首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microspores were isolated from wheat (Triticum aestivum L.) spikes of various genotypes following an effective pretreatment that induced microspore embryogenesis. The isolated microspores were cultured with or without live ovaries, and with or without medium pre-conditioned by ovaries for varying periods of time. Live ovaries alone increased androgenic embryoid yields up to 4.5-fold over the control for microspores isolated from responsive genotypes. While live ovary co-culture alone was not effective for microspores isolated from recalcitrant genotypes, the addition of medium preconditioned by ovaries to microspore cultures increased embryoid yield by more than 100-fold. Without ovary-conditioned medium, no embryoids could be obtained from some recalcitrant genotypes. Ovary-conditioned medium apparently functions to increase embryoid yields by providing essential substance(s) for elaboration of the embryogenic program already triggered during pretreatment.  相似文献   

2.

Key message

An improved isolated microspore culture protocol alleviating the recalcitrance typically observed in six-row spring barley was developed by optimizing four key physical factors to increase embryogenesis and reduce albinism.

Abstract

Doubled haploid (DH) plants are completely homozygous individuals that can be generated in just a few months via androgenesis in vitro. DHs are useful tools in genetic research and in plant breeding. Isolated microspore culture (IMC) is the most efficient way to produce DHs, but a strong genotype dependency imposes limitations to its wide application. Six-row, spring barley genotypes are considered as particularly recalcitrant due to a low frequency of embryogenesis and a high rate of albinism. Seeking to develop an efficient IMC protocol for this type of barley, we explored four important factors: (1) the harvest stage of immature spikes, (2) the type of pretreatment applied, (3) the osmotic potential in the induction medium, and (4) the plating density of microspores. This work was first performed using four barley genotypes: two typical six-row spring cultivars (ACCA and Léger), a two-row spring (Gobernadora) and a two-row winter (Igri) cultivar. First, by optimizing the harvest stage for each genotype we obtained a twofold to fourfold increase in the yield of embryogenic microspores. Second, two pretreatments (0.3 M mannitol for 2 days, or a combination of cold and heat over 15 days) both performed significantly better than the commonly used cold pretreatment (28 days at 4 °C). Third, an induction medium-containing mannitol (32 g/l) doubled green plant regeneration. Fourth, a plating density of 106 microspores/ml yielded the highest number of green regenerated plants. Our most important findings were then confirmed using sets of F1s from a six-row, spring-type breeding program.  相似文献   

3.
Barley microspores from five field-grown breeding lines were isolated using an ultra-speed blender and the effect of co-culture with young florets was investigated. Floret co-culture in the induction stage increased the formation of MCS, ELS and green plant regeneration. The florets of teraploid plant were more effective than ones of diploid plant. For line S23, co-culture with florets from tetraploid plants gave rise to 2.6 and 7.8 times more MCS and ELS, respectively, than non-co-culture control, whereas co-culture with florets from diploid plants resulted in 1.8 and 6.1 times more MCS and ELS, respectively, than non-co-culture control (Table 2). Florets subjected to cold treatment for 10–20 days induced a greater response than fresh ones, and florets with uninucleate microspores surpassed binucleate microspores. For microspores culture from 15-day cold pre-treated spikes, 93A floret co-culture gave rise to 3.6 and 6.8 times more MCS and ELS, respectively, than the non-co-cultured control, while SD1 floret co-culture resulted in 1.9 and 4.0 times more, respectively. Similarly, for microspore culture from 20-day cold pre-treated spikes, 93A floret co-culture gave rise to 2.6 and 5.1 times more MCS and ELS, respectively, than non-co-cultured control, while SD1 floret co-culture resulted in 1.5 and 3.0 times more, respectively (Table 3). Some microspores formed dense MCS that did not develop further. Compared with the control, floret co-culture resulted in less dense MCS formation, indicating that the isolated florets were beneficial to the normal development of MCS. Floret co-culture was only effective when the spikes were cold pre-treated before microspore isolation. Spike cold pre-treatment before microspore preparation was crucial for dedifferentiation of cultured isolated microspores, and this could not be replaced by floret co-culture. It is postulated that the florets provided essential substances for in vitro cultured isolated microspores to undergo dedifferentiation and embryogenesis. Both the genotype selection and the physiological status (developmental status and cold treatment) adjustment of the florets for co-culture could improve barley microspore culture. Compared with ovary co-culture, floret co-culture is more efficient. The technique is of simple application in breeding programs and can be a solution for coping with recalcitrant genotypes and or plant donor condition.  相似文献   

4.
Protoplast culture and plant regeneration of the dessert banana cultivar Grande Naine (Musa spp., Cavendish sub-group AAA) were achieved through somatic embryogenesis. Protoplasts were isolated from cell suspensions at a yield of 3᎒7 protoplasts/ml packed cell volume (0.5 g). For the induction of cell divisions, two banana cell suspensions, SF265 (AA) and IRFA903 (AA), were used as feeder layers. SF265 (AA) was found to be more efficient for inducing cell divisions than IRFA903 (AA). The first embryogenic cell suspensions were established from protoplast-derived microcalli. The transfer of microcalli and protoplast-derived cell suspensions onto regeneration medium containing plant growth regulators slightly increased the number of embryos relative to those maintained on a feeder layer with growth regulators. Plant regeneration was achieved in the same regeneration medium.  相似文献   

5.
The culture of isolated microspores of barley (Hordeum vulgare L. cv. Kymppi, an elite malting barley cultivar) was studied. A careful choice of culture steps resulted in an average regeneration frequency of 300 green plants per starting material spike. Strong seasonal variation in regeneration capacity was observed. The choice of a cold pretreatment method affected the viability of microspores. A cold pretreatment of the collected starting material at +4°C for 4 weeks was needed for the efficient regeneration of green plants from isolated microspore cultures. Glutamine omission from and copper additions to microspore culture were studied. The omission of glutamine did not affect the number of regenerated green plants but did result in an increase in the number of regenerated albino plants. The addition of copper did not improve the regeneration capacity of isolated barley microspores. Transformation by particle bombardment of isolated microspores did not result in the production of transgenic plants.  相似文献   

6.
Summary Conditions favourable to embryogenesis from isolated microspores of Brassica rapa L. ssp. oleifera (canola quality) were identified. A population with enhanced responsiveness for microspore embryogenesis (C200) was synthesized by crossing individual plants showing microspore embryogenic potential. For optimal microspore embryogenesis, buds (2–3mm in length, containing mid-late uninucieate microspores) were collected from older plants (2 months old) and microspores isolated and washed in iron-free B5 medium. NLN medium with its iron content reduced to half was beneficial for initial microspore culture. An elevated temperature(33–35°C) during the first day of culture, followed by maintenance at 25°C resulted in dozens of embryos from each isolation (about 100 buds). Seeds were obtained from plants regenerated from microsporederived embryos after colchicine treatment.  相似文献   

7.
Flow cytometry can be used to select and sort microspore subpopulations of Brassica napus cv. Topas. Data obtained from embryogenic microspore populations were used to identify potentially embryogenic microspores from developmentally heterogeneous microspore populations based on differences in forward light scatter and green autofluorescence. Culture enrichment for embryogenic microspores is possible. Frequencies of 8 and 14% microspore embryogenesis were obtained when selected 16 h and 72 h after culture initiation. This represents 5- and 13-fold increase in microspore embryogenesis compared to non-sorted controls.  相似文献   

8.
In an attempt to discover the biological basis of microspore derived embryogenesis, the effect of the antimicrotubule agent colchicine on anther and free microspore embryogenesis was investigated. The microtubule inhibitor colchicine promoted embryogenesis from cultured anthers, both with regard to the number of anthers responding and the number of embryos being produced per anther. A similar promotional response was also observed with cultured microspores. Although the parameters for cultured anthers and free microspores differed, administration of the drug for a short period immediately prior to pollen mitosis I seems to exert the maximum promotional effect. Of the five cultivars of Brassica napus studied, all responded to colchicine treatment. However, the drug did release more embryogenic potential in poor-responding varieties (i.e. Lirawell and Optima) than in the highest responding variety (Topas). Colchicine also resulted in increased embryogenic response in microspores cultured at lower temperatures.These results are considered in terms of models proposed to explain the switch in microspore development from a gametophytic to a sporophytic pathway. The use ofcolchicine as agent to promote embryogenesis in previously recalcitrant species other than Brassica is also discussed.  相似文献   

9.
We have established an efficient method to induce embryo formation from isolated wheat (Triticum aestivum L.) microspores. Culture of excised anthers under starvation and heat shock conditions induced the formation of embryogenic microspores at high frequency in nine Austrian winter wheat genotypes, including cultivars that had been considered as recalcitrant in anther culture. Percoll gradient centrifugation of the mechanically isolated microspores allowed us to obtain homogeneous populations of embryogenic microspores in all genotypes which, after transfer to a rich medium containing immature ovaries for conditioning, divided and produced globular embryos. Thousands of embryos were produced in one petri dish. Many of these embryos developed into plantlets after transfer to a solid medium without ovaries.  相似文献   

10.
Citrus, and particularly sweet oranges, are very recalcitrant to anther culture. In this paper it was evaluated for the first time the response of 27 genotypes of Citrus sinensis and of one hybrid C. clementina × C. sinensis, to in vitro anther culture. Ten genotypes of sweet oranges showed embryogenic callus induction, mostly blood sweet oranges genotypes, such as Tarocco, Moro and Sanguinelli. In vitro microspore developmental switches from the gamethophytic to the sporophytic pathway were shown by DAPI staining in microspores of these responsive genotypes, after 10 months in culture. However, microsatellite marker analyses showed that these calli were heterozygous. The flow-cytometric analysis of these embryogenic calli showed the presence of two peaks, corresponding to haploid (n) and diploid (2n) genotypes. Differently, anther cultures of the hybrid C. clementina × C. sinensis produced tri-haploid (3n) embryogenic calli and the embryos obtained were homozygous when analyzed by molecular markers (sample sequence repeats), confirming the more responsive characteristic of clementine to microspore embryogenesis through anther culture.  相似文献   

11.
12.
M. Sun  H. Kieft  C. Zhou  A. nvan Lammeren 《Protoplasma》1999,208(1-4):265-274
Summary This paper describes a procedure in which protoplasts are obtained from microspores and pollen of rapeseed to induce callus formation aided by a feeder cell system with embryogenic microspores. Microspores at late unicellular stage and pollen at early bicellular stage were isolated and precultured for 24 h at 32 °C before enzymatic treatment. Eleven enzymes were tested in various combinations and concentrations. The optimal enzyme combination was 1.0% cellulase, 0.8% pectinase, 0.3% macerozyme, and 0.02% pectolyase, in which 26.3% of the microspores released protoplasts. A successful co-culture system was set up by employing embryogenic microspores as feeder cells. To this end, microspores were cultured in a medium with high osmotic pressure at 32 °C. Up to 37% of the microspores exhibited cell division and embryos developed to the heart-shape stage without changing medium. Microspore protoplasts were cultured in Millicells surrounded by the embryogenic microspores as feeder. In growth-regulator-free medium 14.5% of the protoplasts divided but only formed budding-like multicellular structures. Only after pretreatment with 4 mg of 2,4-dichlorophenoxyacetic acid and 1 mg of naphthaleneacetic acid per liter protoplasts divided and formed microcalli. Pollen tubes or tubelike structures were not observed. The experiments reveal that selection of the specific developmental stage of microspores, which is a prerequisite for microspore embryogenesis, is also important in microspore protoplast culture. Compared to other methods used before, microculture fed with embryogenic microspores has obvious superiority.Abbreviations CPW basic protoplast washing medium according to Power and Chapman - CPW972 CPW basic medium supplemented with 9% mannitol and 7.2% sorbitol - DAPI 4,6-diamidino-2-phenylindole - NLN nutrient medium according to Lichter modified by Pechan and Keller - NLN13 NLN medium supplemented with 13% sucrose - NLNP NLN13 supplemented with 7.2% sorbitol  相似文献   

13.
The major advantage of doubled haploids in plant breeding is the immediate achievement of complete homozygosity. Desired genotypes are thus fixed in one generation, reducing time and cost for cultivar or inbred development. Among the different technologies to produce doubled haploids, microspore embryogenesis is by far the most common. It usually requires reprogramming of microspores by stress such as cold, heat, and starvation, followed by embryo development under stress-free conditions. We report here the development of a simple and efficient isolated microspore culture system for producing doubled haploid wheat plants in a wide spectrum of genotypes, in which embryogenic microspores and embryos are formed without any apparent stress treatment. Microspores were isolated from fresh spikes in a nutrient-free medium by stirring and cultured in medium A2 in the dark at 25°C. Once embryogenic microspores were formed, ovaries and phytohormones were added directly to the cultures without changing the medium. The cultures were incubated in the dark at 25–27°C until the formation of embryos and then the embryos were transferred to regeneration medium. The regeneration frequency and percentage of green plants increased significantly using this protocol compared to the shed microspore culture method.Communicated by W. Harwood  相似文献   

14.
Scanning electron microscopy of microspore embryogenesis inBrassica spp.   总被引:1,自引:0,他引:1  
Scanning electron microscopy was employed to study and compare microspore embryogenesis in vitro with pollen development in planta inBrassica napus andB. oleracea. An exine with its specific pattern had already been formed, when microspores were released from tetrads. During subsequent pollen development, microspores increased in size and continued to strengthen the exine. Upon in vitro culture, all microspores, i.e., embryogenic and nonembryogenic, initially showed the same morphological features. After 24 h in culture, the microspores had increased in size. Thereafter, embryogenesis was indicated in some microspores by two different morphological changes. One featured an expansion in volume of the cell cluster around the germination aperture (type I), the other showed cell cluster volume expansion over the entire microspore surface (type II). Two-thirds of embryogenic microspores in bothB. napus andB. oleracea demonstrated type I development. When followed by fluorescence microscopy, in vitro culture of microspores revealed cultures with a high embryo frequency were those with a high frequency of symmetrical division.Abbreviations SEM Scanning electron microscopy - TEM Transmission electron microscopy  相似文献   

15.
A number of factors influencing microspore embryogenesis and plant regeneration were examined in five subspecies (rapa, oleifera, niposinica, perviridis, broccoletto) of B. rapa. Addition of 6-benzylaminopurine (BA) in 1/2 NLN-10 medium improved the embryo yield by 2?C12 fold. Addition of activated charcoal (AC) in the medium was not effective for microspore embryogenesis. Moreover, AC canceled the positive effect of BA, when the medium containing both BA and AC was used. Of 24 genotypes examined for microspore embryogenesis, 22 genotypes of all five subspecies produced embryos ranging from 0.02 to 15.0 per 2?×?105 microspores, but two genotypes were not responsive. Low temperature pretreatment of flower buds significantly improved the microspore embryogenesis. When cotyledonary embryos were subcultured on a filter paper placed on top of 0.8?% agar-solidified B5-2 medium and 1.6?% agar B5-2 medium, plant regenerations were increased 4?C8 fold compared to 0.8?% agar medium. The ploidy levels of regenerated plants in three genotypes were determined by flow cytometry, revealing that 66?C100?% of them were diploid. The results enable the advancement of breeding programs and genetic studies in B. rapa.  相似文献   

16.
The production of doubled haploid (DH) plants from microspores is an important technique used in plant breeding programs and basic research. Although doubled haploidy efficiencies in wheat and barley are sufficient for breeding purposes, oat (Avena sativa L.) is considered recalcitrant. The objective of this project was to develop a protocol for the production of microspore-derived embryos of oat and further develop these embryos into fertile DH plants. A number of experiments were conducted evaluating the factors influencing microspore embryogenesis, i.e. donor plant conditions, pretreatments, media composition, and culture conditions. The initial studies yielded little response, and it was not until high microspore densities (106 microspores/mL and greater) were used that embryogenesis was achieved. Depending on the treatment, yields of over 5,000 embryos/106 microspores were obtained for breeding line 2000QiON43. The doubled haploidy protocol includes: a 0.3 M mannitol pretreatment of the tillers for 7 days, culture in W14 basal medium with a pH of 6.5–7.5, a microspore density of 106 microspores/mL, and continuous incubation at 28 °C incubation. The resulting embryos observed after 28 days were plated onto solidified W14 medium with 0.8 or 1.0 g/L activated charcoal. A colchicine treatment of 0.2 % colchicine for 4 h resulted in conversion of 80 % of the plants from haploid to DH. This protocol was successful for the production of oat microspore-derived embryos and DH green plants with minimal albinism. DH seed was produced and planted for evaluation in a field nursery.  相似文献   

17.
The objective of this study was to improve induction of embryogenesis in white cabbage (Brassica oleracea var. capitata) microspore cultures. The effect of NLN-13 liquid medium pH on isolated microspore embryogenesis was investigated in five white cabbage genotypes. Relatively high pH (6.2 or 6.4) was more effective on microspore embryogenesis in most of the white cabbage genotypes than the pH of 5.8, especially for inducing microspore-derived embryos in recalcitrant genotype ??Zhonggan No. 8??. Based on this, 2??(N-Morpholino) ethanesulfonic acid (MES) and the arabinogalactan-protein from gum arabic were tested on four out of five genotypes to see if they could increase embryo yield in microspore cultures. Adding MES or gum arabic alone was effective for these four genotypes, but the frequency of embryos derived from microspores was still low. However, the combination of 10?mg?l?1 gum arabic and 3?mM MES in NLN-13 at pH 6.4 significantly enhanced microspore embryogenesis efficiency (with embryo production of 4.57?C222.97 embryos per bud), especially with recalcitrant genotype ??Zhonggan No. 8?? for which it was increased by about 35-fold.  相似文献   

18.
Anther culture is one of the most widely used methods to induce gametic embryogenesis. The aim of this investigation was to induce microspore embryogenesis in almond (Prunus dulcis Mill.), through this technique. Anthers were cultured at the vacuolated developmental stage, and seven cultivars, two culture media and two temperature treatments were assessed. Although evidence of the microspore induction was observed in all the genotypes and treatments tested (symmetrical nucleus division and multinucleated structures), calli were produced merely by anthers cultured in the medium P and the regeneration of embryos was detected only in anthers of the cultivars Filippo Ceo, Lauranne and Genco, placed on medium P and subjected to the Control treatment (direct culture at 25?±?1?°C, without the hot thermal shock at 35?±?1?°C for 7 days). Characterization by SSR marker analysis of the embryo genotypes revealed that the regenerants had a single allele for each locus whereas the parent cultivar was heterozygous, indicating their development from haploid microspores. This study reports the evidence of gametic embryogenesis and, particularly, of microspore embryogenesis through in vitro anther culture, in almond, and, for the first time to our knowledge, the production of homozygous embryos.  相似文献   

19.
Summary Experiments were conducted to determine the effects of brassinosteroids on microspore embryogenesis in Brassica species. Two compounds, 24-epibrassinolide (EBR) and brassinolide (BL), were evaluated. An increase in embryogenesis was observed in all Brassica napus lines evaluated, including Topas 4079 and several recalcitrant cultivars: Garrison, Westar, and Allons. Microspore embryogenesis, calculated as the number of embryos at 21 d of culture, was increased in the recalcitrant cultivars up to 12 times that of the control. An increase in microspore embryogenesis was also observed for B. juncea when EBR or BL was added to the culture medium. In constrast, no significant increases in embryogenesis was observed for several other Brassica species evaluated (i.e. B. carinata, B. nigra, and B. rapa). The addition of brassinosteroids to the induction media did not affect the subsequent conversion of the embryos to plantlets, but did appear to influence chromosome doubling.  相似文献   

20.
Summary In tis androgenic response, maize is considered to be a recalcitrant plant. We used mechanically isolated microspores of maize genotype A18 to establish a responsive microspore culture of maize. Morphological events occurring during the first days of maize androgenesis in a microspore culture were observed and described, and some morphological markers for distinguishing between embryogenic microspores and nonembryogenic microspores were identified. It was found that the enlargement of microspores during the first days in culture and the ‘star-like’ organization of the cytoplasm inside the microspore are connected with reprogramming of the developmental pathway in maize microspores. Some differences were also found in the surface wall architecture of embryogenic microspores. Fertile plants were successfully recovered from microspore-originated structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号