首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 682 毫秒
1.
Poly-(R)-3-hydroxybutyric acid (PHB) was synthesized anaerobically in recombinant Escherichia coli. The host anaerobically accumulated PHB to more than 50% of its cell dry weight during cultivation in either growth or nongrowth medium. The maximum specific PHB production rate during growth-associated synthesis was approximately 2.3 ± 0.2 mmol of PHB/g of residual cell dry weight/h. The by-product secretion profiles differed significantly between the PHB-synthesizing strain and the control strain. PHB production decreased acetate accumulation for both growth and nongrowth-associated PHB synthesis. For instance under nongrowth cultivation, the PHB-synthesizing culture produced approximately 66% less acetate on a glucose yield basis as compared to a control culture. A theoretical biochemical network model was used to provide a rational basis to interpret the experimental results like the fermentation product secretion profiles and to study E. coli network capabilities under anaerobic conditions. For example, the maximum theoretical carbon yield for anaerobic PHB synthesis in E. coli is 0.8. The presented study is expected to be generally useful for analyzing, interpreting, and engineering cellular metabolisms.  相似文献   

2.
Poly-(R)-3-hydroxybutyric acid (PHB) was synthesized anaerobically in recombinant Escherichia coli. The host anaerobically accumulated PHB to more than 50% of its cell dry weight during cultivation in either growth or nongrowth medium. The maximum specific PHB production rate during growth-associated synthesis was approximately 2.3 +/- 0.2 mmol of PHB/g of residual cell dry weight/h. The by-product secretion profiles differed significantly between the PHB-synthesizing strain and the control strain. PHB production decreased acetate accumulation for both growth and nongrowth-associated PHB synthesis. For instance under nongrowth cultivation, the PHB-synthesizing culture produced approximately 66% less acetate on a glucose yield basis as compared to a control culture. A theoretical biochemical network model was used to provide a rational basis to interpret the experimental results like the fermentation product secretion profiles and to study E. coli network capabilities under anaerobic conditions. For example, the maximum theoretical carbon yield for anaerobic PHB synthesis in E. coli is 0.8. The presented study is expected to be generally useful for analyzing, interpreting, and engineering cellular metabolisms.  相似文献   

3.
The PHB production by Cupriavidus necator H16 depends on the type and concentration of stress factors and on the time of stress application. Hydrogen peroxide and ethanol significantly enhanced PHB accumulation in C. necator cells. Improved yields (10.9 g/L PHB) were observed after exposure of bacterial culture to 0.5 mmol/L H2O2 at the beginning of cultivation and to additional peroxide stress (5 mmol/L H2O2) after 60 h of cultivation (beginning of the stationary phase). Production was then ≈28 % higher than in control (8.50 g/L PHB). The highest yields (11.2 g/L PHB) were observed when ethanol (0.5 %) was applied at the beginning of stationary phase. An application of exogenous stress could thus be used as a simple strategy for a significant improvement of PHB production in C. necator.  相似文献   

4.
《Journal of biotechnology》1999,70(1-3):125-131
Rhodobacter sphaeroides O.U. 001 is able to produce hydrogen anaerobically upon illumination. The cells were screened for the presence of valuable by-products such as poly-β-hydroxy (PHB) butyric acid aiming to improve the feasibility of the system. Also waste water from a sugar refinery was used for bacterial growth to further increase the feasibility. Under aerobic conditions the standard growth media containing -malic acid and sodium glutamate in 7.5/10 and 15/2 molar ratios and a medium containing 30% waste water from sugar refinery were used. In this case the maximum concentration of PHB produced were approximately 0.2 g l−1 in both of the standard media whereas it was 0.3 g l−1 in medium containing 30% waste water. By using the medium containing 30% waste water, PHB and hydrogen productions were determined under anaerobic conditions. The maximum concentration of PHB produced was around 0.5 g l−1 and the amount of gas collected was 35 ml in 108 h. From these results it can be concluded that PHB can be collected during hydrogen production. The use of waste water from sugar refinery increased the yield.  相似文献   

5.
Halomonas boliviensis LC1 is able to accumulate poly(β-hydroxybutyrate) (PHB) under conditions of excess carbon source and depletion of essential nutrients. This study was aimed at an efficient production of PHB by growing H. boliviensis to high cell concentrations in batch cultures. The effect of ammonium, phosphate, and yeast extract concentrations on cell concentration [cell dry weight (CDW)] and PHB content of H. boliviensis cultured in shake flasks was assayed using a factorial design. High concentrations of these nutrients led to increments in cell growth but reduced the PHB content to some extent. Cultivations of H. boliviensis under controlled conditions in a fermentor using 1.5% (w/v) yeast extract as N source, and intermittent addition of sucrose to provide excess C source, resulted in a polymer accumulation of 44 wt.% and 12 g l−1 CDW after 24 h of cultivation. Batch cultures in a fermentor with initial concentrations of 2.5% (w/v) sucrose and 1.5% (w/v) yeast extract, and with induced oxygen limitation, resulted in an optimum PHB accumulation, PHB concentration and CDW of 54 wt.%, 7.7 g l−1 and 14 g l−1, respectively, after 19 h of cultivation. The addition of casaminoacids in the medium increased the CDW to 14.4 g l−1 in 17 h but reduced the PHB content in the cells to 52 wt.%.  相似文献   

6.
Growth of and hydrogen production by wild-type (WT) Rhodovulum sulfidophilum were compared with those by one of its mutants lacking the poly(3-hydroxybutyrate) (PHB) biosynthesis ability (PNM2). During phototrophic growth under aerobic conditions with fixed illumination, changes in the extinction coefficient and PHB content of WT and PNM2 cells revealed interference of light penetration by PHB. WT cells synthesized PHB at an early stage of the cultivation. PHB degradation after exhaustion of acetate during the cultivation of WT resulted in a decrease of the extinction coefficient. The hydrogen production rate under anaerobic conditions with fixed illumination was examined in WT and PNM2 cell suspensions at different densities. The hydrogen production rate was determined not by the light penetration but by the kinds of hydrogen donors and the density of suspension. The highest value of the rate of hydrogen production from PHB, 33.0 ml/l/h, was improved compared with 26.6 ml/l/h, which was the highest value in hydrogen production from succinate. Under the same illumination, conversion to hydrogen from PHB is more efficient than that from succinate, which is one of the best substrates for hydrogen production. These results suggest that the hydrogen production rate can be maximized in the hydrogen production system based on PHB degradation, which is achieved in high-density suspension under external-substrate-depleted conditions after aerobic cultivation in the presence of an excess amount of acetate.  相似文献   

7.
The moderate halophile Halomonas boliviensis, isolated from a Bolivian saline soil sample, was able to accumulate poly(β-hydroxybutyrate) (PHB) when grown under conditions of nutrient limitation and excess carbon source. The concentration of sodium chloride in the medium influenced the cell-growth, -size, and rate of PHB accumulation. Cultivation in shake flasks led to a PHB accumulation of about 54 wt.% with respect to cell dry weight at 4.5% (w/v) NaCl in a medium with butyric acid and sodium acetate as carbon sources. The production of PHB was substantially improved to a maximum value of 88 wt.% during cultivation under controlled conditions of pH and oxygen concentration in a fermentor. The use of glucose and sucrose, respectively, as carbon source could also lead to the production of PHB at an average level of 55 wt.%.  相似文献   

8.
Methylobacterium sp. ZP24 produced polyhydroxybutyrate (PHB) from disaccharides like lactose and sucrose. As Methylobacterium sp. ZP24 showed growth associated PHB production, an intermittent feeding strategy having lactose and ammonium sulfate at varying concentration was used towards reaching higher yield of the polymer. About 1.5-fold increase in PHB production was obtained by this intermittent feeding strategy. Further increase in PHB production by 0.8-fold could be achieved by limiting the dissolved oxygen (DO) levels in the fermenter. The decreased DO is thought to increase flux of acetyl CO-A towards PHB accumulation over TCA cycle. Cheese whey, a dairy waste product and being a rich source of utilizable sugar and other nutrients, when used in the bioreactor as a main substrate replacing the lactose, led to further increase in the PHB production by 2.5-fold. A total of 4.58-fold increase in the PHB production was obtained using limiting DO conditions with processed cheese whey supplemented with ammonium sulfate in fed batch culture of Methylobacterium sp. ZP24. The present investigation therefore reflects on the possibility of developing a cheap biological route for production of green thermoplastics.  相似文献   

9.
In this study, we used the denitrifying phosphorus-removing bacterium Brachymonas sp. strain P12 to investigate the enhanced biologic phosphorus-removal (EBPR) mechanism involved with polyhydroxybutyrate (PHB), glycogen, and phosphorus uptake in the presence of acetate under anoxic or aerobic conditions. The results showed that excess acetate concentration and aerobic cultivation can enhance PHB formation efficiency and that PHB formation might be stimulated by glycogenolysis of the cellular glycogen. The efficiency of the uptake of anoxic phosphorus was greater when PHB production was lower. The EBPR mechanism of Brachymonas sp. strain P12 for PHB, phosphorus, and glycogen was similar to the conventional anaerobic-aerobic (or anaerobic-anoxic) EBPR models, but these models were developed under anoxic or aerobic conditions only, without an anaerobic stage. The anoxic or aerobic log phase of growth is divided into two main phases: the early log phase, in which acetate and glycogen are consumed to supply enough energy and reducing power for PHB formation and cell growth (phosphorus assimilation), and the late log phase, which ends the simultaneous degradation of PHB and remaining acetate for polyphosphate accumulation. Glycogenolysis plays a significant role in the alternate responses between PHB formation and phosphorus uptake under anoxic or aerobic conditions. After the application of the denitrifying phosphorus-removing bacterium Brachymonas sp. strain P12, aerobic cultivation increases the level of PHB production, and anoxic cultivation further increases phosphorus uptake.  相似文献   

10.
Comamonas testosteroni has been found to produce poly(-hydroxybutyrate) (PHB) during its growth on naphthalene. Fourier transform infrared spectroscopy (FTIR) and 13C nuclear magnetic resonance (NMR) analysis confirmed it as a homopolymer of 3-hydroxybutyrate. Oxygen and essential nutrient limitation other than carbon source play a major role in maximum PHB production. Nitrogen limitation was found to have a profound effect, with 0.2 g ammonium nitrate/l optimum for PHB production. Both aeration and iron were found to be essential for growth and PHB accumulation. Ferric chloride at 0.04 g/l concentration was found to be optimum for PHB accumulation. Phosphate source variation showed no significant effect. Using naphthalene as a sole carbon source in optimized Bushnell Haas medium, 85% of the dry cell mass was extracted as chloroform-soluble PHB.  相似文献   

11.
The fungus Mucor indicus is found in this study able to consume glucose and fructose, but not sucrose in fermentation of sugarcane and sugar beet molasses. This might be an advantage in industries which want to selectively remove glucose and fructose for crystallisation of sucrose present in the molasses. On the other hand, the fungus assimilated sucrose after hydrolysis by the enzyme invertase. The fungus efficiently grew on glucose and fructose and produced ethanol in synthetic media or from molasses. The cultivations were carried out aerobically and anaerobically, and manipulated toward filamentous or yeast-like morphology. Ethanol was the major metabolite in all the experiments. The ethanol yield in anaerobic cultivations was between 0.35 and 0.48 g/g sugars consumed, depending on the carbon source and the growth morphology, while a yield of as low as 0.16 g/g was obtained during aerobic cultivation. The yeast-like form of the fungus showed faster ethanol production with an average productivity of 0.90 g/l h from glucose, fructose and inverted sucrose, than the filamentous form with an average productivity of 0.33 g/l h. The biomass of the fungus was also analyzed with respect to alkali-insoluble material (AIM), chitin, and chitosan. The biomass of the fungus contained per g maximum 0.217 g AIM and 0.042 g chitosan in yeast-like cultivation under aerobic conditions.  相似文献   

12.
Aims:  A two-stage fermentation strategy, based on batch cultures conducted first under non-oxygen-limited conditions, and later under oxygen-limited conditions, was used to improve alginate production by Azotobacter vinelandii (AT6), a strain impaired in poly-β-hydroxybutyrate (PHB) production.
Methods and Results:  The use of sucrose as carbon source, as well as a high oxygen concentration (10%), allowed to obtain a maximum biomass concentration of 7·5 g l−1 in the first stage of cultivation. In the second stage, the cultures were limited by oxygen (oxygen close to 0%) and fed with a sucrose solution at high concentration. Under those conditions, the growth rate decreased considerably and the cells used the carbon source mainly for alginate biosynthesis, obtaining a maximum concentration of 9·5 g l−1, after 50 h of cultivation.
Conclusion:  Alginate concentration obtained from the AT6 strain was two times higher than that obtained using the wild-type strain (ATCC 9046) and was the highest reported in the literature. However, the mean molecular mass of the alginate produced in the second stage of the process by the mutant AT6 was lower (400 kDa) than the polymer molecular mass obtained from the cultures developed with the parental strain (950 kDa).
Significance and Impact of the Study:  The use of a mutant of A. vinelandii impaired in the PHB production in combination with a two-stage fermentation process could be a feasible strategy for the production of alginate at industrial level.  相似文献   

13.
Summary Effects of nutritional factors on exopolysaccharide production by submerged cultivation of the medicinal mushroom Oudemansiella radicata were investigated in shake flasks. Sucrose and peptone were optimal carbon and nitrogen sources for cell growth and exopolysaccharide production. The exopolysaccharide production was increased with an increase in initial sucrose concentration within the range of 10–40 g l−1 and initial peptone concentration within the range of 1–3 g l−1. To enhance further exopolysaccharide production, the effect of carbon/nitrogen ratios was studied using central composite design (CCD) and response surface analysis. The maximum exopolysaccharide production of 2.67 ± 0.15 g l−1 was achieved in medium with optimized carbon and nitrogen sources, i.e. 39.3 g sucrose l−1 and 3.16 g peptone l−1 in the same cultivation conditions. The information obtained is helpful for the hyperproduction of exopolysaccharide by submerged cultivation of O. radicata on a large scale.  相似文献   

14.
The angiotensin-converting enzyme (ACE) inhibitory effect was tested in the culture broth from submerged mycelial cultures of 20 basidiomycetes. The ACE inhibitory effect of culture broth from Flammulina velutipes strain 414 was the highest (52.8%), followed by Lentinus edodes strains 2 (44.4%) and 16 (41.3%). Nutritional requirements for the production of ACE inhibitory substance from F. velutipes were studied. Sucrose, ammonium acetate, and glutamic acid were chosen for the maximum production of ACE inhibitory substance. The optimal medium composition was (g/l): sucrose 20, ammonium acetate 5, glutamic acid 2, KH2PO4 3, MgSO4·7H2O 0.8, and yeast extract 0.5. Under optimal culture conditions, the ACE inhibitory effect was more than 80%. Received 04 May 2002/ Accepted in revised form 11 June 2002  相似文献   

15.
AIMS: To optimize the nutritional and environmental conditions for growth of and poly-beta-hydroxybutyrate (PHB) accumulation in Bacillus mycoides RLJ B-017. METHODS AND RESULTS: An isolate, identified as B. mycoides, was grown on different sources of carbon and nitrogen. Among these, sucrose, beef extract and di-ammonium sulphate were found to be the most suitable for growth and PHB accumulation. The overall maximum value of PHB (%) in cells, PHB yield (Yp/s) and productivities (Qp and qp) were 69.4 +/- 0.4% dry cell weight (DCW), 0.21 gp gS(-1), 0.104 +/- 0.012 gp l(-1) h(-1) and 0.03 gp gx(-1) h(-1), respectively when grown in a medium containing 20 gs l(-1) sucrose, supplemented with di-ammonium sulphate. The addition of beef extract increased the value of PHB (%) in cells, PHB yield and productivities by 17.58 +/- 0,3, 23.8, 19.23 +/- 0.3 and 13.8 +/- 0.2% , respectively. The overall maximum values of PHB (% DCW), PHB yield and productivities were obtained at pH 7.0 +/- 0 .1, temperature 30 +/- 0.5 degrees C, agitation 650 rev min(-1) and oxygen transfer rate 3.8 mmol O(2) l(-1) h(-1). CONCLUSIONS: Sucrose, glucose and fructose were found to be more suitable for cell growth and PHB accumulation, but sucrose was less expensive than glucose. Among the nitrogen sources, beef extract and di-ammonium sulphate promoted PHB synthesis. The accumulation of PHB was observed to be growth associated. SIGNIFICANCE AND IMPACT OF THE STUDY: Gram-positive bacteria have not been reported to accumulate large amounts of polyhydroxyalkanoate and hence have not been considered as potent candidates for industrial production. A number of Bacillus spp. have been reported to accumulate 9-44.5% DCW PHB. By comparison, Bacillus RLJ B-017 contained 69.4 +/- 0.4% DCW PHB. Therefore, this strain has been considered as a potent organism for industrial interest. A relatively high yield of PHB was obtained in this wild strain and PHB synthesis was independent of nutrient limitation. The conditions for the higher PHB yield and productivity will be optimized in the next phase using fed-batch culture.  相似文献   

16.
Methylobacterium sp. ZP24 is able to produce poly-3-hydroxybutyrate (PHB) from sucrose and lactose. As the production of PHB is growth-associated, a strategy of intermittent feeding of sugars and other nutrients was assessed for obtaining high yields of the polymer. Higher PHB synthesis was obtained at increased sugar feed rates. Cellular PHB contents of 63% and 71%, with productivities of up to 0.354 and 0.645 g PHB/l h were obtained from sucrose and lactose, respectively. A short-duration semicontinuous production level of up to 2.4 g PHB/l h was achieved in the lactose fermentation. Journal of Industrial Microbiology & Biotechnology (2000) 25, 276–279. Received 06 June 2000/ Accepted in revised form 31 August 2000  相似文献   

17.
The yeast strain Candida guilliermondii 2581 was chosen for its ability to produce xylitol in media with high concentrations of xylose. The rate of xylitol production at a xylose concentration of 150 g/l is 1.25 g/l per h; the concentration of xylitol after three days of cultivation is 90 g/l; and the relative xylitol yield is 0.6 g per g substrate consumed. The growth conditions were found that resulted in the maximum relative xylitol yield with complete consumption of the sugar: xylose concentration, 150 g/l; pH 6.0; and shaking at 60 rpm. It was shown that the growth under conditions of limited aeration favors the reduction of xylose.  相似文献   

18.
Poly-beta-hydroxybutyrate (PHB) accumulation in the unicellular cyanobacterium, Synechocystis sp. PCC 6803, was studied under various cultural and nutritional conditions. Under controlled condition, cells harvested at the stationary phase of growth depicted maximum accumulation of PHB, i.e., 4.5% (w/w of dry cells) as compared to lag (1.8%) or logarithmic (2.9%) phases of cultures. A temperature range of 28-32 degrees C and pH between 7.5 and 8.5 were preferred for PHB accumulation. Cells cultivated under regular light-dark cycles accumulated more PHB (4.5%) than those grown under continuous illumination (2.4%). Nitrogen and phosphorus starvation stimulated PHB accumulation up to the tune of 9.5 and 11% (w/w of dry cells), respectively. Synechocystis cells pre-grown in glucose (0.1%)-supplemented BG-11 medium when subjected to P-deficiency in presence of acetate (0.4%), PHB accumulation was boosted up to 29% (w/w of dry cells), the value almost 6-fold higher with respect to photoautotrophic condition. Fishpond discharges were found as suitable media for PHB accumulation in the test cyanobacterium.  相似文献   

19.

An integrated metabolic–polymerization–macroscopic model, describing the microbial production of polyhydroxybutyrate (PHB) in Azohydromonas lata bacteria, was developed and validated using a comprehensive series of experimental measurements. The model accounted for biomass growth, biopolymer accumulation, carbon and nitrogen sources utilization, oxygen mass transfer and uptake rates and average molecular weights of the accumulated PHB, produced under batch and fed-batch cultivation conditions. Model predictions were in excellent agreement with experimental measurements. The validated model was subsequently utilized to calculate optimal operating conditions and feeding policies for maximizing PHB productivity for desired PHB molecular properties. More specifically, two optimal fed-batch strategies were calculated and experimentally tested: (1) a nitrogen-limited fed-batch policy and (2) a nitrogen sufficient one. The calculated optimal operating policies resulted in a maximum PHB content (94% g/g) in the cultivated bacteria and a biopolymer productivity of 4.2 g/(l h), respectively. Moreover, it was demonstrated that different PHB grades with weight average molecular weights of up to 1513 kg/mol could be produced via the optimal selection of bioprocess operating conditions.

  相似文献   

20.
The yeast strain Candida guilliermondii2581 was chosen for its ability to produce xylitol in media with high concentrations of xylose. The rate of xylitol production at a xylose concentration of 150 g/l is 1.25 g/l per h; the concentration of xylitol after three days of cultivation is 90 g/l; and the relative xylitol yield is 0.6 g per g substrate consumed. The growth conditions were found that resulted in the maximum relative xylitol yield with complete consumption of the sugar: xylose concentration, 150 g/l; pH 6.0; and shaking at 60 rpm. It was shown that the growth under conditions of limited aeration favors the reduction of xylose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号