首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant ovine Ala-leptin (GenBank Accession No. U84247, of ovine leptin), previously prepared in our laboratory in prokaryotic expression plasmid pMON3401, was mutated using a mutagenesis kit to prepare plasmids encoding for bovine (GenBank Accession No. U50365) and porcine (GenBank Accession No. U59894) leptins and for porcine leptin analogue W4R/R5K. Escherichia coli cells transformed with these plasmids overexpressed large amounts of these proteins upon induction with nalidixic acid. The expressed proteins, found in inclusion bodies, were refolded and purified to homogeneity using subsequently anion- and cation-exchange chromatography. All three purified proteins showed a single band of the expected molecular mass of 16 kDa in SDS-PAGE in the presence of reducing agent and were composed of 90-100% monomers. Proper refolding was evidenced by comparing their CD spectra to those of previously prepared chicken and ovine leptins and to commercially available human leptin. The amino acid content of the purified proteins closely resembled the predicted composition. The biological activity of bovine leptin, porcine leptin, and porcine leptin analogue W4R/R5K was evidenced by their ability to stimulate proliferation of leptin-sensitive BAF/3 cells transfected with a long form of human leptin receptor. All three proteins, as well as ovine and chicken leptins, but not human leptin, exhibited a very high degree of cross-immunoreactivity against antiserum raised against ovine leptin in rabbits. In contrast, none or very low cross-immunoreactivity was observed against antiserum raised against ovine leptin in goats.  相似文献   

2.
Superactive ovine leptin antagonist (SOLA) was prepared by rational mutagenesis of the ovine leptin antagonist L39A/D40A/F41A mutant prepared previously in our lab by mutating wild type leptin to D23L/L39A/D40A/F41A. SOLA was expressed in Escherichia coli as insoluble inclusion bodies, refolded and purified to homogeneity (as evidenced by SDS-PAGE and analytical gel filtration) by ion-exchange chromatography. The purified protein was mono-pegylated at its N terminus by 20-kDa linear pegylation reagent. The D23L mutation resulted in ca. 5- to 6-fold increased affinity toward soluble human leptin binding domain and 6- to 8-fold increased inhibitory activity in two different in vitro bioassays. This increase was similar, though not identical, to our previous results with superactive mouse and human leptin antagonists. Pegylation decreased overall activity by 5- to 8-fold, but as shown previously for superactive mouse leptin antagonist, the prolonged half life in the circulation will likely result in higher activity in vivo. As amino acids 6-31 (VQDDTKTLIKTIVTRINDISHTQSVS), making up a main part of the first α-helix, are identical in human, mouse, rat, ovine, bovine and pig leptins, we anticipate that D23L mutations of the respective leptins will result in similar increases in affinity and consequent activity of other leptin antagonists.  相似文献   

3.
A subdomain of the human leptin receptor encoding part of the extracellular domain (amino acids 428 to 635) was subcloned, expressed in a prokaryotic host, and purified to homogeneity, as evidenced by SDS-PAGE, with over 95% monomeric protein. The purified leptin-binding domain (LBD) exhibited the predicted beta structure, was capable of binding human, ovine, and chicken leptins, and formed a stable 1:1 complex with all mammalian leptins. The binding kinetics, assayed by surface plasmon resonance methodology, showed respective k(on) and k(off) values (mean +/- S.E.) of 1.20 +/- 0.23 x 10(-5) mol(-1) s(-1) and 1.85 +/- 0.30 x 10(-3) s(-1) and a K(d) value of 1.54 x 10(-8) m. Similar results were achieved with conventional binding experiments. LBD blocked leptin-induced, but not interleukin-3-induced, proliferation of BAF/3 cells stably transfected with the long form of human leptin receptor. The modeled LBD structure and the known three-dimensional structure of human leptin were used to construct a model of 1:1 LBD.human leptin complex. Two main residues, Phe-500, located in loop L3, and Tyr-441, located in L1, are suggested to contribute to leptin binding.  相似文献   

4.
The chicken leptin sequence, in contrast to mammalian leptins, contains an unpaired Cys at position 3 of the original cDNA (AF012727). The presence of an extra Cys may confer a different structure and affect the leptin's biological activity. To address this, we studied the effects of wild-type and mutated (C4S) chicken leptins in vitro and in vivo and compared them with mammalian leptin prepared from ovine leptin cDNA. The prokaryotic expression vector pMON, encoding full-size A(-1) chicken leptin (AF012727), was mutated using a mutagenesis kit, yielding the C4S analog. Escherichia coli cells transformed with this vector overexpressed large amounts of chicken leptin C4S upon induction with nalidixic acid. The expressed protein, found in the inclusion bodies, was refolded and purified to homogeneity on a Q-Sepharose column, yielding three electrophoretically pure fractions, eluted from the column by 100, 125, and 150 mM NaCl, respectively. All three fractions showed a single band of the expected molecular mass (16 kDa) and were composed of >95% monomeric protein. Proper refolding was evidenced by comparing the circular dichroism spectrum of the analog with spectra of nonmutated chicken and ovine leptins. The biological activity of the C4S analog was evidenced by its ability to stimulate proliferation of leptin-sensitive BAF/3 cells transfected with a long form of human leptin receptor construct similar to its nonmutated counterpart, indicating that Cys4 plays no role in leptin activity. The in vitro activity of both wild-type and mutated chicken leptins was approximately 10-fold lower than that of ovine leptin. After intravenous or intraperitoneal injections, C4S analog and the nonmutated chicken and ovine leptins all lowered the food intake of starved 9-day-old broiler or 5-wk-old layer male chickens by 11-34%. Monitoring food behavior revealed that the attenuated food intake resulted not from a decreased number of approaches to the feeders but from a decrease in the average time spent eating during each approach.  相似文献   

5.
Leptin is a circulating protein which regulates dietary intake through binding the leptin receptor. Numerous labs have used known structures and mutagenesis to study this binding process in common animal models (human, mouse and rat). Understanding this binding process in other vertebrate species will allow for a better understanding of leptin and leptin receptor function. The binding site between leptin and leptin receptor is highly conserved in mammals as confirmed through sequence alignments mapped onto structures of both leptin and leptin receptor. More variation in this interaction is found in lizard and frog sequences. Using our models, we show that the avian leptin sequences have far less variation in the binding site than does the leptin receptor. This analysis further suggests that avian leptins are artifactual. In fish, gene duplication events have led to the expression of multiple leptin proteins. These multiple leptin proteins have variation in the regions interacting with leptin receptor. In zebrafish and the Japanese rice fish, we propose that leptin A has a higher binding energy than does B. Differing binding energies are evidence of either divergent functions, different binding confirmations, or other protein partners of leptin B.  相似文献   

6.

Objective

Leptin receptors are abundant in human skeletal muscle, but the role of leptin in muscle growth, development and aging is not well understood. Here we utilized a novel mouse model lacking all functional leptin receptor isoforms (POUND mouse, Leprdb/lb) to determine the role of leptin in skeletal muscle.

Methods and Findings

Skeletal muscle mass and fiber diameters were examined in POUND mice, and primary myoblast cultures were used to determine the effects of altered leptin signaling on myoblast proliferation and differentiation. ELISA assays, integrated pathway analysis of mRNA microarrays, and reverse phase protein analysis were performed to identify signaling pathways impacted by leptin receptor deficiency. Results show that skeletal muscle mass and fiber diameter are reduced 30–40% in POUND mice relative to wild-type controls. Primary myoblast cultures demonstrate decreased proliferation and decreased expression of both MyoD and myogenin in POUND mice compared to normal mice. Leptin treatment increased proliferation in primary myoblasts from muscles of both adult (12 months) and aged (24 months) wild-type mice, and leptin increased expression of MyoD and myogenin in aged primary myoblasts. ELISA assays and protein arrays revealed altered expression of molecules associated with the IGF-1/Akt and MAPK/MEK signaling pathways in muscle from the hindlimbs of mice lacking functional leptin receptors.

Conclusion

These data support the hypothesis that the adipokine leptin is a key factor important for the regulation of skeletal muscle mass, and that leptin can act directly on its receptors in peripheral tissues to regulate cell proliferation and differentiation.  相似文献   

7.
Mucins play an essential role in the protection and repair of gastrointestinal mucosa. We recently showed that luminal leptin strongly stimulated mucin secretion in vivo in rat colon. In the present study, we challenged the hypothesis that leptin may act directly on goblet cells to induce mucin expression in rat and human intestinal mucin-producing cells (DHE and HT29-MTX). The endoluminal effect of leptin was also studied in vivo in rat perfused colon model. The presence of leptin receptors was demonstrated in the two cell lines by Western blot and RT-PCR. In rat DHE cells, leptin (0.01-10 nmol/l, 60 min) dose dependently increased the secretion of mucins (210 +/- 3% of controls) and the expression of Muc2, Muc3, and Muc4 (twofold basal level) but not of Muc1 and Muc5AC. Luminal perfusion of leptin (60 min, 0.1-100 nmol/l) in rat colon also increased the mRNA level of Muc2, Muc3, and Muc4 but not of Muc1. In human HT29-MTX cells, leptin (0.01-10 nmol/l, 60 min) dose dependently enhanced MUC2, MUC5AC, and MUC4 mRNA levels. These effects were prevented by pretreatment of cells with the leptin mutein L39A/D40A/F41A, which acts as a receptor antagonist. Finally, pathway inhibition experiments suggest that leptin increased mucin expression by activating PKC-, phosphatidyl inositol 3-kinase-, and MAPK-dependent pathways but not the JAK/STAT pathway. In conclusion, leptin may contribute significantly to membrane-associated and secreted mucin production via a direct stimulation of colonic epithelial cells and the activation of leptin receptors. These data are consistent with a role for leptin in regulation of the intestinal barrier function.  相似文献   

8.
Leptin is a pleiotropic hormone acting both centrally and peripherally. It participates in a variety of biological processes, including energy metabolism, reproduction, and modulation of the immune response. So far, structural elements affecting leptin binding to its receptor remain unknown. We employed random mutagenesis of leptin, followed by selection of high affinity mutants by yeast surface display and discovered that replacing residue Asp-23 with a non-negatively charged amino acid leads to dramatically enhanced affinity of leptin for its soluble receptor. Rational mutagenesis of Asp-23 revealed the D23L substitution to be most effective. Coupling the Asp-23 mutation with alanine mutagenesis of three amino acids (L39A/D40A/F41A) previously reported to convert leptin into antagonist resulted in potent antagonistic activity. These novel superactive mouse and human leptin antagonists (D23L/L39A/D40A/F41A), termed SMLA and SHLA, respectively, exhibited over 60-fold increased binding to leptin receptor and 14-fold higher antagonistic activity in vitro relative to the L39A/D40A/F41A mutants. To prolong and enhance in vivo activity, SMLA and SHLA were monopegylated mainly at the N terminus. Administration of the pegylated SMLA to mice resulted in a remarkably rapid, significant, and reversible 27-fold more potent increase in body weight (as compared with pegylated mouse leptin antagonist), because of increased food consumption. Thus, recognition and mutagenesis of Asp-23 enabled construction of novel compounds that induce potent and reversible central and peripheral leptin deficiency. In addition to enhancing our understanding of leptin interactions with its receptor, these antagonists enable in vivo study of the role of leptin in metabolic and immune processes and hold potential for future therapeutic use in disease pathologies involving leptin.  相似文献   

9.
Leptin is an adipocyte-secreted hormone that centrally regulates weight control. However, leptin receptor is expressed not only in the central nervous system, but also in other systems such as reproductive and hematopoietic tissues. Human leptin has previously been shown to enhance cytokine production by murine peritoneal macrophages and human circulating monocytes. In this paper we have assessed the presence of leptin receptors in peripheral human T lymphocytes and we have studied their functional role. Both CD4(+) and CD8(+) T lymphocytes express leptin receptors. Moreover, we show that human leptin dose-dependently enhances proliferation and activation of human circulating T lymphocytes when they are costimulated by PHA or Con A. Leptin alone was not able to activate T lymphocytes. To confirm a direct effect of leptin on T lymphocytes, monocytes were extracted by adhesion to culture flasks. The early activation surface marker CD69 was then induced in both CD4(+) and CD8(+) T lymphocytes after 8 h stimulation with PHA or Con A. Leptin dose-dependently enhanced stimulated CD69 expression. Moreover, leptin dose-dependently enhanced the expression of the late activation markers CD25 and CD71 in both CD4(+) and CD8(+) T lymphocytes after 48 h stimulation with PHA or Con A. Finally, we have found that leptin modulates CD4(+) T lymphocyte activation toward Th1 phenotype by stimulating the synthesis of IL-2 and IFN-gamma. These results demonstrate the presence of the leptin receptor in human circulating CD4(+) and CD8(+) T lymphocytes and a functional role of leptin as a modulator (enhancer) of lymphocyte stimulation with a shift toward Th1 cytokine-production profile. This function of leptin may have some relevance in the pathophysiology of immunologic alterations related to obesity.  相似文献   

10.
IgA is the most abundant class of Abs at mucosal surfaces where eosinophils carry out many of their effector functions. Most of the known IgA-mediated functions require interactions with IgA receptors, six of which have been identified in humans. These include the IgA FcR FcalphaRI/CD89 and the receptor for the secretory component, already identified on human eosinophils, the polymeric IgR, the Fcalpha/muR, asialoglycoprotein (ASGP)-R, and transferrin (Tf)R/CD71. In rodents, the existence of IgA receptors on mouse and rat eosinophils remains unclear. We have compared the expression and function of IgA receptors by human, rat, and mouse eosinophils. Our results show that human eosinophils express functional polymeric IgR, ASGP-R, and TfR, in addition to CD89 and the receptor for the secretory component, and that IgA receptors are expressed by rodent eosinophils. Indeed, mouse eosinophils expressed only TfR, whereas rat eosinophils expressed ASGP-R and CD89 mRNA. These results provide a molecular basis for the differences observed between human, rat, and mouse regarding IgA-mediated immunity.  相似文献   

11.
12.
The role of the obesity cytokine leptin in breast cancer progression has raised interest in interfering with leptin's actions as a valuable therapeutic strategy. Leptin interacts with its receptor through three different binding sites: I–III. Site I is crucial for the formation of an active leptin–leptin receptor complex and in its subsequent activation. Amino acids 39‐42 (Leu‐Asp‐Phe‐Ile‐ LDFI) were shown to contribute to leptin binding site I and their mutations in alanine resulted in muteins acting as typical antagonists. We synthesized a small peptide based on the wild‐type sequence of leptin binding site I (LDFI) and evaluated its efficacy in antagonizing leptin actions in breast cancer using in vitro and in vivo experimental models. The peptide LDFI abolished the leptin‐induced anchorage‐dependent and ‐independent growth as well as the migration of ERα‐positive (MCF‐7) and ‐negative (SKBR3) breast cancer cells. These results were well correlated with a reduction in the phosphorylation levels of leptin downstream effectors, as JAK2/STAT3/AKT/MAPK. Importantly, the peptide LDFI reversed the leptin‐mediated up‐regulation of its gene expression, as an additional mechanism able to enhance the peptide antagonistic activity. The described effects were specific for leptin signalling, since the developed peptide was not able to antagonize the other growth factors' actions on signalling activation, proliferation and migration. Finally, we showed that the LDFI pegylated peptide markedly reduced breast tumour growth in xenograft models. The unmodified peptide LDFI acting as a full leptin antagonist could become an attractive option for breast cancer treatment, especially in obese women.  相似文献   

13.
14.
In our search for novel human galanin receptor (GALR) subtypes, human genomic DNA was PCR amplified using sets of degenerate primers based on conserved sequences in human and rat GALR. The sequence of one of the subcloned PCR products revealed homology to a sequence in the 3′ region of the human CD22 gene following a BLAST search of GenBank's database. A search for open reading frames (ORF) in the non-coding CD22 sequence resulted in identification of two novel putative intronless genes, GPR40 and GPR41. The recent submission of sequence overlapping the downstream CD22 sequence revealed a possible polymorphic insert containing a third intronless gene, GPR42, sharing 98% amino acid identity with GPR41, followed by a fourth intronless gene, GPR43. Thus, the GPR40, GPR41, GPR42, and GPR43 genes, respectively, occur downstream from CD22, a gene previously localized on chromosome 19q13.1. The four putative novel human genes encode new members of the GPCR family and share little homology with GALR.  相似文献   

15.
Since its discovery in mammals as a key-hormone in reproduction and metabolism, leptin has been identified in an increasing number of tetrapods and teleosts. Tetrapods possess only one leptin gene, while most teleosts possess two leptin genes, as a result of the teleost third whole genome duplication event (3R). Leptin acts through a specific receptor (LEPR). In the European and Japanese eels, we identified two leptin genes, and for the first time in vertebrates, two LEPR genes. Synteny analyses indicated that eel LEPRa and LEPRb result from teleost 3R. LEPRb seems to have been lost in the teleost lineage shortly after the elopomorph divergence. Quantitative PCRs revealed a wide distribution of leptins and LEPRs in the European eel, including tissues involved in metabolism and reproduction. Noticeably, leptin1 was expressed in fat tissue, while leptin2 in the liver, reflecting subfunctionalization. Four-month fasting had no impact on the expression of leptins and LEPRs in control European eels. This might be related to the remarkable adaptation of silver eel metabolism to long-term fasting throughout the reproductive oceanic migration. In contrast, sexual maturation induced differential increases in the expression of leptins and LEPRs in the BPG-liver axis. Leptin2 was strikingly upregulated in the liver, the central organ of the reproductive metabolic challenge in teleosts. LEPRs were differentially regulated during sexual maturation, which may have contributed to the conservation of the duplicated LEPRs in this species. This suggests an ancient and positive role of the leptin system in the vertebrate reproductive function. This study brings new insights on the evolutionary history of the leptin system in vertebrates. Among extant vertebrates, the eel represents a unique case of duplicated leptins and leptin receptors as a result of 3R.  相似文献   

16.
In mammals, natural killer (NK) cell C-type lectin receptors were encoded in a gene cluster called natural killer gene complex (NKC). The NKC is not reported in chicken yet. Instead, NK receptor genes were found in the major histocompatibility complex. In this study, two novel chicken C-type lectin-like receptor genes were identified in a region on chromosome 1 that is syntenic to mammalian NKC region. The chromosomal locations were validated with fluorescent in situ hybridization. Based on 3D structure modeling, sequence homology, chromosomal location, and phlylogenetic analysis, one receptor is the orthologue of mammalian cluster of differentiation 69 (CD69), and the other is highly homologous to CD94 and NKG2. Like CD94/NKG2 gene found in teleostean fishes, chicken CD94/NKG2 has the features of both human CD94 and NKG2A. Unlike mammalian NKC, these two chicken C-type lectin receptors are not closely linked but separated by 42 million base pairs according to the chicken draft genome sequence. The arrangement of several other genes that are located outside the mammalian NKC is conserved among chicken, human, and mouse. The chicken NK C-type lectin-like receptors in the NKC syntenic region indicate that this chromosomal region existed before the divergence between mammals and aves. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. The nucleotide sequences have been submitted to the GenBank nucleotide sequence database under the accession number chicken CD69 (DQ156495), CD94/NKG2 (DQ156496), and CD94/NKG2 variant (DQ241793).  相似文献   

17.
Leptin is a hormone involved in feeding and body weight regulation in vertebrates, but the relationship between energy status and leptin has not been clearly established in fish. The aim of this study was to investigate in a teleost, the goldfish (Carassius auratus), the tissue expression pattern of two leptins (gLep-aI and gLep-aII) and leptin receptor (gLepR); and the effect of feeding on expression of these genes. Leptin system expression in goldfish was firstly analyzed in fish under overfeeding (2 weeks) or fasting (1 week), and secondly, at different postfeeding times (0, 3, 6, 9 and 12 h). Goldfish has two Lep-a paralog genes, gLep-aI was widely expressed in central and peripheral tissues, whereas gLep-aII was preferentially expressed in brain. This different distribution pattern of leptins suggests that they can play different physiological roles in goldfish. The gLepR mRNA was ubiquitous expressed, with the highest expression in the telencephalon and hypothalamus. No significant differences in the leptin system expression were found among control, overfed and fasting groups, suggesting an apparent lack of correlation between nutritional status and leptin system in goldfish. Hepatic expression of gLep-aI significantly increased 9 h after feeding time, while hypothalamic leptin system expression did not change after feeding. In summary, leptin in goldfish could signal short-term changes in food intake, as postprandial satiety, but seems to be independent of fasting/overfeeding conditions in this teleost. The widespread distribution of leptins and leptin receptor in goldfish strongly supports that this hormone may have pleitropic actions in fish.  相似文献   

18.
19.
Leptin is an adipocyte-secreted hormone that centrally regulates weight control. However, the leptin receptor is expressed not only in the central nervous system, but also in other systems, such as reproductive, hematopoietic, and immune tissues, suggesting various roles in addition to the regulation of food intake and energy expenditure. The leptin receptor bears homology to members of the class I cytokine receptor family. Leptin has previously been shown to enhance cytokine production by murine peritoneal macrophages and human circulating monocytes, where human leptin promotes activation and proliferation. We have recently found that the leptin receptor is expressed not only in monocytes but also in both CD4(+) and CD8(+) T lymphocytes. Besides, leptin enhances proliferation and activation of T lymphocytes when they are costimulated by PHA or Con A. In this paper, we have studied the signal transduction of the leptin receptor in peripheral blood mononuclear cells. We found that leptin stimulation activates the JAK-STAT signaling pathway. More specifically, we found that JAK-2/3 and STAT-3 are activated by tyrosine phosphorylation upon leptin stimulation. Moreover, leptin stimulated tyrosine phosphorylation of the RNA binding protein Sam68 and its association with STAT-3. These effects were dose-dependent (0.1-10 nM) and transient (5-30 min). We also observed the leptin stimulated translocation of activated STAT-3 from the cytoplasm to the nucleus. These results indicate that human leptin receptor in circulating mononuclear cells has the signaling capacity to activate JAK-STAT cascade. This pathway may mediate, at least in part, the action of human leptin in human peripheral blood mononuclear cells.  相似文献   

20.
Weight regulation through body-fat content and energy homeostasis, is regulated mainly through the actions of leptin. Herein, we analyse the effect of mutations in the mouse leptin receptor using the PC12 pheochromocytoma cell line as a model system. Both the induction of pancreatitis associated protein 1 and metallothionein-II, two leptin regulated genes in PC12, was evaluated. Tyr to Phe mutations in the cytoplasmic tail of the mouse leptin receptor confirmed the critical role of Tyr1138 (a YxxQ motif) and STAT-3 activation for induction of leptin-induced genes in PC12. In addition, the Tyr985Phe mutation showed enhanced responsiveness to leptin, which was even more pronounced in combination with Tyr1077Phe. The short isoform of the leptin receptor showed complete loss of stimulation of both genes. In contrast, a leptin receptor devoid of all Tyr residues in its cytoplasmic tail was still capable of a limited induction of the PAP 1 gene. A mutant mouse leptin receptor containing the fa/fa mutation showed constitutive signalling and impaired responsiveness to leptin. Treatment with the adenylate cyclase activator forskolin alone, in the absence of leptin was sufficient to obtain full induction of both genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号