首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Annexin 1 (ANX1), a calcium-binding protein, participates in the regulation of early inflammatory responses. Whereas some of its effects depend on intracellular interactions, a growing number of observations indicate that ANX1 may also act via autocrine/paracrine functions following externalization to the outer side of the plasma membrane. We studied the effects of ANX1 on leukocyte adhesion to endothelial cells using as a model system the monocytic cell line U937 and human bone marrow microvascular endothelial cells. Exogenous rANX1, as well as endogenous ANX1 externalized by U937 differentiated in vitro, inhibited monocyte firm adhesion to vascular endothelium. Both binding of ANX1 to U937 cells and ANX1-mediated inhibition of cell adhesion involved the short N-terminal domain of the ANX1 molecule. Under experimental conditions in which ANX1 inhibited U937 adhesion to human bone marrow microvascular endothelial cells, this protein specifically colocalized with the alpha 4 integrin, and a direct interaction between ANX1 and the alpha 4 integrin could be documented by immunoprecipitation experiments. Moreover, ANX1 competed with the endothelial integrin counterreceptor, VCAM-1, for binding to alpha 4 integrin. These results indicate that ANX1 plays an important physiological role in modulating monocyte firm adhesion to the endothelium.  相似文献   

2.
HMG-CoA reductase inhibitors (statins) are believed to reduce coronary heart disease by mechanisms in addition to their well-known cholesterol-lowering effect. We studied the effect of these drugs on monocyte cell adhesion to endothelium. Pretreatment of monocytic cells (U937, THP-1, human CD14(+) monocytes) with 0.01-10 microM concentrations of atorvastatin, cerivastatin, or simvastatin significantly reduced cell adhesion to endothelium. In contrast, pretreatment of endothelium with statins did not affect adhesion of monocytes. Adhesion of monocytes to vascular cell adhesion molecule-1-coated dishes was reduced by these drugs. Cerivastatin also reduced PMA induction of NF-kappaB. Since monocyte adhesion to endothelium is an early event in atherogenesis, treatment with statins in prevention of coronary heart disease may have additional salutary effects to lowering of plasma LDL cholesterol. Our results indicate that the reduction of monocyte adhesion by HMG-CoA reductase inhibitors may be considered as a class effect.  相似文献   

3.
This study used the human monocytic cell line U937 to examine whether or not Porphyromonas gingivalis fimbriae could induce the adhesion of monocytes to endothelial cells. An in vitro adhesion assay was used to investigate the effects of the fimbriae on U937 cell adhesion to human umbilical vein endothelial cells (HUVEC). The fimbriae enhanced U937 cell adhesion to HUVEC in a dose-dependent manner. U937 cells adhered better to HUVEC pretreated with the fimbriae for a minimum of 2 hr than to untreated HUVEC. The enhanced adhesion was inhibited by a monoclonal antibody against P. gingivalis 381 fimbriae. Pretreatment of U937 cells with the fimbriae for 24 hr enhanced U937 cell adhesion to HUVEC approximately 4-fold. This phenomenon was inhibited by an anti-CD11b antibody, suggesting the involvement of CD11b. These results indicate that P. gingivalis fimbriae can induce monocyte adhesion to the endothelial cell surface. They also suggest that the fimbriae may be involved in the initial event for infiltration of monocytes into the periodontal tissues of individuals with adult periodontitis.  相似文献   

4.
The coagulation protein thrombin has been shown to stimulate multiple endothelial-cell (EC) functions, including production of platelet-derived growth factor and of platelet-activating factor (PAF), and neutrophil adhesion. We have found that thrombin causes increased binding of monocytic cells (U937 cells and normal human monocytes) to cultured EC of various species. Maximum adhesion of monocytes to pig aortic EC occurred 6 h after thrombin treatment and remained elevated through 24 h. Stimulation of adherence by bovine alpha-thrombin was half-maximal at 15 units/ml, and reached a plateau at 50 units/ml. Catalytically inactive thrombin (phenylmethanesulphonyl fluoride-treated) had no effect on monocyte adhesion to EC. Heparin, but not the endotoxin antagonist polymyxin B, suppressed the stimulation of adhesion by thrombin without altering basal adhesion. Two lines of evidence suggested that protein kinase C (PKC) was involved in the intracellular signalling to increase monocyte adhesion to EC. First the PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated monocytic-cell adhesion to EC at a dose consistent with stimulation of PKC (half-maximal response at 1-3 nM) and with a time course similar to that for thrombin stimulation (maximal by 4 h). Diacylglycerol, a physiological activator of PKC, also stimulated U937-cell adhesion to EC. Secondly, H7, a PKC inhibitor, completely blocked stimulation of monocyte adhesion to EC by thrombin or PMA. The structural analogue of H7, HA1004, which preferentially inhibits cyclic-AMP- and cyclic-GMP-dependent protein kinases, had no effect on stimulated monocyte adhesion. The PKC inhibitor also blocked the stimulation of monocyte adhesion to EC by interleukin-1 and endotoxin, but did not alter the basal level of monocyte binding to unstimulated EC. Thrombin stimulation of monocyte adhesion differed from the reported stimulation of neutrophil adhesion by thrombin in that the latter process reached a maximum in minutes rather than hours. In addition, neither PAF itself nor agents known to stimulate PAF production by EC, such as arachidonate and the Ca2+ ionophore A23187, had any effect on monocyte adhesion. These results demonstrate a PKC-dependent cytokine-like action of the coagulation protein thrombin in modulating monocytic-cell adhesion to EC, a phenomenon of potential importance in many pathological and physiological processes.  相似文献   

5.
Adhesion of leukocytes to the endothelium is an essential event in inflammatory cell emigration from intravascular to extravascular compartment. While many mediators (e.g. cytokines) enhance cell adhesion through expression of adhesion molecules on endothelial cells the mechanism of this phenomenon is not known. In this study we examined the role of cAMP in mediation of the adhesion of monocytic cell line, U937 to human umbilical vein endothelial cells (HUVEC). Incubation of HUVEC with cholera toxin (10-500 ng/ml) for 4 hrs greatly enhanced the adhesiveness of HUVEC for U937 cells. The magnitude of adhesion stimulation produced by cholera toxin was comparable to that produced by the cytokines TNF alpha or IL-1 (2-3 folds). Upregulation of U937 cells adhesion to HUVEC was also achieved by short incubation (less than 1 hr) of HUVEC with cAMP elevating agents such as forskolin (10 microM), isoproterenol (0.3-30 microM), epinephrine (10-100 microM), norepinephrine (100 microM) as well as by endogenously added dibutyryl cAMP (0.05-2.0 mM). Dibutyryl cyclic GMP (0.05-2.0 mM) was ineffective in promoting adhesion. These data suggest that cAMP might be an important intracellular modulator of leukocyte adhesion to endothelium and therefore promoter of pro-inflammatory processes.  相似文献   

6.
A polysaccharide-peptidoglycan complex containing different phosphorylated sugars from Micrococcus lysodeikticus cell wall has been isolated and purified. The peptidoglycan contained muramic acid 6-phosphate and N-acetylglucosamine 6-phosphate as phosphorylated sugars in addition to other sugar residues. Mild acid hydrolysis of the peptidoglycan and subsequent reduction of the released polysaccharide showed therein the presence of glucose and N-acetyl-glucosamine in the linkage of the external polysaccharide residues to the peptidoglycan through phosphodiester linkage. These data suggest the presence of polysaccharide chains linked to a peptidoglycan core through two phosphorylated sugars via two different terminal carbohydrate residues of the external polysaccharide chains in a same polymer.  相似文献   

7.
The proto-oncogene c-mos was expressed during differentiation of the human monocytic cell line U937 into macrophages. To investigate a possible role of the mos oncogene, we introduced the v-mos gene under an inducible promoter, MT-I, into U937 cells. The v-mos transformed cells expressed mos mRNA at an amount proportional to the concentration of Zn2+ ions. The induction of the v-mos gene caused growth inhibition and macrophage differentiation in these cells. The differentiation of v-mos transformed monocytes into macrophages required continuous expression of the v-mos gene. The extent of expression of phenotypic characteristics of macrophages, such as phagocytosis, cell surface antigens and typical morphology, depends on the amount of mos mRNA present. We were therefore able to demonstrate that the expression of only one oncogene, mos, determines monocyte differentiation into macrophages.  相似文献   

8.
P2Y2 receptor up-regulation and activation induces intimal hyperplasia and monocyte/macrophage infiltration in the collared rabbit carotid artery model of vascular injury, suggesting a potential role for P2Y2 receptors in monocyte recruitment by vascular endothelium. In this study, we addressed the hypothesis that activation of P2Y2 receptors by extracellular nucleotides modulates the expression of adhesion molecules on vascular endothelial cells that are important for monocyte recruitment. Results indicated that the equipotent P2Y2 receptor agonists UTP or ATP (1-100 microm) stimulated the expression of vascular cell adhesion molecule-1 (VCAM-1) in human coronary artery endothelial cells (HCAEC) in a time- and dose-dependent manner. P2Y2 antisense oligonucleotides inhibited VCAM-1 expression induced by UTP but not by tumor necrosis factor-alpha. Furthermore, UTP induced VCAM-1 expression in human 1321N1 astrocytoma cell transfectants expressing the recombinant P2Y2 receptor, whereas vector-transfected control cells did not respond to UTP. The effect of UTP on VCAM-1 expression in HCAEC was prevented by depletion of intracellular calcium stores with thapsigargin or by inhibition of p38 mitogen-activated protein kinase or Rho kinase, but was not affected by inhibitors of the mitogen-activated protein/extracellular signal-regulated kinase pathway (i.e. MEK1/2). Consistent with a role for VCAM-1 in the recruitment of monocytes, UTP or ATP increased the adherence of monocytic U937 cells to HCAEC, an effect that was inhibited by anti-VCAM-1 antibodies. These findings suggest a novel role for the P2Y2 receptor in the p38- and Rho kinase-dependent expression of VCAM-1 that mediates the recruitment of monocytes by vascular endothelium associated with the development of atherosclerosis.  相似文献   

9.
BST2 is a type II transmembrane protein that had been initially identified as a surface molecule expressed on terminally differentiated B cells. Here, we characterize the expression of BST2 in human endothelial cells, HUVECs. IFN-γ, among various inflammatory stimuli, dramatically upregulates BST2 expression in HUVECs. We also address a novel putative role of BST2 in IFN-γ-stimulated HUVECs as an intercellular adhesion-related molecule. We show that purified extracellular domain of BST2 protein specifically and significantly decreased the adhesion of human monocytes to HUVECs, which suggests that IFN-γ-induced BST2 expression may be involved in monocyte migration from blood through the endothelium to the inflammation site. Furthermore, we show that the monocytic cell line U937 can directly adhere to BST2 extracellular domain-coated tissue culture wells. These results provide experimental evidence to support a novel role for BST2 in the interaction between human monocyte and IFN-γ-stimulated endothelium.  相似文献   

10.
A number of different sugars were investigated for their effect on human and mouse natural killer cell (NK)-mediated cytolysis. From the pool of nonphosphorylated sugars, D-mannose, N-acetyl-D-glucosamine (NAcGlc), D-glucose, and, to a lesser extent, beta-gentiobiose were found to inhibit human NK cytolysis. Mouse NK activity against YAC-1 target cells was reduced consistently in the presence of D-mannose and NAcGlc only. The sugars, NAcGlc, D-glucose, and beta-gentiobiose, were specifically inhibitory against NK-mediated cytolysis with no inhibitory effects being observed against ADCC, monocyte-mediated cytolysis, or CTL activity. Pretreatment and washing at either the target or effector cell level as well as direct target binding assays using Percoll-purified NK cells indicated that at least NAcGlc and beta-gentiobiose function at the recognition stage of NK cytolysis. D-Mannose, which was the most effective nonphosphorylated sugar inhibitor, was capable of inhibiting all cell-mediated cytotoxic mechanisms tested (NK, ADCC, monocyte, and CTL) and its action did not appear to be solely due to an impairment in the recognition event. All the phosphorylated sugars caused significant inhibition of human and mouse NK-mediated cytolysis, although repeated analyses of sugar titration curves consistently showed mannose-6-phosphate (Man-6-P) to be the most effective inhibitor. Inhibition with the phosphorylated sugars was apparent against all cytotoxic mechanisms investigated. It is possible that these sugars may function as general metabolic inhibitors or may activate a common signal which negatively regulates cell-mediated cytotoxic mechanisms. Nevertheless, the relative degree of inhibition with the majority of these sugars (particularly Man-6-P) was greater against NK and ADCC activity than against monocyte and CTL activity. Furthermore, studies with selected well-characterized human and mouse NK-resistant target cells strongly indicated that these sugars, particularly Man-6-P, compete at an acceptor site responsible for the uptake of the NK lytic factor, which is independent of the recognition structure(s).  相似文献   

11.
Monocyte adhesion to the arterial endothelium and subsequent migration into the intima are central events in the pathogenesis of atherosclerosis. Previous experimental models have shown that chemokines can enhance monocyte–endothelial adhesion by activating monocyte integrins. Our study assesses the role of chemokines IL-8, MCP-1 and GRO-α, together with their monocyte receptors CCR2 and CXCR2 in monocyte adhesion to human atherosclerotic plaques. In an adhesion assay, a suspension of monocytic U937 cells was incubated with human atherosclerotic artery sections and the levels of endothelial adhesion were quantified. Adhesion performed in the presence of a monoclonal antibody to a chemokine, chemokine receptor or of an isotype matched control immunoglobulin, shows that antibodies to all chemokines tested, as well as their receptors, inhibit adhesion compared to the control immunoglobulins. Immunohistochemistry demonstrated the expression of MCP-1, GRO-α and their receptors in the endothelial cells and intima of all atherosclerotic lesions. These results suggest that all these chemokines and their receptors can play a role in the adhesion of monocytes to human atherosclerotic plaques. Furthermore, they suggest that these chemokine interactions provide potential targets for the therapy of atherosclerosis.  相似文献   

12.
13.
14.
The common occurrence of fibrin deposits in chronic inflammatory lesions suggests a possible role for thrombin in the mobilization of mononuclear cell infiltrates. For this reason, the effect of thrombin on the binding of mononuclear cells to endothelial cells (EC) was investigated. Incubation of confluent monolayers of human umbilical vein endothelial cells with thrombin markedly enhanced EC adhesiveness for both T lymphocytes and U937 cells (a monocyte-like cell line) in a time- and dose-dependent fashion. This effect was EC specific: 1) treatment of the T cells or the U937 cells with thrombin did not stimulate their adherence to EC, and 2) treatment of human foreskin fibroblasts with thrombin did not stimulate their inherently low adhesiveness for T cells. Fixation of EC monolayers with paraformaldehyde after pre-incubation with thrombin did not affect the increased adhesiveness for T cells. mAb against the LFA-1 antigen (mAb 60.3 (anti-CD18) or mAb TS1/22 (anti-CD11a), which inhibit the binding of T cells to unstimulated EC, failed to block the increased adhesion induced by thrombin, indicating that the increased binding induced by thrombin is similar to that induced by IL-1 and TNF, which showed similar resistance. These results suggest that thrombin may have a role in the extravascular emigration of mononuclear cells from post-capillary venules by virtue of its ability to stimulate the adhesiveness of EC for both lymphocytes and monocytes.  相似文献   

15.
The contribution of N-linked carbohydrates to human interferon-gamma receptor (hIFN-gamma-R) structure and function was investigated in four tumor cell lines of various tissue origin. Western and ligand blotting of native and deglycosylated, affinity-purified hIFN-gamma-R of the monocytic cell line U937 and the lymphoid cell line Raji revealed that the different sizes of hIFN-gamma-R from U937 (103 kDa) and Raji (90 kDa) cells are reduced upon either metabolic inhibition or enzymatic deglycosylation of N-linked carbohydrates to a common size of the receptor molecule with an apparent molecular mass of 73 kDa for both cell lines, indicating that heterogeneity in hIFN-gamma-R size is largely due to differential glycosylation. In all cell lines investigated, inhibition of N-linked glycosylation or modulation of carbohydrate processing did not prevent receptor transport to the cell membrane, but blocked hIFN-gamma binding capacity of membrane-expressed receptor molecules, as revealed by specific binding of hIFN-gamma-R-specific monoclonal antibody and specific binding of 125I-labeled hIFN-gamma. These data suggest that a lack of complex-type N-linked carbohydrates is associated with a complete loss of receptor function, i.e. high affinity binding capacity. Recovery of hIFN-gamma binding of deglycosylated receptors was achieved upon affinity purification and adsorption to nitrocellulose membranes, indicating that the carbohydrate side chains themselves do not directly contribute to the ligand binding epitope but seem to be essential for appropriate conformation of the receptor protein in the cell membrane.  相似文献   

16.
The effect of the glucocorticoid inducible protein annexin 1 (ANXA1) on the process of monocytic cell migration was studied using transfected U937 cells expressing variable protein levels. An antisense (AS) (36.4AS; approximately 50% less ANXA1) and a sense (S) clone (15S; overexpressing the bioactive 24-kDa fragment) together with the empty plasmid CMV clone were obtained and compared with wild-type U937 cells in various models of cell migration in vitro and in vivo. 15S-transfected U937 cells displayed a reduced (50%) degree of trans-endothelial migration in response to stromal cell-derived factor-1alpha (CXC chemokine ligand 12 (CXCL12)). In addition, the inhibitory role of endogenous ANXA1 on U937 cell migration in vitro was confirmed by the potentiating effect of a neutralizing anti-ANXA1 serum. Importantly, overexpression of ANXA1 in clone 15S inhibited the extent of cell migration into rheumatoid synovial grafts transplanted into SCID mice. ANXA1 inhibitory effects were not due to modifications in adhesion molecule or CXCL12 receptor (CXCR4) expression as shown by the similar amounts of surface molecules found in transfected and wild-type U937 cells. Likewise, an equal chemotactic response to CXCL12 in vitro excluded an intrinsic defect in cell motility in clones 15S and 36.4AS. These data strongly support the notion that ANXA1 critically interferes with a leukocyte endothelial step essential for U937 cell, and possibly monocyte, transmigration both in vitro and in vivo.  相似文献   

17.
In the present study, FITC-labelled lectins (WGA, Con A, PNA, HPA, and TPA) were utilized to investigate carbohydrate residues on the surface of Rhodnius prolixus salivary glands. The results revealed that the salivary glands are rich in carbohydrate moieties and the diversity in binding pattern of particular lectins showed the presence of specific carbohydrate residues in the basal lamina, muscle, and cell layers of the glands. Subsequently, the sugars detected on the salivary gland surface were employed to investigate the interaction between Trypanosoma rangeli and the R. prolixus salivary glands. In vitro adhesion inhibition assays using long epimastigote forms (the invasion/adhesion forms) showed that some sugars tested were able to block the receptors on both the surfaces of the salivary glands and on T. rangeli. Among the sugars tested, GlcNAc, GalNAc, and galactose showed the highest overall inhibitory effect, following pre-incubation of either the salivary glands or parasites. These results are discussed in relation to previous work on the role of carbohydrates and lectins in insect vector/parasite interactions.  相似文献   

18.
Cholecystokinin (CCK) receptors on rat pancreatic acini have been demonstrated to be glycoproteins. In order to study whether their carbohydrate moieties play a role in ligand binding, membrane preparations (adjusted to 0.2 mg protein me) were incubated with 20 pM 125-I-CCK octapeptide (125I-CCK8) for 4 h at 30 degrees C in the presence of lectins with different sugar specificities. Concanavalin A, soy-bean agglutinin, and peanut agglutinin in concentrations up to 1 mM did not alter specific 125I-CCK8 binding. Ulex europeus lectin I showed a dose-dependent enhancement of CCK binding up to 150% of controls at a concentration of 1 mM. Wheat-germ agglutinin (WGA) was the only lectin found to have an inhibitory effect. Inhibition was dose-dependent, with maximal reduction attained at 42 nM, but CCK binding was only partially inhibited to 66.2 +/- 4.4%. Inhibition by WGA was prevented by the presence of N-acetyl-D-glucosamine or N,N',N"-triacetylchitotriose, sugars that are specific for WGA. The inhibitory effect of WGA was not due to an increase in non-specific binding, increased CCK degradation, or CCK binding to WGA. Binding data indicated that the presence of WGA resulted in a decrease in receptor affinity (Kd = 567 +/- 191 v. 299 +/- 50 pM). No significant change in the number of available binding sites was observed. This suggests that WGA is not binding to the active binding site. It is conceivable that binding of WGA to N-acetyl-D-glucosamine or its polymers can lead to a conformational change in the receptor protein, and that this carbohydrate moiety is essential for optimal receptor-ligand interaction.  相似文献   

19.
MacMARCKS (MRP, F52), a protein kinase C (PKC) substrate, is involved in the activation of beta2-integrin. To determine the role of the PKC-mediated phosphorylation of MacMARCKS in this process, human U937 monocytic cells were transfected with cDNAs encoding wild type or mutant MacMARCKS. We observed that the expression of the exogenous wild type MacMARCKS greatly enhanced LFA-1-mediated cell-cell adhesion in U937 cells treated with phorbol 12-myristate 13-acetate (PMA). This MacMARCKS-stimulated adhesion depended on the phosphorylation status of MacMARCKS: whereas phosphorylated MacMARCKS enhanced adhesion, unphosphorylated MacMARCKS inhibited it. However, phosphorylated MacMARCKS alone could not induce LFA-1-mediated cell-cell adhesion unless phorbol esters were added, suggesting that the phosphorylation of other proteins might also be involved. Okadaic acid, a phosphatase inhibitor, induced LFA-1-mediated cell-cell adhesion only in the cells expressing wild type or phosphorylated MacMARCKS and not in the cells expressing unphosphorylated MacMARCKS. Therefore, we conclude that the phosphorylated form of MacMARCKS is essential to LFA-1-mediated cell-cell adhesion.  相似文献   

20.
Effects of rice bran agglutinin (RBA) on human monoblastic leukemia U937 cells were examined in comparison with those of wheat germ agglutinin (WGA) and Viscum album agglutinin (VAA). These lectins inhibit cell growth, and several lines of evidence indicate that the growth inhibition is caused by the induction of apoptosis. We observed that RBA induces chromatin condensation, externalization of membrane phosphatidylserine, and DNA ladder formation, features of apoptosis. DNA ladder formation was inhibited by a general inhibitor against caspases, which are known to play essential roles in apoptosis. Flow cytometric analysis revealed that RBA and WGA cause G2/M phase cell cycle arrest with increased expression of Waf1/p21, while cell cycle arrest was not observed for VAA. These data indicate that RBA induces apoptosis associated with cell cycle arrest in U937 cells, and suggest that the induction mechanism for RBA is similar to that for WGA, but different from that for VAA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号