首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in tumor cells without toxicity to normal cells, but some recombinant versions of TRAIL caused hepatocyte death. We generated fully human monoclonal antibodies (mAbs) that bind specifically to TRAIL receptor 1 (TRAIL-R1) and TRAIL receptor 2 (TRAIL-R2), which mediate apoptosis signal when they ligate with TRAIL, to investigate the contribution of each receptor to induce tumor cell apoptosis and hepatocyte toxicity. All of mAbs to TRAIL-R1 and TRAIL-R2 induced cell death in several cancer cell lines susceptible to TRAIL but not in human umbilical vein endothelial cells in vitro. Both anti-TRAIL-R1 mAbs and anti-TRAIL-R2mAbs also caused cell death in hepatocytes. However, a subset of mAbs to TRAIL-R2, which was characterized by the TRAIL blocking activity, did not show strong hepatocyte toxicity. These results indicate that human normal hepatocytes are susceptible to both TRAIL-R1- and TRAIL-R2-mediated apoptosis signal.Cell Death and Differentiation (2004) 11, 203-207. doi:10.1038/sj.cdd.4401331 Published online 24 October 2003  相似文献   

2.
Functional analysis of TRAIL receptors using monoclonal antibodies   总被引:29,自引:0,他引:29  
mAbs were generated against the extracellular domain of the four known TNF-related apoptosis-inducing ligand (TRAIL) receptors and tested on a panel of human melanoma cell lines. The specificity of the mAb permitted a precise evaluation of the TRAIL receptors that induce apoptosis (TRAIL-R1 and -R2) compared with the TRAIL receptors that potentially regulate TRAIL-mediated apoptosis (TRAIL-R3 and -R4). Immobilized anti-TRAIL-R1 or -R2 mAbs were cytotoxic to TRAIL-sensitive tumor cells, whereas tumor cells resistant to recombinant TRAIL were also resistant to these mAbs and only became sensitive when cultured with actinomycin D. The anti-TRAIL-R1 and -R2 mAb-induced death was characterized by the activation of intracellular caspases, which could be blocked by carbobenzyloxy-Val-Ala-Asp (OMe) fluoromethyl ketone (zVAD-fmk) and carbobenzyloxy-Ile-Glu(OMe)-Thr-Asp (OMe) fluoromethyl ketone (zIETD-fmk). When used in solution, one of the anti-TRAIL-R2 mAbs was capable of blocking leucine zipper-human TRAIL binding to TRAIL-R2-expressing cells and prevented TRAIL-induced death of these cells, whereas two of the anti-TRAIL-R1 mAbs could inhibit leucine zipper-human TRAIL binding to TRAIL-R1:Fc. Furthermore, use of the blocking anti-TRAIL-R2 mAb allowed us to demonstrate that the signals transduced through either TRAIL-R1 or TRAIL-R2 were necessary and sufficient to mediate cell death. In contrast, the expression of TRAIL-R3 or TRAIL-R4 did not appear to be a significant factor in determining the resistance or sensitivity of these tumor target cells to the effects of TRAIL.  相似文献   

3.
4.
Clinical trials have been initiated with Apo2L/TRAIL (Genentech) and agonistic mAbs to TRAIL receptors, -R1 and -R2 (Human Genome Sciences). The apoptosis-inducing ability of these mAbs and different TRAIL preparations, in the presence or absence of histone deacetylase inhibitors (HDACi), varied markedly against primary chronic lymphocytic leukaemia (CLL) cells and various tumor cell lines, demonstrating an unanticipated preferential apoptotic signaling via either TRAIL-R1 or -R2. Contrary to literature reports that TRAIL-induced apoptosis occurs primarily via signaling through TRAIL-R2, CLL cells, in the presence of HDACi, undergo predominantly TRAIL-R1-mediated apoptosis. Consequently, Apo2L/TRAIL, which signals primarily through TRAIL-R2, is virtually devoid of activity against CLL cells. To maximize therapeutic benefit, it is essential to ascertain whether a primary tumor signals via TRAIL-R1/-R2, prior to initiating therapy. Thus combination of an agonistic TRAIL-R1 Ab and an HDACi, such as the anticonvulsant sodium valproate, could be of value in treating CLL.  相似文献   

5.
《MABS-AUSTIN》2013,5(6):552-562
Apoptosis through the TRAIL receptor pathway can be induced via agonistic IgG to either TRAIL-R1 or TRAIL-R2. Here we describe the use of phage display to isolate a substantive panel of fully human anti-TRAIL receptor single chain Fv fragments (scFvs); 234 and 269 different scFvs specific for TRAIL-R1 and TRAIL-R2 respectively. In addition, 134 different scFvs that were cross-reactive for both receptors were isolated. To facilitate screening of all 637 scFvs for potential agonistic activity in vitro, a novel high-throughput surrogate apoptosis assay was developed. Ten TRAIL-R1 specific scFv and 6 TRAIL-R2 specific scFv were shown to inhibit growth of tumor cells in vitro in the absence of any cross-linking agents. These scFv were all highly specific for either TRAIL-R1 or TRAIL-R2, potently inhibited tumor cell proliferation, and were antagonists of TRAIL binding. Moreover, further characterization of TRAIL-R1 agonistic scFv demonstrated significant anti-tumor activity when expressed and purified as a monomeric Fab fragment. Thus, scFv and Fab fragments, in addition to whole IgG, can be agonistic and induce tumor cell death through specific binding to either TRAIL-R1 or TRAIL-R2. These potent agonistic scFv were all isolated directly from the starting phage antibody library and demonstrated significant tumor cell killing properties without any requirement for affinity maturation. Some of these selected scFv have been converted to IgG format and are being studied extensively in clinical trials to investigate their potential utility as human monoclonal antibody therapeutics for the treatment of human cancer.  相似文献   

6.
TNF-related apoptosis-inducing ligand or Apo2L (Apo2L/TRAIL) is a promising anti-cancer drug owing to its ability to trigger apoptosis by binding to TRAIL-R1 or TRAIL-R2, two membrane-bound receptors that are often expressed by tumor cells. TRAIL can also bind non-functional receptors such as TRAIL-R4, but controversies still exist regarding their potential to inhibit TRAIL-induced apoptosis. We show here that TRAIL-R4, expressed either endogenously or ectopically, inhibits TRAIL-induced apoptosis. Interestingly, the combination of chemotherapeutic drugs with TRAIL restores tumor cell sensitivity to apoptosis in TRAIL-R4-expressing cells. This sensitization, which mainly occurs at the death-inducing signaling complex (DISC) level, through enhanced caspase-8 recruitment and activation, is compromised by c-FLIP expression and is independent of the mitochondria. Importantly, TRAIL-R4 expression prevents TRAIL-induced tumor regression in nude mice, but tumor regression induced by TRAIL can be restored with chemotherapy. Our results clearly support a negative regulatory function for TRAIL-R4 in controlling TRAIL signaling, and unveil the ability of TRAIL-R4 to cooperate with c-FLIP to inhibit TRAIL-induced cell death.  相似文献   

7.
8.
Previous studies have shown that activation of NF-kappaB can inhibit apoptosis induced by a number of stimuli. It is also known that TNF-related apoptosis-inducing ligand (TRAIL) can activate NF-kappaB through the death receptors TRAIL-R1 and TRAIL-R2, and decoy receptor TRAIL-R4. In view of these findings, we have investigated the extent to which activation of NF-kappaB may account for the variable responses of melanoma lines to apoptosis induced by TRAIL and other TNF family members. Pretreatment of the melanoma lines with the proteasome inhibitor N-acetyl-L-leucinyl-L-leucinyl-L-norleucinal (LLnL), which is known to inhibit activation of NF-kappaB, was shown to markedly increase apoptosis in 10 of 12 melanoma lines with death receptors for TRAIL. The specificity of results for inhibition of NF-kappaB activation was supported by an increase of TRAIL-induced apoptosis in melanoma cells transfected with a degradation-resistant IkappaBalpha. Furthermore, studies with NF-kappaB reporter constructs revealed that the resistance of melanoma lines to TRAIL-induced apoptosis was correlated to activation of NF-kappaB in response to TRAIL. TRAIL-resistant sublines that were generated by intermittent exposure to TRAIL were shown to have high levels of activated NF-kappaB, and resistance to TRAIL could be reversed by LLnL and by the superrepressor form of IkappaBalpha. Therefore, these results suggest that activation of NF-kappaB by TRAIL plays an important role in resistance of melanoma cells to TRAIL-induced apoptosis and further suggest that inhibitors of NF-kappaB may be useful adjuncts in clinical use of TRAIL against melanoma.  相似文献   

9.
Mori E  Thomas M  Motoki K  Kataika S 《FEBS letters》2005,579(24):5379-5384
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) specifically induces apoptosis in tumor cells but may be toxic to human hepatocytes. Although hepatocytes are susceptible to apoptotic signals mediated by TRAIL-receptor 2 (TRAIL-R2), we previously reported that some anti-TRAIL-R2 monoclonal antibodies (mAbs) produce little hepatocyte toxicity. Those mAbs neutralized the cytotoxic activity of TRAIL by inhibiting receptor-ligand binding. The hepatocyte-toxic mAbs did not compete with TRAIL for binding to TRAIL-R2, and potentiated ligand activity in both cancer cells and hepatocytes. A neutralizing antibody to TRAIL inhibited hepatocyte death by anti-TRAIL-R2 mAbs, suggesting that the toxicity may reflect their ability to potentiate membrane-bound TRAIL on hepatocytes.  相似文献   

10.
TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL.   总被引:40,自引:1,他引:39       下载免费PDF全文
TRAIL is a member of the tumor necrosis factor (TNF) family of cytokines and induces apoptosis in a wide variety of cells. Based on homology searching of a private database, a receptor for TRAIL (DR4 or TRAIL-R1) was recently identified. Here we report the identification of a distinct receptor for TRAIL, TRAIL-R2, by ligand-based affinity purification and subsequent molecular cloning. TRAIL-R2 was purified independently as the only receptor for TRAIL detectable on the surface of two different human cell lines that undergo apoptosis upon stimulation with TRAIL. TRAIL-R2 contains two extracellular cysteine-rich repeats, typical for TNF receptor (TNFR) family members, and a cytoplasmic death domain. TRAIL binds to recombinant cell-surface-expressed TRAIL-R2, and TRAIL-induced apoptosis is inhibited by a TRAIL-R2-Fc fusion protein. TRAIL-R2 mRNA is widely expressed and the gene encoding TRAIL-R2 is located on human chromosome 8p22-21. Like TRAIL-R1, TRAIL-R2 engages a caspase-dependent apoptotic pathway but, in contrast to TRAIL-R1, TRAIL-R2 mediates apoptosis via the intracellular adaptor molecule FADD/MORT1. The existence of two distinct receptors for the same ligand suggests an unexpected complexity to TRAIL biology, reminiscent of dual receptors for TNF, the canonical member of this family.  相似文献   

11.
Localized in the plasma membrane, death domain-containing TNF-related apoptosis-inducing ligand (TRAIL) receptors, TRAIL-R1 and TRAIL-R2, induce apoptosis and non-apoptotic signaling when crosslinked by the ligand TRAIL or by agonistic receptor-specific antibodies. Recently, an increasing body of evidence has accumulated that TRAIL receptors are additionally found in noncanonical intracellular locations in a wide range of cell types, preferentially cancer cells. Thus, besides their canonical locations in the plasma membrane and in intracellular membranes of the secretory pathway as well as endosomes and lysosomes, TRAIL receptors may also exist in autophagosomes, in nonmembraneous cytosolic compartment as well as in the nucleus. Such intracellular locations have been mainly regarded as hide-outs for these receptors representing a strategy for cancer cells to resist TRAIL-mediated apoptosis. Recently, a novel function of intracellular TRAIL-R2 has been revealed. When present in the nuclei of tumor cells, TRAIL-R2 inhibits the processing of the primary let-7 miRNA (pri-let-7) via interaction with accessory proteins of the Microprocessor complex. The nuclear TRAIL-R2-driven decrease in mature let-7 enhances the malignancy of cancer cells. This finding represents a new example of nuclear activity of typically plasma membrane-located cytokine and growth factor receptors. Furthermore, this extends the list of nucleic acid targets of the cell surface receptors by pri-miRNA in addition to DNA and mRNA. Here we review the diverse functions of TRAIL-R2 depending on its intracellular localization and we particularly discuss the nuclear TRAIL-R2 (nTRAIL-R2) function in the context of known nuclear activities of other normally plasma membrane-localized receptors.  相似文献   

12.
Tumor necrosis factor (TNF) apoptosis-inducing ligand (TRAIL), a member of the TNF family, induces apoptosis in many transformed cells. We report TRAIL-induced NF-kappaB activation, concomitant with production of the pro-inflammatory cytokine Interleukin-8 in the relatively TRAIL-insensitive cell line, HEK293. In contrast, TRAIL-induced NF-kappaB activation occurred in HeLa cells only upon pretreatment with the caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-(OMe) fluoromethyl ketone (z-VAD.fmk), indicating that this was due to a caspase-sensitive component of TRAIL-induced NF-kappaB activation. NF-kappaB activation was mediated by the death receptors, TRAIL-R1 and -R2, but not by TRAIL-R3 or -R4 and was only observed in HeLa cells in the presence of z-VAD.fmk. Receptor-interacting protein, an obligatory component of TNF-alpha-induced NF-kappaB activation, was cleaved during TRAIL-induced apoptosis. We show that receptor-interacting protein is recruited to the native TRAIL death-inducing signaling complex (DISC) and that recruitment is enhanced in the presence of z-VAD.fmk, thus providing an explanation for the potentiation of TRAIL-induced NF-kappaB activation by z-VAD.fmk in TRAIL-sensitive cell lines. Examination of the TRAIL DISC in sensitive and resistant cells suggests that a high ratio of c-FLIP to caspase-8 may partially explain cellular resistance to TRAIL-induced apoptosis. Sensitivity to TRAIL-induced apoptosis was also modulated by inhibition or activation of NF-kappaB. Thus, in some contexts, modulation of NF-kappaB activation possibly at the level of apical caspase activation at the DISC may be a key determinant of sensitivity to TRAIL-induced apoptosis.  相似文献   

13.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) (Apo2 ligand [Apo2L]) is a member of the TNF superfamily and has been shown to have selective antitumor activity. Although it is known that TRAIL (Apo2L) induces apoptosis and activates NF-kappaB and Jun N-terminal kinase (JNK) through receptors such as TRAIL-R1 (DR4) and TRAIL-R2 (DR5), the components of its signaling cascade have not been well defined. In this report, we demonstrated that the death domain kinase RIP is essential for TRAIL-induced IkappaB kinase (IKK) and JNK activation. We found that ectopic expression of the dominant negative mutant RIP, RIP(559-671), blocks TRAIL-induced IKK and JNK activation. In the RIP null fibroblasts, TRAIL failed to activate IKK and only partially activated JNK. The endogenous RIP protein was detected by immunoprecipitation in the TRAIL-R1 complex after TRAIL treatment. More importantly, we found that RIP is not involved in TRAIL-induced apoptosis. In addition, we also demonstrated that the TNF receptor-associated factor 2 (TRAF2) plays little role in TRAIL-induced IKK activation although it is required for TRAIL-mediated JNK activation. These results indicated that the death domain kinase RIP, a key factor in TNF signaling, also plays a pivotal role in TRAIL-induced IKK and JNK activation.  相似文献   

14.
Epidermal growth factor receptor (EGFR) signaling inhibition by monoclonal antibodies and EGFR-specific tyrosine kinase inhibitors has shown clinical efficacy in cancer by restoring susceptibility of tumor cells to therapeutic apoptosis induction. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-cancer agent with tumor-selective apoptotic activity. Here we present a novel approach that combines EGFR-signaling inhibition with target cell-restricted apoptosis induction using a TRAIL fusion protein with engineered specificity for EGFR. This fusion protein, scFv425:sTRAIL, comprises the EGFR-blocking antibody fragment scFv425 genetically fused to soluble TRAIL (sTRAIL). Treatment with scFv425:sTRAIL resulted in the specific accretion to the cell surface of EGFR-positive cells only. EGFR-specific binding rapidly induced a dephosphorylation of EGFR and down-stream mitogenic signaling, which was accompanied by cFLIP(L) down-regulation and Bad dephosphorylation. EGFR-specific binding converted soluble scFv425:sTRAIL into a membrane-bound form of TRAIL that cross-linked agonistic TRAIL receptors in a paracrine manner, resulting in potent apoptosis induction in a series of EGFR-positive tumor cell lines. Co-treatment of EGFR-positive tumor cells with the EGFR-tyrosine kinase inhibitor Iressa resulted in a potent synergistic pro-apoptotic effect, caused by the specific down-regulation of c-FLIP. Furthermore, in mixed culture experiments binding (L)of scFv425:sTRAIL to EGFR-positive target cells conveyed a potent apoptotic effect toward EGFR-negative bystander tumor cells. The favorable characteristics of scFv425:sTRAIL, alone and in combination with Iressa, as well as its potent anti-tumor bystander activity indicate its potential value for treatment of EGFR-expressing cancers.  相似文献   

15.
TRAIL signalling: decisions between life and death   总被引:6,自引:0,他引:6  
The TNF-related apoptosis-inducing ligand, TRAIL, has been shown to selectively kill tumour cells. This property has made TRAIL and agonistic antibodies against its death inducing receptors (TRAIL-R1 and TRAIL-R2) to some of the most promising novel biotherapeutic agents for cancer therapy. Here we review the signalling pathways initiated by the apoptosis- as well as the non-apoptosis-inducing receptors, TRAIL-R3 and TRAIL-R4. The TRAIL "death-inducing signalling complex" (DISC) transmits the apoptotic signal. DISC formation leads to activation of a protease cascade, finally resulting in cell death. The TRAIL death receptor-mediated "extrinsic" pathway and the "intrinsic" pathway, which is controlled by the interaction of members of the Bcl-2 family, interact with each other in the decision about life or death of a cell. Apoptotic and non-apoptotic signalling is influenced by the NF-kappaB, PKB/Akt and the MAPK signalling pathways. In this review we intend to summarise the most important findings on the TRAIL signalling network and the interplay in the decisions between life and death of a tumor cell.  相似文献   

16.
BACKGROUND: Most tumors express death receptors and their activation represents a potential selective approach in cancer treatment. The most promising candidate for tumor selective death receptor-activation is tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L, which activates the death receptors TRAIL-R1 and TRAIL-R2, and induces apoptosis preferentially in tumor cells but not in normal tissues. However, many cancer cells are not or only moderately sensitive towards TRAIL and require cotreatment with irradiation or chemotherapy to yield a therapeutically reasonable apoptotic response. Because chemotherapy can have a broad range of unwanted side effects, more specific means for sensitizing tumor cells for TRAIL are desirable. The expression of the cellular FLICE-like inhibitory protein (cFLIP) is regarded as a major cause of TRAIL resistance. We therefore analyzed the usefulness of targeting FLIP to sensitize tumor cells for TRAIL-induced apoptosis. MATERIALS AND METHODS: To selectively interfere with expression of cFLIP short double-stranded RNA oligonucleotides (small interfering RNAs [siRNAs]) were introduced in the human cell lines SV80 and KB by electroporation. Effects of siRNA on FLIP expression were analyzed by Western blotting and RNase protection assay and correlated with TRAIL sensitivity upon stimulation with recombinant soluble TRAIL and TRAIL-R1- and TRAIL-R2-specific agonistic antibodies. RESULTS: FLIP expression can be inhibited by RNA interference using siRNAs, evident from reduced levels of FLIP-mRNA and FLIP protein. Inhibition of cFLIP expression sensitizes cells for apoptosis induction by TRAIL and other death ligands. In accordance with the presumed function of FLIP as an inhibitor of death receptor-induced caspase-8 activation, down-regulation of FLIP by siRNAs enhanced TRAIL-induced caspase-8 activation. CONCLUSION: Inhibition of FLIP expression was sufficient to sensitize tumor cells for TRAIL-induced apoptosis. The combination of TRAIL and FLIP-targeting siRNA could therefore be a useful strategy to attack cancer cells, which are resistant to TRAIL alone.  相似文献   

17.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine that can trigger apoptosis in many types of human cancer cells via engagement of its two pro-apoptotic receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5). TRAIL can also activate several other signaling pathways such as activation of stress kinases, canonical NF-κB signaling and necroptosis. Though both receptors are ubiquitously expressed, their relative participation in TRAIL-induced signaling is still largely unknown. To analyze TRAIL receptor-specific signaling, we prepared Strep-tagged, trimerized variants of recombinant human TRAIL with high affinity for either DR4 or DR5 receptor. Using these receptor-specific ligands, we examined the contribution of individual pro-apoptotic receptors to TRAIL-induced signaling pathways. We found that in TRAIL-resistant colorectal HT-29 cells but not in pancreatic PANC-1 cancer cells, DISC formation and initial caspase-8 processing proceeds comparably via both DR4- and DR5-activated signaling. TRAIL-induced apoptosis, enhanced by the inhibitor of the Bcl-2 family ABT-737, or by the translation inhibitor homoharringtonine, proceeded in both cell lines predominantly via the DR5 receptor. ShRNA-mediated downregulation of DR4 or DR5 receptors in HT-29 cells also pointed to a stronger contribution of DR5 in TRAIL-induced apoptosis. In contrast to apoptosis, necroptotic signaling was activated similarly by both DR4- or DR5-specific ligands. Activation of auxiliary signaling pathways involving NF-κB or stress kinases proceeded under apoptotic conditions mainly in a DR5-dependent manner, while these signaling pathways were during necroptosis similarly activated by either of these ligands. Our study provides the first systematic insight into DR4 ?/DR5-specific signaling in colorectal and pancreatic cancer cells.  相似文献   

18.
The expression and function of surface TRAIL and TRAIL receptors were investigated in primary megakaryocytic cells, generated in serum-free liquid phase from peripheral human CD34(+) cells. The surface expression of both TRAIL and "death receptor" TRAIL-R2 became detectable starting from the early phase of megakaryocytic differentiation (day 6 of culture) and persisted at later (days10-14) culture times. On the other hand, "death receptor" TRAIL-R1, "decoy receptors" TRAIL-R3, and TRAIL-R4 were barely detectable or undetectable at any time point examined. Addition of recombinant TRAIL at day 6 of culture increased the rate of spontaneous apoptosis of CD34(+)/CD41(dim) megakaryoblasts and it significantly decreased the total output of mature megakaryocytic cells evaluated after additional 4-8 days of culture. Conversely, addition in culture of TRAIL-R2-Fc chimera, which blocked the interaction between endogenous TRAIL and TRAIL-R2 on the surface of cultured megakaryocytic cells, increased the total megakaryocytic cell count. In addition, recombinant TRAIL promoted a small but reproducible increase of maturation in the surviving megakaryocytic cell population, evaluated by both phenotypic analysis and morphology. A similar pro-maturation effect was observed when TRAIL was added to bone marrow-derived CD61(+) megakaryocytic cells. Thus, our data suggest a role of TRAIL as a regulator of megakaryocytopoiesis.  相似文献   

19.
A hallmark of rheumatoid arthritis (RA) is the pseudo-tumoral expansion of fibroblast-like synoviocytes (FLSs), and the RA FLS has therefore been proposed as a therapeutic target. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has been described as a pro-apoptotic factor on RA FLSs and, therefore, suggested as a potential drug. Here we report that exposure to TRAIL-induced apoptosis in a portion (up to 30%) of RA FLSs within the first 24 h. In the cells that survived, TRAIL induced RA FLS proliferation in a dose-dependent manner, with maximal proliferation observed at 0.25 nm. This was blocked by a neutralizing anti-TRAIL antibody. RA FLSs were found to express constitutively TRAIL receptors 1 and 2 (TRAIL-R1 and TRAIL-R2) on the cell surface. TRAIL-R2 appears to be the main mediator of TRAIL-induced stimulation, as RA FLS proliferation induced by an agonistic anti-TRAIL-R2 antibody was comparable with that induced by TRAIL. TRAIL activated the mitogen-activated protein kinases ERK and p38, as well as the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway with kinetics similar to those of TNF-alpha. Moreover, TRAIL-induced RA FLS proliferation was inhibited by the protein kinase inhibitors PD98059, SB203580, and LY294002, confirming the involvement of the ERK, p38, and PI3 kinase/Akt signaling pathways. This dual functionality of TRAIL in stimulating apoptosis and proliferation has important implications for its use in the treatment of RA.  相似文献   

20.
JNK/SAPK activity contributes to TRAIL-induced apoptosis   总被引:5,自引:0,他引:5  
We report here that JNK/SAPKs are activated by TRAIL in parallel to induction of apoptosis in human T and B cell lines. Death signaling as well as JNK/SAPK activation by TRAIL in these cells is FADD- and caspase-dependent since dominant-negative FADD or the caspase inhibitor zVAD prevented both, apoptosis and JNK/SAPK activity. JNK/SAPK activity in response to triggering of CD95 by an agonistic antibody (alphaAPO-1) was also diminished by dominant-negative FADD or zVAD. Correspondingly, a cell line resistant to alphaAPO-1-induced death exhibited crossresistance to TRAIL-induced apoptosis and did not upregulate JNK/SAPK activity in response to TRAIL or alphaAPO-1. Inhibition of JNK/SAPK activity, by stably transfecting cells with a dominant-negative JNKK-MKK4 construct, reduced apoptosis in response to TRAIL or alphaAPO-1. Therefore, activation of JNK/SAPKs by TRAIL or alphaAPO-1 occurs downstream of FADD and caspases and contributes to apoptosis in human lymphoid cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号