首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Seasonal patterns of proteins and of cold hardiness were characterized in bark and xylem tissues of genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch). In contrast with deciduous trees, which entered endodormancy and abscised leaves in the fall, evergreen trees retained their leaves and exhibited shoot elongation under favorable environmental conditions. A successive increase in the cold hardiness of bark and xylem was observed during the fall in both genotypes. This was followed by a subsequent decrease from midwinter to spring. Xylem tissue in both genotypes exhibited deep supercooling and a significant correlation (r = 0.99) between the midpoint of the low-temperature exotherm and the subzero temperature at which 50% injury occurred (assessed by electrolyte leakage) was noted. The maximum hardiness level attained in deciduous trees was more than twofold that of evergreens. Seasonal pattern of proteins from bark and xylem of the sibling genotypes was characterized by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Among other qualitative and quantitative changes, accumulation of a 19-kilodalton polypeptide in the bark of both genotypes was observed during fall followed by a decrease in spring. This polypeptide accumulated to higher levels in the deciduous peach compared with the evergreen. Additionally, a 16-kilodalton protein exhibited the same pattern in deciduous trees but not in the evergreen trees. Both the 19- and a 16-kilodalton bark proteins conform to the criteria of a bark storage protein. The relationship of seasonal changes in protein to cold hardiness and dormancy in these genetically related peach genotypes is discussed.  相似文献   

2.
Background and AimsCarbon reserves are a critical source of energy and substrates that allow trees to cope with periods of minimal carbon gain and/or high carbon demands, conditions which are prevalent in high-latitude forests. However, we have a poor understanding of carbon reserve dynamics at the whole-tree level in mature boreal trees. We therefore sought to quantify the seasonal changes in whole-tree and organ-level carbon reserve pools in mature boreal Betula papyrifera.MethodsNon-structural carbohydrate (NSC; soluble sugars and starch) tissue concentrations were measured at key phenological stages throughout a calendar year in the roots, stem (inner bark and xylem), branches and leaves, and scaled up to estimate changes in organ and whole-tree NSC pool sizes. Fine root and stem growth were also measured to compare the timing of growth processes with changes in NSC pools.Key ResultsThe whole-tree NSC pool increased from its spring minimum to its maximum at bud set, producing an average seasonal fluctuation of 0.96 kg per tree. This fluctuation represents a 72 % change in the whole-tree NSC pool, which greatly exceeds the relative change reported for more temperate conspecifics. At the organ level, branches accounted for roughly 48–60 % of the whole-tree NSC pool throughout the year, and their seasonal fluctuation was four to eight times greater than that observed in the stemwood, coarse roots and inner bark.ConclusionsBranches in boreal B. papyrifera were the largest and most dynamic storage pool, suggesting that storage changes at the branch level largely drive whole-tree storage dynamics in these trees. The greater whole-tree seasonal NSC fluctuation in boreal vs. temperate B. papyrifera may result from (1) higher soluble sugar concentration requirements in branches for frost protection, and/or (2) a larger reliance on reserves to fuel new leaf and shoot growth in the spring.  相似文献   

3.
Trees may survive fire through persistence of above or below ground structures. Investment in bark aids in above-ground survival while investment in carbohydrate storage aids in recovery through resprouting and is especially important following above-ground tissue loss. We investigated bark allocation and carbohydrate investment in eight common oak (Quercus) species of Sky Island mountain ranges in west Texas. We hypothesized that relative investment in bark and carbohydrates changes with tree age and with fire regime: We predicted delayed investment in bark (positive allometry) and early investment in carbohydrates (negative allometry) under lower frequency, high severity fire regimes found in wetter microclimates. Common oaks of the Texas Trans-Pecos region (Quercus emoryi, Q. gambelii, Q. gravesii, Q. grisea, Q. hypoleucoides, Q. muehlenbergii, and Q. pungens) were sampled in three mountain ranges with historically mixed fire regimes: the Chisos Mountains, the Davis Mountains and the Guadalupe Mountains. Bark thickness was measured on individuals representing the full span of sizes found. Carbohydrate concentration in taproots was measured after initial leaf flush. Bark thickness was compared to bole diameter and allometries were analyzed using major axis regression on log-transformed measurements. We found that bark allocation strategies varied among species that can co-occur but have different habitat preferences. Investment patterns in bark were related to soil moisture preference and drought tolerance and, by proxy, to expected fire regime. Dry site species had shallower allometries with allometric coefficients ranging from less than one (negative allometry) to near one (isometric investment). Wet site species, on the other hand, had larger allometric coefficients, indicating delayed investment to defense. Contrary to our expectation, root carbohydrate concentrations were similar across all species and sizes, suggesting that any differences in below ground storage are likely to be in total volume of storage tissue rather than in carbohydrate concentration.  相似文献   

4.
The leguminous tree Sophora japonica contains a family of closely related, but distinct, lectins. Different members of this family are independently expressed in seeds, leaves, and bark (CN Hankins, J Kindinger, LM Shannon 1987 Plant Physiol 83: 825-829; 1988 Plant Physiol 86: 67-10). The inter-, and intracellular distribution of the bark and leaf lectins was studied by indirect postembedding immunogold electron microscopy. Aldehyde fixed bark and leaves postifixed with OsO4 and embedded in LR White resin permitted sensitive and specific immunogold labeling while maintaining cellular ultrastructure. The leaf and bark tissue cells contain protein-filled storage vacuoles which occupy most the cell's interior volume. The leaf and bark vacuoles closely resemble the protein bodies, or protein storage vacuoles, of seed cotyledons. The leaf and bark lectins were found to be exclusively sequestered in the protein-storage vacuoles of these tissues.  相似文献   

5.
 Storage and remobilization of nitrogen (N) were studied in ash trees (Fraxinus excelsior) under both field and greenhouse conditions. Experiments in the greenhouse providing 15N labelled fertilizer to the trees showed that the major quantity of N remobilized during subsequent spring was from the roots, and only a small amount from the stem. This corresponded with a loss of soluble N (proteins and low-molecular-weight compounds) from both roots and stem. On the two field sites, which differed in water availability, there was a decrease in bark N content during leaf growth, but on the dry site net N export from the bark was sustained throughout the whole vegetation period. Remobilized N was derived from soluble proteins and low-molecular-weight compounds on the moist site, which was demonstrated by the seasonal dynamics of a 56 kDa polypeptide in bark and wood. On the dry site, lower contents of soluble proteins were associated with smaller amounts of N remobilized compared to the moist site. Uptake studies of 15N labelled fertilizer indicated a higher contribution of current uptake to leaf N increment during spring at the dry site compared to the moist site. Differential N availability during the season had a decisive effect on the nitrogen storage dynamics at the two sites. Thus the influence of current N supply on N remobilization and storage as found in the greenhouse-grown plants could be verified under field conditions. Received: 28 July 1995 / Accepted: 17 July 1996  相似文献   

6.
Summary The seasonal occurrence of protein-storage vacuoles in parenchyma cells of the inner bark and leaf tissues of seven softwood species was examined. Previously published results showed that these organelles often fill the phloem parenchyma cells of the inner bark tissues in overwintering hardwoods, whereas they are absent from this tissue during the summer. We hypothesize that the organelles are involved in the storage of reduced nitrogen during wintering, in a manner analogous to protein bodies of seeds. A survey of the phloem and cambial parenchyma tissues in six evergreen softwood species (Pinus strobus, P. sylvestris, Picea abies, P. glauca, Abies balsamea, and Thuja occidentalis) and in one deciduous softwood species (Larix decidua) was conducted. There was a large variation in the degree and timing of protein-storage vacuole formation between the individual genera and species. The organelles were not seen in summer samples of inner bark tissues of any of the genera or species examined. Protein-storage vacuoles were common in the bark tissues of Pinus, Abies and Thuja, occasionally seen in Picea, and rarely found in Larix during the winter. One-year-old leaves were also examined, since in all but Larix they are overwintering structures and can act as potential sites of nitrogen storage. Protein-storage vacuoles were present in Pinus and Thuja leaf tissue in both summer and winter, in Abies during winter only, and were absent from Picea leaf tissue at all times. These results indicate that the formation of protein-storage vacuoles prior to overwintering is not a ubiquitous phenomenon in softwoods.  相似文献   

7.
Bark beetle infested pines are an ephemeral habitat utilized by a diverse assemblage of insects. Although many bark beetle insect associates have little or no measurable impact on bark beetle brood production, some reduce brood production by either competing with brood for the limited phloem tissue or by feeding on brood. Several studies have observed synchrony between the colonization of hosts by bark beetles and the arrival of insect associates. Some insect associates mediate synchrony with bark beetle mass attacks with kairomonal responses to bark beetle aggregation pheromones. The objectives of this study were to document the community of Coleoptera associated with the southern Ips (Ips avulsus, Ips calligraphus and Ips grandicollis) and to test the hypothesis that synchrony of insect associates with the southern Ips is mediated by kairomonal responses to aggregation pheromones. A large community of Coleoptera (109 species) was recorded from traps baited with southern Ips pheromones. A significant treatment effect was observed for the guilds of meristem feeders, natural enemies and woodborers. The southern Ips pheromone ipsenol was broadly attractive to meristem feeders, natural enemies and woodborers and in general blends were more attractive than individual compounds. These results demonstrate that a diverse community of Coleoptera is associated with the southern Ips and that several members of this community facilitate synchrony with kairomonal responses to southern Ips aggregation pheromones.  相似文献   

8.
The seasonal flight activity of Platycerus caprea was studied at two sites in the Moravskoslezské Beskydy Mts in 2002–2004 using bark beetle pheromone traps of Theysohn® type. Platycerus caprea occurred at altitudes of 400 m up to 1200 m a.s.l. Seasonal flight activity in both males and females started at the beginning of May and continued until mid-June. At lower altitudes (up to ca 900 m a.s.l.), adults flew in the first half of May, at altitudes about 1000 m a.s.l. in the second half of May and in the highest sites more than 1200 m a.s.l. in the first half of June.  相似文献   

9.
季节和地理差异对天然黄檗小檗碱和药根碱含量的影响   总被引:1,自引:0,他引:1  
用高效液相色谱法测定了黄檗根皮、茎皮、多年生枝皮、1年生枝和叶片中小檗碱和药根碱的含量,研究黄檗不同部位两种生物碱的季节和地理差异。结果表明:不同季节,天然黄檗各部位的小檗碱、药根碱含量均表现为:根皮茎皮多年生枝皮1年生枝叶片。小檗碱含量随着季节变化在各部位呈现夏季升高,到秋季下降的趋势。而药根碱在不同部位中的含量随着季节变化的规律不同。根皮、茎皮中的药根碱含量随着季节推移逐渐增多,在夏季升高不明显,而到秋季大量积累。多年生枝皮、1年生枝、叶片中的药根碱在3个季节表现则为先降后升。从纬度水平上看,不同地域间黄檗各部位的生物碱差异显著,在调查的40°—50°N范围内,黄檗两种生物碱的含量普遍在纬度低的地区较高,随着纬度增大先逐渐降低,到N44°左右达到最低值,到了高纬度地区略有回升。  相似文献   

10.
Photoperiod control of poplar bark storage protein accumulation   总被引:13,自引:6,他引:7       下载免费PDF全文
Bark storage proteins (BSPs) accumulate in the inner bark parenchyma of many woody plants during autumn and winter. We investigated the effect of a short-day (SD) photoperiod on the accumulation of the 32-kilodalton bark storage protein of poplar (Populus deltoides Bart. ex Marsh.) under controlled environmental and natural growing conditions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and protein gel blot analysis revealed that 10 days of SD exposure (8 hours of light) resulted in a 20% increase in the relative abundance of the 32-kilodalton bark storage protein of poplar. After 17 days of SD exposure, the 32-kilodalton bark storage protein accounted for nearly one-half of the soluble bark proteins. In natural field conditions, accumulation of the 32-kilodalton bark storage protein was observed to start by August 18 (daylength 14.1 hours). Immunoprecipitation of in vitro translation products with anti-BSP serum revealed that the SD protein accumulation was correlated with changes in the pool of translatable mRNA. A survey of poplar clones from different geographic origins revealed the presence of the 32-kilodalton BSP in the dormant bark of all the clones tested. These results demonstrate that a SD photoperiod induces, whether directly or indirectly, rapid changes in woody plant gene expression, leading to the accumulation of BSP.  相似文献   

11.
Traditional medicine markets are provided with medicinal plant material throughout the year, however, internal (e.g. plant age, genetic variability and differential expression of genes) and external factors (e.g. water and nutrient availability, rainfall, photoperiod and herbivory), affect secondary metabolite production in plants. In this study, seasonal variability in metabolite production in Curtisia dentata trees from two geographically separated regions in South Africa are compared. NMR analysis of C. dentata stem bark samples yielded spectral data which were processed in MestReNova to perform multivariate data analysis using Soft Independent Modeling of Class Analogy (SIMCA) software. This study shows that there are not only seasonal, regional and yearly differences in secondary metabolite production in C. dentata trees, but that production patterns of hydrophilic and lipophilic chemical compounds in individual trees also vary. Sucrose, isoeugenol and betulinic acid have been used in a targeted analysis to show the variation in individual compounds in the individual trees as a response to seasonal and geographical differences. Therefore, the season and year, as well as the region, harvesting site and specific trees from which plant material is collected affect the concentrations of chemical compounds extracted from C. dentata stem bark for the preparation of remedies.  相似文献   

12.
13.

Key message

ISSR characterization of Chukrasia populations from the natural range revealed two distinct groups of populations consonant with morphological differentiation. Results suggest the current taxonomic classification of the genus should be reviewed.

Abstract

There are different views as to whether the genus Chukrasia (Meliaceae) consists of one species, C. tabularis, or two species C. tabularis and C. velutina. Despite a clear pattern of variation in many morphological characteristics such as leaves and bark, some authors regard the latter merely an ecotype of the former in seasonal forest. In the present study, we used ISSR markers to determine the genetic diversity and population structure among 23 Chukrasia subpopulations from across the natural range in Asia. Molecular analysis clearly differentiated two distinct groups of subpopulations, corresponding to the putative species, as well as well-defined subpopulations corresponding to geographic regions within the two groups. The molecular results are in concordance with morphological differentiation and corresponded to the two recognized taxa. The present study suggests that current taxonomic classification of the genus Chukrasia should be reviewed.  相似文献   

14.
15.
Variations in antioxidant and anti-viral activities (against Influenza AP/R/8 (H1N1) virus) between the leaves and stem bark of selected medicinal plants were studied. Malin Darby canine kidney (MDCK) cells were used for the viral infection and the antiviral activity of the extracts was studied using sulphorhodamine B (SRB) assay. The stem bark of the plants including Strychnos minor, Diotacanthus albiflorus, Strychnos nux-vomica and Chloroxylon swietenia showed higher flavonoid contents as well as 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) scavenging activity when compared with their leaves. In case of 1,1-diphenyl-2-picrylhydrazyl (DPPH) activity, the stem bark of S. nux-vomica and leaf extract of C. swietenia showed the highest activity. Based on the IC50 values, the stem bark extracts of Cayratia pedata (20.5 μg/mL) and S. minor (22.4 μg/mL) showed high antiviral activity. In the mean-time S. nux-vomica, C. swietenia and C. swietenia bark extracts showed cytotoxicity to the MDCK cells. When comparing the stem bark and leaves the content of gallic acid, ferulic acid, o-coumaric acid, total flavonoids (TFC) and total phenols (TPC) was higher in stem bark and hence their anti-viral activity was high. Further study based on the metabolites against H1N1 can reveal the potential of therapeutic compounds against the viral disease.  相似文献   

16.
Bark storage proteins accumulate in the bark of many woody plants during autumn and winter. In poplar (Populus deltoides Bartr. ex Marsh), the accumulation of the 32-kilodalton bark storage protein is controlled by photoperiod. We have isolated a full-length cDNA encoding for the poplar 32-kilodalton bark storage protein and determined its nucleotide sequence. The derived amino acid sequence shows that poplar bark storage protein is rich in serine, leucine, phenylalanine, and lysine. Poplar bark storage protein is similar to the poplar wound-induced cDNA clone 4 and clone 16 (TJ Parsons, HD Bradshaw, MP Gordon [1989] Proc Natl Acad Sci USA 86: 7895-7899). DNA gel blot analysis suggests that poplar bark storage protein is encoded by a multigene family of about five genes. Poplar plants grown in long days contained low levels of mRNA for the bark storage protein. Exposure to short days resulted in an increase in bark storage protein mRNA within 7 days. After 21 days of short day exposure, high levels of mRNA were detected. The accumulation of bark storage protein mRNA in response to short days was also observed in plants exposed to natural shortening daylengths. Our results indicate that the accumulation of poplar bark storage protein mRNA is controlled by photoperiod. This finding will provide a useful system for investigating photoperiodism in woody plants.  相似文献   

17.
The inner bark tissues of three temperate hardwoods contain specific proteins which undergo seasonal fluctuations. Increases in particular proteins, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, occur within the bark of several Acer, Populus and Salix spp. during late summer and early autumn. These proteins are abundant in the bark throughout the winter and their levels decline the following spring. Light and electron microscopy showed that the parenchyma cells of the inner bark are packed with spherical organelles throughout the overwintering period. These organelles are rich in protein and analogous to protein bodies found in cells of mature seeds. The protein bodies of the parenchyma cells are replaced by large central vacuoles during spring and summer, presumably as a result of the mobilization of the storage protein and fusion of the protein bodies. The high levels of specific proteins in inner bark tissues and the presence of protein bodies within the parenchyma cells indicate that the living cells of the bark act as a nitrogen reserve in overwintering temperate hardwoods.Abbreviations FW fresh weight - kDa kilodalton - M r relative molecular mass  相似文献   

18.
The essential oils obtained from Southern Brazilian native Drimys brasiliensis Miers and Drimys angustifolia Miers were analyzed by GC and GC/MS. The oils from leaves of both species showed predominance of monoterpenoids, while the oils from stem barks were characterized by sesquiterpenoids. Bicyclogermacrene (20.0% in leaves and 25.4% in stem bark) and drimenol (1.4% in leaves and 26.2% in stem bark) were the most abundant in D. angustifolia, and cyclocolorenone (from 16.0% to 32.3% in fresh and dried leaves and almost 50% in stem bark) in D. brasiliensis. The oil from fruits of D. brasiliensis was also analyzed and presented 31.0% of cyclocolorenone. The predominance of this unusual aromadendrane-type sesquiterpene in D. brasiliensis essential oils could be used as a chemosystematic marker.  相似文献   

19.
Seasonal variations in coral health indices reflecting autotrophic activity (chlorophyll a and zooxanthellae density), metabolic rates (RNA/DNA ratio and protein) and energy storage (ratio of storage: structural lipids or lipid ratios) were examined for two dominant Acropora species [Acropora digitifera (AD) and Acropora spicifera (AS)] at Ningaloo Reef (north-western Australia). Such detailed investigation of metabolic processes is important background, with regard to understanding the vulnerability of corals to environmental change. Health indices in AD and AS were measured before and after spawning in austral autumn and winter 2010, and austral summer 2011 at six stations. Health indices showed seasonal and species-specific differences but negligible spatial differences across a reef section. For AD, autotrophic indices were negatively correlated with lipid ratios and metabolic indices. Metabolic indices were significantly higher in AS than AD. No correlation was observed between RNA/DNA ratios and lipid ratios with any autotrophic indices for AS. Lipid ratios were stable throughout the year for AS while they changed significantly for AD. For both species, indices of metabolic activity were highest during autumn, while autotrophic indices were highest in winter and summer. Results suggest that the impact of the broadcast spawning event on coral health indices at Ningaloo Reef occurred only as a backdrop to massive seasonal changes in coral physiology. The La Niña summer pattern resulted in high autotrophic indices and low metabolic indices and energy stores. Our results imply different metabolic processes in A. digitifera and A. spicifera as well as a strong impact of extreme events on coral physiology.  相似文献   

20.
Neoparasitylenchus amvlocercus sp. n. (Tylenchida: Nematodea) is described as a parasite of the singleleaf pinyon cone beetle, Conophthorus monophyllae (Scolytidae: Coleoptera) in California. In a sample of 21 beetles randomly selected from cones of Pinus monophylla, 62% were parasitized by N. amvlocercus. Heavily infected beetles showed a reduction in fat body, ovaries, and longevity. They were poorly coordinated, flew less, and showed a weaker flight than that of nonparasitized beetles. A summary of the effects of allantonematid nematodes on bark beetles is included and a synopsis of the nematodes occurring inside bark beetles is given, including a key to the genera of Allantonematidae parasitizing scolytids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号