首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
膜上相互作用对平板双分子层脂膜电性质的影响   总被引:7,自引:0,他引:7  
以平板双分子层脂膜作为生物膜的简单模型,建立用平板双分子层脂膜电性质研究药物-生物膜相互作用的方法。研究以具有典型特征的物质-表面活性剂、自由基、金属手性配合物与平板膜的相互作用引起膜电性质的规律性改变;重组人B型血红细胞膜与溶液中抗B单克隆抗体发生特异相互作用时,膜电阻快速下降,下降的速率与加入的抗体量成正相关。在研究发生在平板膜上的典型反应的基础上,通过对膜电性质的监测和分析,从而确认平板双分  相似文献   

2.
营养及水力条件影响光合细菌生物膜生长特性实验   总被引:4,自引:0,他引:4  
对平板式生物膜反应器内,流量及底物浓度范围分别为37.8~1080ml/h、0.05~10g/L的不同生长条件下光合产氢细菌生物膜生长特性进行了实验研究,讨论了不同水力及营养条件对沼泽红假单胞菌生物膜表面覆盖率、膜厚、干重和密度的影响。实验结果表明,不同水力及营养条件对生物膜生长速率及结构具有重要影响。在相同的时间间隔内,在高流速条件下光合细菌菌落生长较快,但过高的液体流速会导致部分生物膜脱落;高流速条件易使生物膜形成薄而致密的结构。光合细菌生物膜在循环液底物浓度较高时生长较快,密度也最高;而贫营养条件可以促成结构疏松生物膜在固液界面的形成,这种生物膜结构有利于微生物在低底物浓度条件下底物在生物膜内的传输。  相似文献   

3.
说起导弹,人们便会想到它具有专一地追踪,摧毁目标的功能。经过多年的艰苦探索,一种新型的超微型生物导弹,已经研制问世。这种生物导弹就是脂质体(liposome)。脂质体是由磷脂双分子层人工膜在水溶液中形成的微囊。双分子层是生物膜结构的重要组成部分,而制备脂质体采用的磷脂和胆固醇均是天然存在的物质,所以脂质体膜近似天然的生物膜。脂质体具有亲水性,又具有亲脂  相似文献   

4.
土壤微生物膜是由土壤细菌及其分泌物积聚形成的生物群落,是生物土壤结皮的初始形态和重要组成部分。作为土壤细菌生命过程中最典型的生存形式,土壤微生物膜不仅能保护基质内细胞生存,还可黏附于土壤颗粒和植物根系表面,发挥重要的生态功能。本文在解析土壤微生物膜结构与组成的基础上,从土壤质量与植物健康两个方面总结分析了土壤微生物膜生理生态功能:土壤微生物膜代谢活性高于游离细胞,可高效分泌胞外聚合物并且具有更强的有机物质转化速率,在提升土壤肥力,吸附、固持和降解土壤污染物和促进土壤团聚体形成方面具有重要意义;土壤微生物膜可通过多种微生物间协同作用、促进分泌多种促生物质与胞外聚合物以发挥固持作用等改善植物养分利用状况,增强植物抗逆性。揭示土壤微生物膜生态功能的微观机制、筛选和应用功能性土壤微生物膜是未来重要的发展方向。  相似文献   

5.
生物膜的存在使一些由病原菌引发的疾病变得更加难以治疗。经研究发现一种环二肽物质DKP——cyclo(Pro-Phe)能够抑制这3株病原菌(Staphylococcus aureus,Pseudomonas aeruginosa,Candida albicans)生物膜的形成。通过对不同浓度DKP作用下所形成的生物膜进行结晶紫定量、菌落计数分析和结构显微分析表明:在DKP的浓度达到10 mg/ml时,S. aureus和P. aeruginosa的生物膜几乎消失;在DKP的浓度达到12 mg/ml时,C. albicans的生物膜被显著抑制。这一发现为寻找新型的生物膜抑制剂治愈顽固疾病带来了新的希望。  相似文献   

6.
长周期光纤光栅生物膜传感器   总被引:6,自引:0,他引:6  
介绍了一种可测量生物膜层厚度的长周期光纤光栅(LPG)传感器,其原理是在光纤包层(折射率为n2)外涂上特殊的生物活性膜层(折射率为n3),在n3≥n2的条件下,生物膜层厚度的变化将引起LPG谐振波长的改变,通过测量LPG谐振波长的移动量就能得到生物膜层厚度的变化量。该传感器主要用于确定血液里是否存在抗原,用抗体作为生物活性膜层,当测到的谐振波长发生了位移,就可以推知抗体和抗原发生了反应,说明血液中存在抗原。硅化膜的折射率和抗原、抗体物质的折射率非常接近,可作为成膜基底材料,基底膜层厚度可选择在120 nm左右。谐振波长的解调采用可调谐F-P腔干涉解调,结构简单,体积小,易于实用化。  相似文献   

7.
细胞膜的双层磷脂结构与功能   总被引:2,自引:0,他引:2  
真核细胞及其亚细胞器如线粒体和内质网等的表面包被着双层磷脂膜结构,即质膜或生物膜。生物膜的功能是将细胞及细胞器与外界微环境隔离,并负责物质转运和信息传递。所有的质膜具有3个共同的结构特征:即连续排列的双层磷脂膜,两层磷脂分子疏水的非极性基团在内部,而其亲水极性基团分别朝向细胞或细胞器的内外表面;膜具有液态流动性;膜上或膜内镶嵌着大量种类和功能各异的蛋白质分子。生物膜的这种结构特征是由磷脂分子的物理化学特征以及细胞的生命特征和功能所决定的。  相似文献   

8.
生物膜膜蛋白三维结构研究的现状与展望   总被引:2,自引:0,他引:2  
1 生物膜膜蛋白三维结构研究的重要性与迫切性  细胞是生命的基本结构与功能单位 .细胞的外周膜与细胞内的膜系统称为生物膜 .细胞的能量转换、信息识别与传递、物质运送和分配等基本生命现象都与生物膜密切相关 .生物膜是由蛋白质、脂类以及碳水化合物等组成的超分子体系 ,膜蛋白是膜功能的主要体现者 .生物膜膜蛋白可分为外周膜蛋白和内在膜蛋白 ,后者约占整个膜蛋白的 70 %~ 80 % ,它们部分或全部嵌入膜内 ,有的则是跨膜分布 ,如受体、离子通道、离子泵、膜孔、运载体(transporter)以及各种膜酶等等 .象水溶性蛋白质一样 …  相似文献   

9.
生物膜定量分析方法研究进展   总被引:1,自引:0,他引:1  
生物膜因具有强致病性、耐药性和抗逆性,已成为全球关注的重大难题。介绍了生物膜生物量、细胞总数、活细胞数、大分子物质和结构的定量分析方法,以期为深入研究生物膜提供更丰富的手段,推动生物膜定量分析方法的改进与提高,从而更好地预防、控制及开发生物膜。  相似文献   

10.
细菌生物膜的形成与调控机制   总被引:7,自引:0,他引:7  
细菌通过自身合成的水合多聚物粘附在固体表面,以固着的方式生长从而形成生物膜,细菌生物膜的形成涉及到几个明显的阶段,包括起始的附着、细胞与细胞之间的吸附与增殖、生物膜的成熟、及最后细菌的脱离等四个阶段,生物膜的形成增加了细菌对抗生素的抗性以及帮助细菌逃逸寄主的免疫攻击等,从而引起临床上持续性的慢性感染等各种问题;生物膜结构非常复杂,除了细菌分泌的各种胞外多糖,胞外蛋白质外,最新的研究表明,DNA也是生物膜的一个重要成分.针对近年来的最新文献报道分别对生物膜的形成、结构以及调控机制等进行综述.  相似文献   

11.
生物膜是由脂质、蛋白质和碳水化合物组成的令人惊讶的多功能“海洋” ,在生命活动中起着非常重要的作用 (如物质运输、代谢调节、分子识别、细胞免疫及激素与药物的作用 )。然而 ,我们目前对于膜的组织结构、动力学和功能等许多方面仍知之甚少。要全面阐明真核细胞的全生理过程就必须详细了解生物膜的各种性质 ,这就要求我们所用的实验手段要与现有的各种研究基因组学和蛋白质组学的方法不同 ,并寻求在多种层面上研究生物膜。本文简介以美国Purdue大学生命科学学院为主提出的从 2 0 0 3年 2月开始近 5~ 10年开展有关生物膜和膜蛋白研究的…  相似文献   

12.
<正>细菌生物膜是指微生物(细菌、真菌等)黏附、聚集形成的一个群体,该群体产生并分泌胞外聚合物(extracellular polymeric substance,EPS),形成一定的三维结构,含有营养物质、氧气等生长必需物质交换的通道,微生物细胞在EPS中增殖、生存[1]。生物膜结构可阻止抗生素或抗体等大分子有效杀伤微生物细胞,目前尚无有效的预防措施和治疗方法控制细菌生物膜所带来的危害。对细菌生物膜形成  相似文献   

13.
口腔静态生物膜模型是体外模拟口腔微生态环境的重要手段,因其成本低、通量高、可靠性好、操作容易等优点,已成为研究各种口腔疾病的发病机制,测试各种药物、口腔护理用品、食品的重要工具。建立口腔静态生物膜模型,可根据研究目的,选择不同的装置、接种源、培养基、基质和培养条件,并通过测定生物量、代谢活性、群落结构以及进行可视化分析等多种方法评价生物膜的生长情况。本文汇总了近年来报道的口腔静态生物膜模型建立和评价的方法学要素,并分析讨论了各种方法的适用范围,希望有助于相关领域研究和生产实践的开展。  相似文献   

14.
生物膜与植物寒害和抗寒性的关系   总被引:38,自引:1,他引:37  
一、前言从某种含义上说,细胞的基本结构是一个生物膜体系。各种细胞器都是由生物膜分隔和包围的小区。许多生命活动和生理功能都在生物膜上进行,或与之密切相关。生物  相似文献   

15.
空肠弯曲杆菌(Campylobacter jejuni)分泌胞外多糖和各种胞外蛋白和核酸等相互交联在一起构成生物膜,可增强其在不利环境下的生存率,尤其是对各种洗涤剂、抗生素和消毒剂的耐受力。本文从介质表面性质、温度、气体环境、以及基因的调控等多方面阐述了空肠弯曲杆菌生物膜结构及形成调控机制,同时对各种去除生物膜的实际应用做了分析和展望,为探寻生物膜的控制方法提供参考。  相似文献   

16.
邓馨 《植物杂志》2009,(7):8-11
水是植物体内最多的物质,也是最重要的、无法替代的物质。水分占植物体鲜重的60%-90%,既可作为各种物质的溶剂充满在细胞中,也可以与其他分子结合,维持细胞壁、细胞膜等的正常结构和性质,使植物器官保持直立状态。植物细胞内的物质运输、生物膜装配、新陈代谢等过程都离不开水。如果没有水,植物将无法顺利地散发热量,保护自己不受炎夏的烈日灼伤;如果没有水,  相似文献   

17.
生物膜是由蛋白质、脂质和糖等组成的一种复合结构,包括细胞表面质膜和各种细胞器膜,其主要功能是在膜的内外进行物质、能量交换及信息传递。生物氧化、光合作用、细胞识别、免疫反应、激素及药物作用、神经传导、物质的传输都和膜有密切关系。学术出版社就生物膜的结构和功能出版了膜和传输当代论题丛书,简略介绍如下: v.20:《上皮输送的分子途径》(Molecular approaches to epithelial trasport),324页,1984年出版。 V.21:《离子通道:分子和生理领域》(Ion channels:Molecular and physiological aspects),394页,1984年出版。 v.22:《鱿鱼轴突》(The squid axon),593页、1984年出版。  相似文献   

18.
邓馨 《生命世界》2009,(7):8-11
水是植物体内最多的物质,也是最重要的、无法替代的物质。水分占植物体鲜重的60%-90%,既可作为各种物质的溶剂充满在细胞中,也可以与其他分子结合,维持细胞壁、细胞膜等的正常结构和性质,使植物器官保持直立状态。植物细胞内的物质运输、生物膜装配、新陈代谢等过程都离不开水。如果没有水,植物将无法顺利地散发热量,保护自己不受炎夏的烈日灼伤;如果没有水,  相似文献   

19.
美国马萨诸塞大学研究人员日前成功分离出一种表面带有大量微小突起的细菌,由于它们表面的突起具有很强的导电性,用这种细菌制成的微生物燃料电池具有更强的发电能力,可在燃料电池的石墨阳极大量繁殖,并在阳极表面构成一层厚厚的导电生物膜。细菌表面的大量突起是一种蛋白质构成的细小纤维,它们如同“纳米级电线”,可通过生物膜传送电流,使用这种细菌制造的燃料电池将大大提高电池的电力输出。  相似文献   

20.
前言早在60年代初,Bangham等就已发现双亲性分子(一端亲水、另一端疏水的分子)在水中将自动形成多层的封闭囊泡,其中每一层都由亲水端朝向水、疏水端彼此靠近、排列有序的二片层分子组成。他把这种结构称为片层液晶相。磷脂就是这种双亲性分子的典型代表,用磷脂充分水化后所形成的上述结构在许多方面类似于生物膜,是在分子水平研究膜结构与功能的很好的模型,因此有关这类研究工作就迅速发展起来。Sessa与Weissman于1968年正式提出脂质体这一名词,并为各国学者所公认和广为采用。虽然脂质体可能具有不同的形式,例如柱形甚至螺旋形的结构,但多数情况下以近似圆  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号