dependent manner. Salt-treated transformed cells accumulated large amounts of glycine betaine, which was not catabolized. However, the accumulation was reversed through rapid efflux during osmotic downshock. An increased tolerance of transformant cells to a moderate NaCl concentration (80 mM) was also observed in the presence of glycine betaine or proline betaine, whereas the growth of the wild-type strain was totally abolished at 80 mM NaCl. Surprisingly, the deleterious effect due to a higher salt concentration (100 mM) could not be overcome by glycine betaine, despite a significant accumulation of this compound. Cell viability was not significantly affected in the presence of 100 mM NaCl, whereas 75% cell death occurred at 150 mM NaCl. The absence of a potential gene encoding Na(+)/H(+) antiporters in B. japonicum could explain its very high Na(+) sensitivity.  相似文献   

12.
The ability of Erwinia chrysanthemi to cope with environments of elevated osmolality is due in part to the transport and accumulation of osmoprotectants. In this study we have identified a high-affinity glycine betaine and choline transport system in E. chrysanthemi. By using a pool of Tn5-B21 ousA mutants, we isolated a mutant that could grow in the presence of a toxic analogue of glycine betaine (benzyl-glycine betaine) at high osmolalities. This mutant was impaired in its ability to transport all effective osmoprotectants in E. chrysanthemi. The DNA sequence of the regions flanking the transposon insertion site revealed three chromosomal genes (ousVWX) that encode components of an ABC-type transporter (OusB): OusV (ATPase), OusW (permease), and OusX (periplasmic binding protein). The OusB components showed a significant degree of sequence identity to components of ProU from Salmonella enterica serovar Typhimurium and Escherichia coli. OusB was found to restore the uptake of glycine betaine and choline through functional complementation of an E. coli mutant defective in both ProU and ProP osmoprotectant uptake systems. Competition experiments demonstrated that choline, dimethylsulfoniacetate, dimethylsulfoniopropionate, and ectoine were effective competitors for OusB-mediated betaine transport but that carnitine, pipecolate, and proline were not effective. In addition, the analysis of single and double mutants showed that OusA and OusB were the only osmoprotectant transporters operating in E. chrysanthemi.  相似文献   

13.
14.
A search was undertaken for osmoprotective compounds for mouse hybridoma cell line 6H11 grown in culture. When the osmolality of the growth medium was increased above the normal osmolality of 330 mOsmol/kg, growth rates were decreased in a dose-dependent fashion, reaching zero when the osmolality of the medium reached approx. 435 mOsmol/kg through the addition of KCl (60 mM), or 510 mOsmol/kg through the addition of NaCl (100 mM), or sucrose (175 mM). For NaCl or sucrose-stressed cultures, the inclusion of glycine betaine, sarcosine, proline, glycine, or asparagine in the growth medium gave a moderate to strong osmoprotective effect, measured as the ability of these compounds to enhance cell growth rates under hyperosmotic conditions. Inclusion of dimethylglycine may also give a strong osmoprotective effect under these stress conditions.In KCl-stressed cell cultures, addition of glycine betaine, sarcosine, or dimethylglycine gave strong osmoprotective effects. Of 38 compounds tested during NaCl stress, 7 gave weak osmoprotective effects and 25 gave no osmoprotective effect. The osmoprotective compounds accumulated inside the stressed cells. Accumulation was completed after 4 to 8 h, reaching intracellular concentrations of approx. 0.27 pmol/cell, or 0.15 M, in NaCl stressed cells (100 mM NaCl added).Glycine betaine, dimethylglycine, and sarcosine accumulation was observed only when these protectants were included in the medium. For all osmoprotectants, a growth medium concentration between 5 and 30 mM gave the maximal protective effect, with the exception of dimethylglycine, for which the optimum concentration was approx. 65 mM. Osmoprotective effects obtained with glycine, sarcosine, dimethylglycine, and glycine betaine, indicate that the more methylated compounds are the most effective protectants.The cellular content of glycine betaine and the glycine betaine uptake rate increased with medium osmolality in a linear fashion. Glycine betaine uptake was described by a model comprising a saturable component obeying Michaelis-Menten kinetics and a nonsaturable component. K(m) and V(max) for glycine betaine uptake were determined at 420 mOsmol/kg (50 mM NaCl added) and 510 mOsmol/kg (100 mM NaCl added). A K(m) value of approx. 2.5 mM was obtained at both medium osmolalities, while V(max) increased from 0.010 pmol/cell . h to 0.018 pmol/cell . h as the osmolality of the growth medium was increased, indicating an effect of medium osmolality on the maximal rate of transport rather than on the affinity of the transporters for glycine betaine. Hybridoma cells were not able to utilize the glycine betaine precursors choline or glycine betaine aldehyde for osmoprotection, suggesting that the cells lack part, or all, of the choline-glycine betaine pathway or the appropriate uptake mechanism.The uptake rate for glycine in NaCl-stressed hybridoma cells was approx. four times higher than the uptake rate for glycine betaine. Furthermore, if equimolar amounts of glycine betaine, glycine, sarcosine, and proline were simultaneously added to NaCl-stressed cell cultures, the intracellular concentrations of glycine, proline, and sarcosine were significantly higher than the concentration of glycine betaine.A 40% increase in hybridoma cell volume was observed when the growth medium osmolality was increased from 300 to 520 mOsmol/kg. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.
Bacteroids isolated from alfalfa nodules induced by Rhizobium meliloti 102F34 transported glycine betaine at a constant rate for up to 30 min. Addition of sodium salts greatly increased the uptake activity, whereas other salts or non-electrolytes had less effect. The apparent Km for glycine betaine uptake was 8.3 microM and V was about 0.84 nmol min-1 (mg protein)-1 in the presence of 200 mM-NaCl which gave maximum stimulation of the transport. Supplementing bacteroid suspensions with various energy-yielding substrates, or ATP, did not increase glycine betaine uptake rates. The uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP), and the respiratory inhibitor potassium cyanide strongly inhibited glycine betaine uptake, but arsenate was totally inactive. Glycine betaine transport showed considerable structural specificity: choline, proline betaine, gamma-butyrobetaine and trigonelline did not competitively inhibit the system, although choline and proline betaine were transported by bacteroids. Both a high-affinity activity and a low-affinity activity were found for choline uptake. These osmoprotective compounds might have a significant role in the maintenance of nitrogenase activity in bacteroids subjected to salt stress.  相似文献   

16.
A novel compound, 1-methyl-1-piperidino methane sulfonate (MPMS), was found to block the osmoprotectant activity of choline and L-proline, but not glycine betaine in Escherichia coli. MPMS was more active against salt-sensitive than salt-resistant strains, but had no effect on the salt tolerance of a mutant which was unable to transport choline, glycine betaine and proline. Growth of E. coli in NaCl was inhibited by MPMS and restored by glycine betaine, but not by choline or L-proline. Uptake of radiolabeled glycine betaine, choline or L-proline by cells grown at high osmolarity was not inhibited when MPMS and the radioactive substrates were added simultaneously. Preincubation for 5 min with MPMS reduced the uptake of choline and L-proline, but not glycine betaine. Similar incubation with MPMS had no effect on the uptake of radiolabeled glucose or succinate. The toxicity of MPMS was much lower than that of the L-proline analogues L-azetidine-2-carboxylic acid and 3,4-dehydro-DL-proline. The exact mechanism by which MPMS exerts its effect is not entirely clear. MPMS or a metabolite may interfere with the activity of several independent permeases involved in the uptake of osmoprotective compounds, or the conversion of choline to glycine betaine, or effect the expression of some of the osmoregulatory genes.Abbreviations MPMS 1-methyl-1-piperidino-methane sulfonate  相似文献   

17.
Proline accumulation in Escherichia coli is mediated by three proline porters. Proline catabolism is effected by proline porter I (PPI) and proline/delta 1-pyrroline carboxylate dehydrogenase. Proline did not accumulate cytoplasmically when E. coli was subjected to osmotic stress in minimal salts medium. Although PPI is induced when proline is provided as carbon or nitrogen source, its activity decreased following growth of the bacteria in minimal salts medium of high osmotic strength. Proline dehydrogenase was induced by proline in low or high osmotic strength media. Proline porter II (PPII) was both activated and induced in osmotically stressed bacteria, though the dependencies of the two responses on medium osmolarity differed. Osmotic downshift during the transport measurement decreased the uptake of proline, serine and glutamine by bacteria cultured in media of high osmotic strength. Thus, while osmotic upshift caused specific activation of PPII, osmotic downshift caused a non-specific reduction in amino acid uptake. Glycine betaine inhibited the uptake of [14C]proline via PPII and PPIII but not via PPI. The dependence of that inhibition on glycine betaine concentration was similar when PPII was uninduced, induced or activated by osmotic stress, or induced by amino acid limited growth. Thus PPII and PPIII, not PPI, contribute to the mechanism of osmoprotection by proline and glycine betaine. The tendency for exogenous proline to accumulate in the cytoplasm of bacteria exposed to osmotic stress would, however, be countered by increased proline catabolism.  相似文献   

18.
Multiple transporters mediate osmoregulatory solute accumulation in Escherichia coli K-12. The larger genomes of naturally occurring strains such as pyelonephritis isolates CFT073 and HU734 may encode additional osmoregulatory systems. CFT073 is more osmotolerant than HU734 in the absence of organic osmoprotectants, yet both strains grew in high osmolality medium at low K(+) (micromolar concentrations) and retained locus trkH, which encodes an osmoregulatory K(+) transporter. Both lacked the trkH homologue trkG. Transporters ProP and ProU account for all glycine-betaine uptake activity in E. coli K-12 and CFT073, but not in HU734, yet elimination of ProP and ProU impairs the growth of HU734, but not CFT073, in high osmolality human urine. No known osmoprotectant stimulated the growth of CFT073 in high osmolality minimal medium, but putative transporters YhjE, YiaMNO, and YehWXYZ may mediate uptake of additional osmoprotectants. Gene betU was isolated from HU734 by functional complementation and shown to encode a betaine uptake system that belongs to the betaine-choline-carnitine transporter family. The incidence of trkG and betU within the ECOR collection, representatives of the E. coli pathotypes (PATH), and additional strains associated with urinary tract infection (UTI) were determined. Gene trkG was present in 66% of the ECOR collection but only in 16% of the PATH and UTI collections. Gene betU was more frequently detected in ECOR groups B2 and D (50% of isolates) than in groups A, B1, and E (20%), but it was similar in overall incidence in the ECOR collection and in the combined UTI and PATH collections (32 and 34%, respectively). Genes trkG and betU may have been acquired by lateral gene transfer, since trkG is part of the rac prophage and betU is flanked by putative insertion sequences. Thus, BetU and TrkG contribute, with other systems, to the osmoregulatory capacity of the species E. coli, but they are not characteristic of a particular phylogenetic group or pathotype.  相似文献   

19.
Glycine betaine transport in Escherichia coli: osmotic modulation.   总被引:58,自引:36,他引:22  
Exogenous glycine betaine highly stimulates the growth rate of various members of the Enterobacteriaceae, including Escherichia coli, in media with high salt concentrations (D. Le Rudulier and L. Bouillard, Appl. Environ. Microbiol. 46:152-159, 1983). In a nitrogen- and carbon-free medium, glycine betaine did not support the growth of E. coli either on low-salt or high-salt media. This molecule was taken up by the cells but was not catabolized. High levels of glycine betaine transport occurred when the cells were grown in media of elevated osmotic strength, whereas relatively low activity was found when the cells were grown in minimal medium. A variety of electrolytes, such as NaCl, KCl, NaH2PO4, K2HPO4, K2SO4, and nonelectrolytes like sucrose, raffinose, and inositol triggered the uptake of glycine betaine. Furthermore, in cells subjected to a sudden osmotic upshock, glycine betaine uptake showed a sixfold stimulation 30 min after the addition of NaCl. Part of this stimulation might be a consequence of protein synthesis. The transport of glycine betaine was energy dependent and occurred against a concentration gradient. 2,4-Dinitrophenol almost totally abolished the glycine betaine uptake. Azide and arsenate exerted only a small inhibition. In addition, N,N'-dicyclohexylcarbodiimide had a very low inhibitory effect at 1 mM. These results indicated that glycine betaine transport is driven by the electrochemical proton gradient. The kinetics of glycine betaine entry followed the Michaelis-Menten relationship, yielding a Km of 35 microM and a Vmax of 42 nmol min-1 mg of protein-1. Glycine betaine transport showed considerable structural specificity. The only potent competitor was proline betaine when added to the assay mixtures at 20-fold the glycine betaine concentration. From these results, it is proposed that E. coli possesses an active and specific glycine betaine transport system which is regulated by the osmotic strength of the growth medium.  相似文献   

20.
Betaine is an important osmoprotectant in many plants, but its transport activity has only been demonstrated using a proline transporter from tomato, a betaine-nonaccumulating plant. In this study, two full-length and one partial transporter genes were isolated from betaine-accumulating mangrove Avicennia marina. Their homologies to betaine transporters from bacteria and betaine/4-aminobutyrate transporters from mammalian cells were low but were high to proline transporters from Arabidopsis and tomato. Two full-length transporters could complement the Na(+)-sensitive phenotype of the Escherichia coli mutant deficient in betT, putPA, proP, and proU. Both transporters could efficiently take up betaine and proline with similar affinities (K(m), 0.32-0.43 mm) and maximum velocities (1.9-3.6 nmol/min/mg of protein). The uptakes of betaine and proline were significantly inhibited by mono- and dimethylglycine but only partially inhibited by betaine aldehyde, choline, and 4-aminobutyrate. Sodium and potassium chloride markedly enhanced betaine uptake rates with optimum concentrations at 0.5 m, whereas sucrose showed only modest activation. The change of amino acids Thr(290)-Thr-Ser(292) in a putative periplasmic loop to Arg(290)-Gly-Arg(292) yielded the active transporter independent of salts, suggesting the positive charge induced a conformational change to the active form. These data clearly indicate that the betaine-accumulating mangrove contains betaine/proline transporters whose properties are distinct from betaine transporters of bacteria and mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号