首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
Protein S-palmitoylation, a hydrophobic post-translational modification, is performed by protein acyltransferases that have a common DHHC Cys-rich domain (DHHC proteins), and provides a regulatory switch for protein membrane association. In this work, we analyzed the presence of DHHC proteins in the protozoa parasite Giardia lamblia and the function of the reversible S-palmitoylation of proteins during parasite differentiation into cyst. Two specific events were observed: encysting cells displayed a larger amount of palmitoylated proteins, and parasites treated with palmitoylation inhibitors produced a reduced number of mature cysts. With bioinformatics tools, we found nine DHHC proteins, potential protein acyltransferases, in the Giardia proteome. These proteins displayed a conserved structure when compared to different organisms and are distributed in different monophyletic clades. Although all Giardia DHHC proteins were found to be present in trophozoites and encysting cells, these proteins showed a different intracellular localization in trophozoites and seemed to be differently involved in the encystation process when they were overexpressed. dhhc transgenic parasites showed a different pattern of cyst wall protein expression and yielded different amounts of mature cysts when they were induced to encyst. Our findings disclosed some important issues regarding the role of DHHC proteins and palmitoylation during Giardia encystation.  相似文献   

4.
5.
BackgroundGiardia lamblia differentiates into resistant cysts as an established model for dormancy. Myeloid leukemia factor (MLF) proteins are important regulators of cell differentiation. Giardia possesses a MLF homolog which was up-regulated during encystation and localized to unknown cytosolic vesicles named MLF vesicles (MLFVs).MethodsWe used double staining for visualization of potential factors with role in protein metabolism pathway and a strategy that employed a deletion mutant, CDK2m3, to test the protein degradation pathway. We also explored whether autophagy or proteasomal degradation are regulators of Giardia encystation by treatment with MG132, rapamycin, or chloroquine.ResultsDouble staining of MLF and ISCU or CWP1 revealed no overlap between their vesicles. The aberrant CDK2m3 colocalized with MLFVs and formed complexes with MLF. MG132 increased the number of CDK2m3-localized vesicles and its protein level. We further found that MLF colocalized and interacted with a FYVE protein and an ATG8-like (ATG8L) protein, which were up-regulated during encystation and their expression induced Giardia encystation. The addition of MG132, rapamycin, or chloroquine, increased their levels and the number of their vesicles, and inhibited the cyst formation. MLF and FYVE were detected in exosomes released from culture.ConclusionsThe MLFVs are not mitosomes or encystation-specific vesicles, but are related with degradative pathway for CDK2m3. MLF, FYVE, and ATG8L play a positive role in encystation and function in protein clearance pathway, which is important for encystation and coordinated with Exosomes.General significanceMLF, FYVE, and ATG8L may be involved an encystation-induced protein metabolism during Giardia differentiation.  相似文献   

6.
Acanthamoeba castellanii is a pathogenic free-living amoeba. Cyst forms are particularly important in their pathogenicity, as they are more resistant to treatments and might protect pathogenic intracellular bacteria. However, encystation is poorly understood at the molecular level and global changes at the protein level have not been completely described. In this study, we performed two-dimensional gel electrophoresis to compare protein expression in trophozoite and cyst forms. Four proteins, specifically expressed in trophozoites, and four proteins, specifically expressed in cysts, were identified. Two proteins, enolase and fructose bisphosphate aldolase, are involved in the glycolytic pathway. Three proteins are likely actin-binding proteins, which is consistent with the dramatic morphological modifications of the cells during encystation. One protein belongs to the serine protease family and has been already linked to encystation in A. castellanii. In conclusion, this study found that the proteins whose expression was modified during encystation were likely involved in actin dynamics, glycolysis, and proteolysis.  相似文献   

7.
Giardia lamblia is a medically important protozoan parasite with a basal position in the eukaryotic lineage and is an interesting model to explain the evolution of biochemical events in eukaryotic cells. G. lamblia trophozoites undergo significant changes in order to survive outside the intestine of their host by differentiating into infective cysts. In the present study, we characterize the previously identified Orf-C4 (G. lamblia open reading frame C4) gene, which is considered to be specific to G. lamblia. It encodes a 22 kDa protein that assembles into high-molecular-mass complexes during the entire life cycle of the parasite. ORF-C4 localizes to the cytoplasm of trophozoites and cysts, and forms large spherical aggregates when overexpressed. ORF-C4 overexpression and down-regulation do not affect trophozoite viability; however, differentiation into cysts is slightly delayed when the expression of ORF-C4 is down-regulated. In addition, ORF-C4 protein expression is modified under specific stress-inducing conditions. Neither orthologous proteins nor conserved domains are found in databases by conventional sequence analysis of the predicted protein. However, ORF-C4 contains a region which is similar structurally to the alpha-crystallin domain of sHsps (small heat-shock proteins). In the present study, we show the potential role of ORF-C4 as a small chaperone which is involved in the response to stress (including encystation) in G. lamblia.  相似文献   

8.
Nuclear-cytoplasmic trafficking of proteins is a highly regulated process that modulates multiple biological processes in eukaryotic cells. In Giardia lamblia, shuttling has been described from the cytoplasm to nuclei of proteins during the biological cell cycle of the parasite. This suggests that a mechanism of nucleocytoplasmic transport is present and functional in G. lamblia. By means of computational biology analyses, we found that there are only two genes for nuclear transport in this parasite, named Importin α and Importin β. When these transporters were overexpressed, both localized close to the nuclear envelope, and no change was observed in trophozoite growth rate. However, during the encystation process, both transporters induced an increase in the number of cysts produced. Importazole and Ivermectin, two known specific inhibitors of importins, separately influenced the encysting process by inducing an arrest in the trophozoite stage that prevents the production of cysts. This effect was more noticeable when Ivermectin, an anti-parasitic drug, was used. Finally, we tested whether the enzyme arginine deiminase, which shuttles from the cytoplasm to the nuclei during encystation, was influenced by these transporters. We found that treatment with each of the inhibitors abrogates arginine deiminase nuclear translocation and favors perinuclear localization. This suggests that Importin α and Importin β are key transporters during the encystation process and are involved, at least, in the transport of arginine deiminase into the nuclei. Considering the effect produced by Ivermectin during growth and encystation, we postulate that this drug could be used to treat giardiasis.  相似文献   

9.
10.
The reconstruction of Giardia lamblia life cycle in vitro is an excellent tool for the study of the parasite's molecular biology. The present work describes techniques developed that better define parasite differentiation. An encystation protocol is presented along with a method for isolation and purification of the produced cysts. The cyst morphology at the light microscopy level is identical to that of in vivo cysts. A two-dimension protein map obtained by high-resolution electrophoresis indicated that most of the parasite's proteins are acid. Based on this result, the two dimension gel electrophoresis used a pH 4-7 gradient in the first, isoelectric focusing dimension. Differences in protein expression during the stages of encystation were clearly discerned, as well as images of the parasite obtained by light and by transmission electron microscopy that describe the morphological and the ultrastructural changes that occur as the cysts are produced in vitro.  相似文献   

11.
12.

Background

Giardia passes through two stages during its life cycle, the trophozoite and the cyst. Cyst formation involves the synthesis of cyst wall proteins (CWPs) and the transport of CWPs into encystation-specific vesicles (ESVs). Active vesicular trafficking is essential for encystation, but the molecular machinery driving vesicular trafficking remains unknown. The Rab proteins are involved in the targeting of vesicles to several intracellular compartments through their association with cytoskeletal motor proteins.

Methodology and Principal Findings

In this study, we found a relationship between Rab11 and the actin cytoskeleton in CWP1 transport. Confocal microscopy showed Rab11 was distributed throughout the entire trophozoite, while in cysts it was translocated to the periphery of the cell, where it colocalized with ESVs and microfilaments. Encystation was also accompanied by changes in rab11 mRNA expression. To evaluate the role of microfilaments in encystation, the cells were treated with latrunculin A. Scanning electron microscopy showed this treatment resulted in morphological damages to encysted parasites. The intensity of fluorescence-labeled Rab11 and CWP1 in ESVs and cyst walls was reduced, and rab11 and cwp1 mRNA levels were down-regulated. Furthermore, knocking down Rab11 with a hammerhead ribozyme resulted in an up to 80% down-regulation of rab11 mRNA. Although this knockdown did not appear lethal for trophozoites and did not affect cwp1 expression during the encystation, confocal images showed CWP1 was redistributed throughout the cytosol.

Conclusions and Significance

Our results indicate that Rab11 participates in the early and late encystation stages by regulating CWP1 localization and the actin-mediated transport of ESVs towards the periphery. In addition, alterations in the dynamics of actin affected rab11 and cwp1 expression. Our results provide new information about the molecules involved in Giardia encystation and suggest that Rab11 and actin may be useful as novel pharmacological targets.  相似文献   

13.
Encystation of Acanthamoeba leads to the formation of resilient cysts from vegetative trophozoites. This process is essential for parasite survival under unfavorable conditions such as starvation, low temperatures, and exposure to biocides. During encystation, a massive turnover of intracellular components occurs, and a large number of organelles and proteins are degraded by proteases. Previous studies with specific protease inhibitors have shown that cysteine and serine proteases are involved in encystation of Acanthamoeba, but little is known about the role of metalloproteases in this process. Here, we have biochemically characterized an M17 leucine aminopeptidase of Acanthamoeba castellanii (AcLAP) and analyzed its functional involvement in encystation of the parasite. Recombinant AcLAP shared biochemical properties such as optimal pH, requirement of divalent metal ions for activity, substrate specificity for Leu, and inhibition profile by aminopeptidase inhibitors and metal chelators with other characterized M17 family LAPs. AcLAP was highly expressed at a late stage of encystation and mainly localized in the cytoplasm of A. castellanii. Knockdown of AcLAP using small interfering RNA induced a decrease of LAP activity during encystation, a reduction of mature cyst formation, and the formation of abnormal cyst walls. In summary, these results indicate that AcLAP is a typical M17 family enzyme that plays an essential role during encystation of Acanthamoeba.  相似文献   

14.
15.
16.
17.
18.
The protozoan parasite Giardia lamblia acquires cholesterol from the environment since it is unable to synthesise cholesterol de novo and this is vital for trophozoite growth. Conversely, the lack of cholesterol was described as an essential event to trigger encystation, the differentiation of trophozoites to mature cysts. During the G. lamblia cell cycle, cholesterol is acquired as a free molecule as well as through receptor-mediated endocytosis (RME) of lipoproteins. In this work, we describe the involvement of RME in the cell differentiation process of G. lamblia. We found that a reduction in the expression of the medium subunit (Glµ2) of the giardial adaptin protein GlAP2 impaired RME, triggering the process of encystation in growing cells. Contrary to expectations, decreasing Glµ2 expression produced a cohort of trophozoites that yielded significantly less mature cysts when cells were induced to encyst. Analysis of the subcellular localization of Glµ2 and the cyst wall protein 1 (CWP1) during encystation was later performed, to dissect the process. Our results showed, on one hand, that blocking RME by inhibiting Glµ2 expression, and probably cholesterol entry, is sufficient to induce cell differentiation but not to complete the process of encystation. On the other hand, we observed that GlAP2 is necessary to accomplish the final steps of encystation by sorting CWP1 to the plasma membrane for cyst wall formation. The understanding of the mechanisms involved in cyst formation should provide novel insights into the control of giardiasis, an endemic worldwide neglected disease.  相似文献   

19.
During environmental stress, the vegetative cells of the facultative pathogenic amoeba Acanthamoeba castellanii reversibly differentiate into resistant dormant stages, namely, cysts or pseudocysts. The type of resistant stage depends on the nature and duration of the stressor. Cell differentiation is accompanied by changes in morphology and cellular metabolism. Moreover, cell differentiation is also expected to be closely linked to the regulation of the cell cycle and, thus, to cellular DNA content. While the existence of the resistant stages in A. castellanii is well known, there is no consensus regarding the relationship between differentiation and cell cycle progression. In the present work, we used flow cytometry analysis to explore the changes in the DNA content during Acanthamoeba encystation and pseudocyst formation. Our results strongly indicate that A. castellanii enters encystation from the G2 phase of the cell cycle. In contrast, differentiation into pseudocysts can begin in the G1 and G2 phases. In addition, we present a phylogenetic analysis and classification of the main cell cycle regulators, namely, cyclin-dependent kinases and cyclins that are found in the genome of A. castellanii.  相似文献   

20.
ABSTRACT. We found previously that the A6 clone of Giardia lamblia strain WB that did not encyst in vitro was blocked at an early stage in differentiation, as it did not form encystation secretory vesicles (ESV) efficiently or express cyst antigens, in comparison with the related clone C6. We now report that A6 formed ESV normally in the suckling mouse model. Therefore, we asked whether our serum-containing encystation media might lack a stimulus or component or contain an inhibitor of ESV formation to which A6 was especially sensitive. We found that replacing bovine serum with a lipoprotein-cholesterol solution and bovine serum albumin (LPC) in pre-encystation and encystation media increased ESV formation by both A6 and C6. The % of A6 cells with ESV increased from 8% in BS medium to 48% in LPC medium, compared with 64% and 98% for C6. Similarly, the average number of ESV/positive cell increased from 1.5 in BS medium to 7.7 in LPC medium for A6, and from 13.3 to 19.7 for C6. Moreover, in LPC encystation media, A6 expressed the cyst wall epitope recognized by monoclonal GCSA-1. Although formation of water-resistant cysts by A6 was increased >60 fold in LPC media, the numbers of cysts remained only ∼3–15% that of C6. This suggests that LPC may primarily affect early events in encystation and that A6 may require additional factors later in encystation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号