首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
余晓玲  孙恩杰  尹丹丹 《生物磁学》2009,(15):2995-2997
RNA干扰(RNA interference,RNAi)是指双链RNA(double-strand RNA,dsRNA)特异性降解同源mRNA,从而引发基因转录后水平沉默的现象,是一种高效、高特异性抑制基因表达的途径。自1998年Fire等发现RNA干扰现象以来,其特异性降解目的基因的优势吸引了众多研究者的目光。本文在简要综述RNAi技术在基因功能研究、抗病毒治疗,肿瘤基因治疗等领域的应用后,重点归纳了基因枪技术在RNAi研究即siRNA导入细胞中的应用,并简单分析其优势与意义。  相似文献   

2.
RNA干扰研究进展   总被引:2,自引:1,他引:1  
RNA干扰(RNA interference,RNAi)是指由双链RNA(double-strandedRNA,dsRNA)启动的序列特异的转录后基因沉默现象,广泛存在于真菌、植物和动物中。它是细胞内由双链RNA诱导降解与其配对的特定mRNA的过程。细胞内双链RNA在酶的作用下,形成20-25碱基大小的小干扰RNA(siRNAs),由siRNAs进一步掺入多组分核酸酶并使其激活,从而精确降解与siRNAs序列相同的mRNA,抑制该基因在细胞内的翻译表达。RNAi技术是近年来迅速发展起来的高效、特异、易操作的基因沉默技术。与反义寡核苷酸等传统方法相比,RNAi技术有着无可比拟的优势。本文就其近年的研究进展作一综述。  相似文献   

3.
RNA干扰与基因敲除   总被引:3,自引:0,他引:3  
RNAi是指通过双链RNA介导特异性降解靶mRNA,导致转录后水平基因沉默的现象。其作用途径有RdRP依赖的RNAi的途径与非RdRP依赖的RNAi途径2种。利用RNAi的基因敲除技术在dsRNA序列选择、质粒或病毒为载体的dsRNA体内合成、发夹样siRNA的转录、dsRNA的导入方法等方面取得了很大进展,在研究人类或其他生物基因组中未知基因及蛋白质的功能等领域具有诱人的应用前景。  相似文献   

4.
RNA干扰(RNAi)是一种转录后基因沉默技术,可有效诱导序列特异性基因沉默.由RNA聚合酶Ⅱ启动子调控表达的小发卡RNA可有效介导RNAi效应,为组织特异性基因沉默提供了一条新的途径.但是,由RNA聚合酶Ⅱ启动子调控表达的小发卡RNA(shRNA)在序列上与靶基因非完全互补对RNAi效应的影响鲜有报道.本文初步探索RNA聚合酶Ⅱ启动子调控表达的shRNA碱基发生突变或缺失对RNAi效应的影响.研究表明,靶向hTERT mRNA的碱基突变shRNA显著降低RNAi效应,而靶向GFP mRNA的碱基缺失shRNA对RNAi效应没有显著影响.本研究为非完全互补shRNA对RNAi效应的进一步深入研究提供了理论与实验依据.  相似文献   

5.
RNA干扰(RNAi)是指具有同源性的双链RNA分子导入细胞后,使促进与之同源的mRNA发生特异性降解的现象。随着对RNAi分子机制研究深入,它将成为研究动物基因功能、蛋白质功能、基因治疗、基因药物的强有力的工具。  相似文献   

6.
用RNA干扰(RNAi)技术来阻断特定基因的表达,为治疗诸如人类免疫缺陷病毒1型(HIV—1)等慢性病毒感染提供了一种新的手段。虽然,通过小干扰RNA(siRNA)以降解序列特异性的mRNA可选择性地抑制一些在HIV—1复制过程中起关键作用的病毒蛋白,但RNAi技术仍然存在着许多问题亟待解决。本文就HIV—1特异性的RNAi技术作用的潜力和持久性作一研究。  相似文献   

7.
RNA干扰(RNAinterference,RNAi)是利用双链RNA(dsRNA)特异性地降解相应序列的mRNA,从而特异性地阻断相应基因地表达,且此现象广泛存在于从真菌到植物、无脊椎动物、哺乳动物的各种生物中。介绍了RNA干扰的研究历史、RNA干扰的作用机制及此技术在植物中的应用。  相似文献   

8.
RNA干扰(RNAi)是由双链RNA触发的在mRNA水平进行的特异靶序列的基因沉默现象,广泛存在于动物、植物和病毒中,主要包括小干扰RNA(siRNA)及微小RNA(miRNA)两种作用途径。人工miRNA(amiRNA)是将天然miRNA的成熟序列替换成人工设计的靶向其他感兴趣基因的反义序列,通过天然miRNA的生成和作用途径达到RNAi的效果,具有干扰效果明显、作用迅速、毒性低等优点,拥有广阔的应用前景。我们对基于amiRNA的基因沉默技术进行了较为系统的介绍和总结,梳理了该技术的优缺点和适用范围,并展望了其进一步发展的方向和应用前景。  相似文献   

9.
RNA干涉分子机制研究进展   总被引:13,自引:0,他引:13  
RNA干涉(RNA interference,RNAi)是生物体内的一种通过双链RNA(dsRNA)来抵抗病毒入侵和抑制转座子活动的自然机制.双链RNA与同源mRNA互补结合而使特定基因失活,这一过程已经在包括拟南芥、线虫和真菌等多种模式生物中得到揭示.近来研究表明,21~25 nt的小干涉RNA(small interference RNA, siRNA)可介导哺乳动物细胞特异性基因沉默.RNAi具有高效性和高度特异性,可能成为关闭基因的新技术而在基因功能研究和疾病基因治疗中发挥重要作用.  相似文献   

10.
RNA干扰技术及其在植物研究中的应用   总被引:2,自引:0,他引:2  
RNA干扰(RNA interference,RNAi)是最近几年发现和发展起来的一门新兴的在转录水平上的基因阻断技术,它是生物体内由双链RNA(double-stranded RNA,dsRNA)介导同源mRNA降解的现象。RNAi广泛存在于从真菌到高等植物、从无脊椎动物到哺乳动物各种生物中。研究表明通过转入目的基因序列的双链RNA可以诱导产生基因沉默现象。同时,RNAi能监控异常的或外源的遗传物质在机体内的水平,并调控基因的表达,是生物体抵御外在感染的一种重要的保护机制,这使得RNA干扰技术具有十分诱人的应用前景。介绍了RNAi的研究历史、作用机制、特点及其在植物研究中的应用。  相似文献   

11.
The phenomenon of RNAi, in which the introduction of dsRNA into a cell triggers the destruction of the corresponding mRNA resulting in a gene silencing effect, is conserved across a wide array of plant and animal phyla. However, the mechanism by which the dsRNA enters a cell, allowing the RNAi effect to occur throughout a multicellular organism (systemic RNAi), has only been studied extensively in certain plants and the nematode Caenorhabditis elegans. In recent years, RNAi has become a popular reverse genetic technique for gene silencing in many organisms. Although many RNAi techniques in non-traditional model organisms rely on the systemic nature of RNAi, little has been done to analyze the parameters required to obtain a robust systemic RNAi response. The data provided here show that the concentration and length of dsRNA have profound effects on the efficacy of the RNAi response both in regard to initial efficiency and duration of the effect in Tribolium castaneum. In addition, our analyses using a series of short dsRNAs and chimeric dsRNA provide evidence that dsRNA cellular uptake (and not the RNAi response itself) is the major step affected by dsRNA size in Tribolium. We also demonstrate that competitive inhibition of dsRNA can occur when multiple dsRNAs are injected together, influencing the effectiveness of RNAi. These data provide specific information essential to the design and implementation of RNAi based studies, and may provide insight into the molecular basis of the systemic RNAi response in insects.  相似文献   

12.
Research over the past few years has led to dramatic new discoveries on the role of double-stranded RNA (dsRNA) in the cell. RNA duplexes have been shown to orchestrate epigenetic changes, repress translation, and direct mRNA degradation in a sequence-specific manner. These diverse effects of dsRNA on gene expression have been termed RNA interference (RNAi). In addition to playing a role in viral defense and silencing transposons, RNAi also has a critical function in a number of developmental processes in the embryo. In this review, we explore these roles and discuss the molecular mechanisms behind dsRNA-mediated gene silencing. Further, we address the use of RNAi as a tool to study gene function in biology, and as a strategy for treating human disease.  相似文献   

13.
RNA干扰是指dsRNA抑制细胞内同源基因表达的现象,RNA干扰现象自发现以来在短短的几年里,已成功地用于不同种属的生物研究。dsRNA不仅参与内源基因表达调控,而且能够抑制宿主内病原微生物基因的表达,参与构筑生物体的防御机制。近年来,运用RNAi技术在哺乳动物中的研究不断深入,尤其是抑制病毒复制的研究成果令人欣喜,这为人类动物抗病毒治疗提供了新的思路。  相似文献   

14.
Abstract Numerous studies indicate that target gene silencing by RNA interference (RNAi) could lead to insect death. This phenomenon has been considered as a potential strategy for insect pest control, and it is termed RNAi‐mediated crop protection. However, there are many limitations using RNAi‐based technology for pest control, with the effectiveness target gene selection and reliable double‐strand RNA (dsRNA) delivery being two of the major challenges. With respect to target gene selection, at present, the use of homologous genes and genome‐scale high‐throughput screening are the main strategies adopted by researchers. Once the target gene is identified, dsRNA can be delivered by micro‐injection or by feeding as a dietary component. However, micro‐injection, which is the most common method, can only be used in laboratory experiments. Expression of dsRNAs directed against insect genes in transgenic plants and spraying dsRNA reagents have been shown to induce RNAi effects on target insects. Hence, RNAi‐mediated crop protection has been considered as a potential new‐generation technology for pest control, or as a complementary method of existing pest control strategies; however, further development to improve the efficacy of protection and range of species affected is necessary. In this review, we have summarized current research on RNAi‐based technology for pest insect management. Current progress has proven that RNAi technology has the potential to be a tool for designing a new generation of insect control measures. To accelerate its practical application in crop protection, further study on dsRNA uptake mechanisms based on the knowledge of insect physiology and biochemistry is needed.  相似文献   

15.
More than a decade has passed since the discovery of RNA interference (RNAi), an eukaryotic sequence-specific degradation of mRNA induced by complementary double-stranded RNA (dsRNA). RNAi became a common tool for controlled down-regulation of gene expression in cultured cells, as well as in various model organisms. This review summarizes RNAi-based tools for silencing genes in living mammals, which include: (i) transgenic RNAi strategies, where RNAi is triggered by a transgene transmitted through the germline and (ii) approaches, where an RNAi trigger is delivered into an adult animal.  相似文献   

16.
RNA干扰(RNA interference,RNAi)是一类在真核生物中广泛存在的,由双链RNA介导的转录后基因沉默机制。作为一项研究基因功能的有力工具,RNAi技术已经被广泛应用在线虫、果蝇、斑马鱼和小鼠等生物的基因组学研究中。近来在甲壳动物中,通过RNAi技术取得了众多的科研成果。文章从免疫、生长发育、蜕皮、生殖、性别调控、渗透压调节和代谢等几个方面进行了综述。进而对RNAi技术在甲壳动物中的研究前景进行了展望,旨在为以后更好地研究甲壳动物的基因功能和调控网络提供参考。  相似文献   

17.
Genome-wide RNAi screening in Caenorhabditis elegans   总被引:19,自引:0,他引:19  
In Caenorhabditis elegans, introduction of double-stranded RNA (dsRNA) results in the specific inactivation of an endogenous gene with corresponding sequence; this technique is known as RNA interference (RNAi). It has previously been shown that RNAi can be performed by direct microinjection of dsRNA into adult hermaphrodite worms, by soaking worms in a solution of dsRNA, or by feeding worms Escherichia coli expressing target-gene dsRNA. We have developed a simple optimized protocol exploiting this third mode of dsRNA introduction, RNAi by feeding, which allows rapid and effective analysis of gene function in C. elegans. Furthermore, we have constructed a library of bacterial strains corresponding to roughly 86% of the estimated 19,000 predicted genes in C. elegans, and we have used it to perform genome-wide analyses of gene function. This library is publicly available, reusable resource allowing for rapid large-scale RNAi experiments. We have used this library to perform genome-wide analyses of gene function in C. elegans. Here, we describe the protocols used for bacterial library construction and for high-throughput screening in C. elegans using RNAi by feeding.  相似文献   

18.
19.
RNA interference (RNAi) technology enables to study specific gene functions also in social insects, which are otherwise difficult to access for genetic manipulations. The recent sequencing of the genomes from seven ant species made these members of the Formicidae available for knockdown studies. However, for this purpose the RNAi technology first needs to be adapted for application in ants. Studies on other insects show that the effectiveness of RNAi is quite species-specific and can depend on several experimental parameters such as the investigated stage of the insect, the target gene and/or the dsRNA delivery method. RNAi in ants through feeding of dsRNA is a preferable approach, since knockdown can be achieved in individuals without interfering with the animal’s physiology in contrast to injection of dsRNA. Here, we present a protocol for gene knockdown in Formicidae by feeding of dsRNA to worker animals. The expression of a peptidoglycan recognition protein gene, PGRP-LB, was efficiently knocked down in the body of Camponotus floridanus worker ants. Moreover, we describe a relatively cheap method to extract dsRNA from bacteria in order to obtain large quantities needed for feeding experiments.  相似文献   

20.
Larval RNAi in Drosophila?   总被引:2,自引:0,他引:2  
RNA interference (RNAi) has become a common method of gene knockdown in many model systems. To trigger an RNAi response, double-stranded RNA (dsRNA) must enter the cell. In some organisms such as Caenorhabditis elegans, cells can take up dsRNA from the extracellular environment via a cellular uptake mechanism termed systemic RNAi. However, in the fruit fly Drosophila melanogaster, it is widely believed that cells are unable to take up dsRNA, although there is little published data to support this claim. In this study, we set out to determine whether this perception has a factual basis. We took advantage of traditional Gal4/upstream activation sequence (UAS) transgenic flies as well as the mosaic analysis with a repressible cell marker (MARCM) system to show that extracellular injection of dsRNA into Drosophila larvae cannot trigger RNAi in most Drosophila tissues (with the exception of hemocytes). Our results show that this is not due to a lack of RNAi machinery in these tissues as overexpression of dsRNA inside the cells using hairpin RNAs efficiently induces an RNAi response in the same tissues. These results suggest that, while most Drosophila tissues indeed lack the ability to uptake dsRNA from the surrounding environment, hemocytes can initiate RNAi in response to extracellular dsRNA. We also examined another insect, the red flour beetle Tribolium castaneum, which has been shown to exhibit a robust systemic RNAi response. We show that virtually all Tribolium tissues can respond to extracellular dsRNA, which is strikingly different from the situation in Drosophila. Our data provide specific information about the tissues amenable to RNAi in two different insects, which may help us understand the molecular basis of systemic RNAi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号