首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
云南丽江地区铁杉球蚜发生与环境因子的关系   总被引:1,自引:0,他引:1  
李立  卢文华 《昆虫知识》2008,45(1):83-87
铁杉球蚜Adelges tsugae Annand(Hemiptera:Adelgidae)是铁杉的主要害虫,在北美造成铁杉成片死亡。为有效地寻找控制铁杉球蚜的天敌,作者于2005年8~2006年12月,在云南省丽江地区的河源、牦牛坪、黑水河3个地点对铁杉球蚜的发生进行6次调查,统计不同树枝方位、不同树冠层次、不同取样地点、不同取样时间的铁杉球蚜的为害率。在多数情况下,铁杉北向和南向树枝上的球蚜为害率高于西向和东向;树冠下层的铁杉树枝上的球蚜为害率高于树冠上层;5月树冠上层球蚜为害率反而高于下层,树冠层次球蚜密度随着时间而变化的现象,与铁杉球蚜第2代发生高峰期相吻合。3个地点的每株树铁杉球蚜为害率平均为24.6%,河源的球蚜为害率又高于牦牛坪和黑水河。对来自3个地点的12块样地的每样地铁杉球蚜为害率与环境因子进行偏相关分析表明,坡向、年均相对湿度、年均降雨量与铁杉球蚜发生呈显著正相关。在调查铁杉球蚜的发生或采集球蚜天敌昆虫时,应在不同时间依据树枝方位和树冠层次来分别进行。在选择调查采集地点时,应以林区坡向、相对湿度、降雨量等环境因子为依据。  相似文献   

2.
Phytophagous insects can have severe impacts on forested ecosystems in outbreak situations but their contribution to flows of energy and matter is otherwise not so well known. Identifying the role of phytophagous insects in forested ecosystems is partly hindered by the difficulty of combining results from population and community ecology with those from ecosystem ecology. In our study we compared the effects of aphids and leaf-feeding lepidopterous larvae on the epiphytic micro-organisms in the canopies of spruce, beech and oak, and on the vertical flow of energy and nutrients from the canopies down to the forest floor. We particularly searched for patterns resulting from endemic herbivory rather than outbreak situations. Excreta of lepidopterous larvae and aphids promoted the growth of epiphytic micro-organisms (bacteria, yeasts, filamentous fungi) on needles and leaves, which suggests that micro-organisms were energy limited. Leachates from needles and leaves of infested trees contained higher concentrations of dissolved organic C and lower concentrations of NH4-N and NO3-N, relative to uninfested trees. The seasonal abundance of herbivores and micro-organisms significantly affected the dynamics of throughfall chemistry; for instance, concentrations of inorganic N were lower underneath infested than uninfested trees during June and July. There was little difference between the chemistry of soil solutions collected from the forest floor beneath infested and uninfested trees. Thus, under moderate to low levels of infestation the effects of above-ground herbivory seems to be obscured in the soil through buffering biological processes.  相似文献   

3.
The recent infestation of southern Appalachian eastern hemlock stands by hemlock woolly adelgid (HWA) is expected to have dramatic and lasting effects on forest structure and function. We studied the short-term changes to the carbon cycle in a mixed stand of hemlock and hardwoods, where hemlock was declining due to either girdling or HWA infestation. We expected that hemlock would decline more rapidly from girdling than from HWA infestation. Unexpectedly, in response to both girdling and HWA infestation, hemlock basal area increment (BAI) reduced substantially compared to reference hardwoods in 3 years. This decline was concurrent with moderate increases in the BAI of co-occurring hardwoods. Although the girdling treatment resulted in an initial pulse of hemlock needle inputs, cumulative litter inputs and O horizon mass did not differ between treatments over the study period. Following girdling and HWA infestation, very fine root biomass declined by 20–40% in 2 years, which suggests hemlock root mortality in the girdling treatment, and a reduction in hemlock root production in the HWA treatment. Soil CO2 efflux (E soil) declined by approximately 20% in 1 year after both girdling and HWA infestation, even after accounting for the intra-annual variability of soil temperature and moisture. The reduction in E soil and the concurrent declines in BAI and standing very fine root biomass suggest rapid declines in hemlock productivity from HWA infestation. The accelerated inputs of detritus resulting from hemlock mortality are likely to influence carbon and nutrient fluxes, and dictate future patterns of species regeneration in these forest ecosystems. AEN performed research and analyzed data; NW performed research, analyzed data, and wrote the article; CRF contributed new methods, analyzed data, and wrote the article; RLH designed the study; JMV conceived of and designed the study; and BDK performed research.  相似文献   

4.
The volatile emissions of eastern hemlock, Tsuga canadensis Carriere, were identified and quantified using standard and chiral gas chromatography and mass spectrometry. All of the identified compounds were monoterpenes, and included alpha-pinene, myrcene, tricyclene, camphene, alpha-phellandrene, beta-pinene, limonene, beta-phellandrene, terpinolene, and bornyl acetate. alpha-Pinene, myrcene, and camphene comprised greater than 75% by mass of the total release. Infestation by the exotic insect, hemlock woolly adelgid (HWA, Adelges tsugae Annand), resulted in an increased release rate of monoterpenes from branch tips. Release rate was negatively correlated to the amount of the branch tip sample that was new growth, suggesting that release rate is greater from previous-year foliage. Additionally the percent composition of the volatile profile is slightly altered by infestation, with alpha-pinene comprising 57% of volatiles from infested foliage and 66% from uninfested foliage.  相似文献   

5.
Understanding changes in community composition caused by invasive species is critical for predicting effects on ecosystem function, particularly when the invasive threatens a foundation species. Here we focus on dynamics of forest structure, composition and microclimate, and how these interact in southern Appalachian riparian forests following invasion by hemlock woolly adelgid, HWA, Adelges tsugae. We measured and quantified changes in microclimate; canopy mortality; canopy and shrub growth; understory species composition; and the cover and diversity in riparian forests dominated by eastern hemlock Tsuga canadensis over a period of seven years. Treatments manipulated hemlock mortality either through invasion (HWA infested stands) or girdling (GDL) hemlock trees. Mortality was rapid, with 50% hemlock tree mortality occurring after six years of invasion, in contrast to more than 50% mortality in two years following girdling. Although 50% of hemlock trees were still alive five years after infestation, leaf area lost was similar to that of girdled trees. As such, overall responses over time (changes in light transmittance, growth, soil moisture) were identical to girdled stands with 100% mortality. Our results showed different growth responses of the canopy species, shrubs and ground layer, with the latter being substantially influenced by presence of the evergreen shrub, rhododendron Rhododendron maximum. Although ground layer richness in the infested and girdled stands increased by threefold, they did not approach levels recorded in hardwood forests without rhododendron. Increased growth of co‐occurring canopy trees occurred in the first few years following hemlock decline, with similar responses in both treatments. In contrast, growth of rhododendron continued to increase over time. By the end of the study it had a 2.6‐fold higher growth rate than expected, likely taking advantage of increased light available during leaf‐off periods of the deciduous species. Increased growth and dominance of rhododendron may be a major determinant of future responses in southern Appalachian ecosystems; however, our results suggest hemlock will be replaced by a mix of Acer, Betula, Fagus and Quercus canopy genera where establishment is not limited by rhododendron.  相似文献   

6.
Richard C. Cobb 《Oikos》2010,119(8):1291-1298
Insect and disease outbreak is an important cause of selective species removal and accompanying functional change in North American forests. Outbreak of hemlock woolly adelgid, Adelgies tsugae– HWA, is causing selective removal of eastern hemlock Tsuga canadensis at a regional scale. Impacts of outbreak‐caused canopy mortality and shifts in dominant species on litter decay were compared across sites that range in HWA‐caused canopy damage and subsequent canopy dominance by black birch Betula lenta. Senescent litter from eastern hemlock, black birch, and equal litter mixes were decomposed in the field for 36 months within nine sites in Connecticut and Massachusetts USA. Mass loss and % N accumulation of black birch was 65% and 52% greater compared to eastern hemlock. In contrast, outbreak related canopy damage increased litter mass loss by 11.5% in high mortality stands relative to uninfested stands but canopy damage had no impact on % N dynamics. Non‐additive effects of litter mixing influenced chemical dynamics of decaying litter; black birch accumulated less N and eastern hemlock accumulated more N compared to each species decaying alone. However, these changes offset and mixed litter bags overall showed no differences in N dynamics compared to values from each species decaying alone. In eastern hemlock stands invaded by hemlock woolly adelgid, canopy damage influences the rates and dynamics of decay but species differences between hemlock and black birch leaf litter are the dominant mechanisms of decomposition changes and a long‐lasting driver of increased N cycling rates. Species shifts may be the dominant driver of altered ecosystem processes for other insect outbreaks, particularly when replacement species have very different characteristics regulating decomposition and N cycling.  相似文献   

7.
1 This study investigated the effects of honeydew from aphids in the canopy of Norway spruce (Picea abies (L.) Karst.) on the nitrogen chemistry of throughfall using a rainfall simulation experiment. Throughfall collected beneath infested trees was compared with that from beneath uninfested trees, while standardizing the quality and quantity of the precipitation and plant age. 2 Honeydew excreted by Cinara pilicornis (Hartig) and C. costata (Zett.) significantly increased the concentrations of dissolved organic carbon (DOC) and hexose-C in throughfall. The average concentrations of nitrogenous compounds (NH4-N, NO3-N) in throughfall collected beneath infested trees were significantly lower than beneath uninfested trees. 3 Multiple regression analysis indicated that the amount of rain and NH4-N concentrations were the best predictors of the concentrations of dissolved organic nitrogen (DON) in throughfall. Parameters that were closely associated with the level of infestation (DOC, hexose-C concentrations) did not have a direct relationship with DON. About 40% of the reduction in the concentration of DON in the throughfall was attributed to aphid–micro-organism interactions. 4 Particle amino nitrogen (PAN)-concentrations were highest under infested trees in July after aphid numbers had declined, indicating a concomitant decline in microbial biomass after honeydew becomes a limiting resource. 5 The comparison of the concentrations of different nitrogen compounds in throughfall of infested and uninfested trees indicated that aphids affect the carbon and nitrogen cycles in the phyllosphere by providing energy that fuels the metabolism of the micro-organisms. These processes seem to occur very rapidly. 6 We discuss the significance of the results and the prospects of linking the ecology of micro-organisms and herbivores with flows of nutrients through the canopy of trees.  相似文献   

8.
1 We assessed the importance of several factors potentially affecting the settlement rate of the invasive hemlock woolly adelgid Adelges tsugae (Hemiptera: Adelgidae) on uninfested foliage of the eastern hemlock, Tsuga canadensis. We conducted our experiments in Massachusetts (U.S.A.) with overwintering sistens adelgids, and applied standard densities of infested foliage to uninfested branches in a planned multiple‐comparison design. 2 Settlement rates of progrediens crawlers produced by the overwintering sistens were highest when adelgid‐infested foliage was loosely attached to uninfested foliage and both branches were then enclosed in a mesh sleeve. 3 Early‐emerging crawlers settled at a higher rate than did late‐emerging crawlers. 4 Increasing the density of infested branches did not affect settlement rates. 5 We also tested whether less severe winter conditions improved settlement, and found that overwintering infested foliage in a refrigerator decreased settlement rate relative to foliage overwintered outdoors. 6 Our results suggest a protocol for adelgid inoculations that could substantially increase the success rate of experimental manipulations and encourage additional research on the population dynamics of this pest.  相似文献   

9.
The hemlock woolly adelgid (HWA), Adelges tsugae Annand (Hemiptera: Adelgidae), has spread rapidly across the eastern USA since its introduction from Japan 60 years ago, causing widespread mortality of both eastern hemlock [Tsuga canadensis (L.) Carrière] and Carolina hemlock [Tsuga caroliniana Engelm. (Pinaceae)]. Although HWA spread patterns have been repeatedly analyzed at regional scales, comparatively little is known about its dispersal potential within and between hemlock stands. As the small size and clonal nature of HWA make it nearly impossible to identify the source populations of dispersing individuals, we simulated intra‐stand HWA movement in the field by monitoring the movement of clumps of fluorescent powder that are slightly larger than HWA, but much easier to detect in the forest understory. Using three hemlock trees with three colors of fluorescent powder as source populations, we detected dispersal events at the farthest distances within our trapping array (400 m). However, more than 90% of dispersal events were <25 m. Dispersal patterns were similar from all three source trees and the distribution of dispersal distances in all cases could be described by lognormal probability density functions with mean dispersal distance of 12–14 m, suggesting that dispersal was relatively independent of location of source trees. In general, we documented tens of thousands of passive dispersal events in the forest understory despite the presence of a dense forest canopy. Thus, even under relatively light‐wind conditions, particles of similar dimensions to HWA are capable of intra‐stand movement, suggesting that a large population of HWA could rapidly infest other trees within several hundred meter radius, or beyond.  相似文献   

10.
Gómez S  Orians CM  Preisser EL 《Oecologia》2012,169(4):1015-1024
Plants in nature are often attacked by multiple enemies whose effect on the plant cannot always be predicted based on the outcome of individual attacks. We investigated how two invasive herbivores, the hemlock woolly adelgid (Adelges tsugae) (HWA) and the elongate hemlock scale (Fiorinia externa) (EHS), alter host plant quality (measured as amino acid concentration and composition) when feeding individually or jointly on eastern hemlock (Tsuga canadensis), an important long-lived forest tree that is in severe decline. The joint herbivore treatments included both simultaneous and sequential infestations by the two herbivores. We expected resource depletion over time, particularly in response to feeding by HWA. In contrast, HWA dramatically increased the concentration and altered the composition of individual free amino acids. Compared to control trees, HWA increased total amino acid concentration by 330% after 1 year of infestation. Conversely, EHS had a negligible effect when feeding individually. Interestingly, there was a marginally significant HWA × EHS interaction that suggests the potential for EHS presence to reduce the impact of HWA on foliage quality when the two species co-occur. We suggest indirect effects of water stress as a possible physiological mechanism for our results. Understanding how species interactions change the physiology of a shared host is crucial to making more accurate predictions about host mortality and subsequent changes in affected communities and ecosystems, and to help design appropriate management plans.  相似文献   

11.
This report summarizes our current knowledge of leaf-level physiological processes that regulate carbon gain and water loss of the dominant tree species in an old-growth forest at the Wind River Canopy Crane Research Facility. Analysis includes measurements of photosynthesis, respiration, stomatal conductance, water potential, stable carbon isotope values, and biogenic hydrocarbon emissions from Douglas-fir (Pseudotsuga menziesii), western hemlock (Tsuga heterophylla), and western red cedar (Thuja plicata). Leaf-level information is used to scale fluxes up to the canopy to estimate gross primary production using a physiology-based process model. Both light-saturated and in situ photosynthesis exhibit pronounced vertical gradients through the canopy, but are consistently highest in Douglas-fir, intermediate in western hemlock, and lowest in western red cedar. Net photosynthesis and stomatal conductance are strongly dependent on vapor-pressure deficit in Douglas-fir, and decline through the course of a seasonal drought. Foliar respiration is similar for Douglas-fir and western hemlock, and lowest for western red cedar. Water-use efficiency varied with species and tree height, as indexed using stable carbon isotopes values for foliage. Leaf water potential is most negative for Douglas-fir and similar for western hemlock and western red cedar. Terpene fluxes from foliage equal approximately 1% of the net carbon loss from the forest. Modeled estimates based on physiological measurements show gross primary productivity (GPP) to be about 22 Mg C m–2 y–1. Physiological studies will be necessary to further refine estimates of stand-level carbon balance and to make long-term predictions of changes in carbon balance due to changes in forest structure, species composition, and climate.  相似文献   

12.
Forested ecosystems in the southeastern United States are currently undergoing an invasion by the hemlock woolly adelgid (HWA). Previous studies in this area have shown changes to forest structure, decreases in canopy cover, increases in organic matter, and changes to nutrient cycling on the forest floor and soil. Here, we were interested in how the effects of canopy loss and nutrient leakage from terrestrial areas would translate into functional changes in streams draining affected watersheds. We addressed these questions in HWA-infested watersheds at the Coweeta Hydrologic Laboratory in North Carolina. Specifically, we measured stream metabolism (gross primary production and ecosystem respiration) and nitrogen uptake from 2008 to 2011 in five streams across the Coweeta basin. Over the course of our study, we found no change to in-stream nutrient concentrations. While canopy cover decreased annually in these watersheds, this change in light penetration did not translate to higher rates of in-stream primary production during the summer months of our study. We found a trend towards greater heterotrophy within our watersheds, where in-stream respiration accounted for a much larger component of net ecosystem production than GPP. Additionally, increases in rhododendron cover may counteract changes in light and nutrient availability that occurred with hemlock loss. The variability in our metabolic and uptake parameters suggests an actively-infested ecosystem in transition between steady states.  相似文献   

13.
This study examined the relationship between eastern hemlock (Tsuga canadensis (L.) Carr.) crown condition and changes in radial growth associated with infestation by hemlock woolly adelgid Adelges tsugae (Homoptera: Adelgidae) (HWA). Tree-ring chronologies of eastern hemlock were used to develop a binomial decline index based on three consecutive years of below average growth. Radial growth decline was modeled, using logistic regression, as a function of an extensive array of tree, crown, and site variables that were collected over an 11 year period in Delaware Water Gap National Recreation Area. Some site-related variables such as site-location and aspect were significantly related to decline probabilities when considered individually. However, the total proportion of response variance accounted for was low, and the only site variable included in the final model was mean plot-level HWA infestation level. For every 1% increase in mean percent HWA infestation per plot, there was an 8% increase in the likelihood that a tree would be classified as being in decline. Tree crown variables such as live crown ratio, crown density, and the modified ZBadj index, a combination of foliage transparency and branch dieback, had the most explanatory power, both individually and in the final model. These crown variables were relatively accurate predictors of the degree of hemlock growth decline during HWA infestation.  相似文献   

14.
Abstract 1 The abundance of aphids and their honeydew are important in shaping the ecology of food web interactions and nutrient cycling in forests of Norway spruce. Here, the effects of the different environmental conditions at two study sites located at different altitudes (500 m, 765 m a.s.l.), in the Fichtelgebirge, north‐eastern Bavaria, Germany, on the abundance of Cinara pilicornis and their influence on epiphytic microorganisms on shoots of Picea abies were compared. Subsequent changes in throughfall fluxes were measured over a period of 12 weeks beneath infested and reference trees. In a laboratory experiment, the effects of ultraviolet (UV) radiation on microbial mortality and C and N concentrations in leachates were determined. 2 The warmer and drier conditions at the low altitude site favoured an early onset to aphid multiplication in spring compared with the high altitude site, where aphid numbers peaked 3 weeks later. 3 The presence of honeydew was associated with a significant increase in the total number of cultured epiphytic filamentous fungi, yeasts and bacteria in 12 of the 18 sample units, indicating better culturability or growth, whereas altitude had no significant effect on cultured cell numbers. By contrast to the reference trees, the high dissolved organic carbon (DOC) and hexose‐C fluxes beneath infested trees at the peak in aphid abundance, in June and July, resulted in a concomitant decrease in the fluxes of total inorganic nitrogen beneath infested trees (low altitude: ?19.7%; high altitude: ?52.3%). Fluxes of organic nitrogen were significantly higher beneath infested trees at the time of infestation. Similarly, potassium fluxes in throughfall increased 1.6–2.0‐fold in response to aphid infestation. 4 The exposure of infested and uninfested shoots of Norway spruce to UV‐A and UV‐B radiation only weakly affected epiphytic microbial mortality and did not affect the concentrations of the different nitrogen compound in leachates. However, bacteria, tended to be more active in the leachates collected from infested shoots, which resulted in the higher concentrations of aminosugar‐N. The aphids had a more pronounced effect on the concentrations of DOC in leachates, with average DOC concentrations being 4.2‐fold higher than in leachates from uninfested shoots. 5 It is suggested that, even at very low densities, aphids exert a strong influence via honeydew on the performance of microorganisms, and nutrient and energy flow, in spruce forests.  相似文献   

15.
16.
The influence of individual tree species on base-cation (Ca, Mg, K, Na) distribution and cycling was examined in sugar maple (Acer saccharum Marsh.), basswood (Tilia americana L.), and hemlock (Tsuga canadensis L.) in old-growth northern hardwood – hemlock forests on a sandy, mixed, frigid, Typic Haplorthod over two growing seasons in northwestern Michigan. Base cations in biomass, forest floor, and mineral soil (0–15 cm and 15–40 cm) pools were estimated for five replicated trees of each species; measured fluxes included bulk precipitation, throughfall, stemflow, litterfall, forest-floor leachate, mineralization + weathering, shallow-soil leachate, and deep-soil leachate. The three species differed in where base cations had accumulated within the single-tree ecosystems. Within these three single-tree ecosystems, the greatest quantity of base cations in woody biomass was found in sugar maple, whereas hemlock and basswood displayed the greatest amount in the upper 40 cm of mineral soil. Base-cation pools were ranked: sugar maple > basswood, hemlock in woody biomass; sugar maple, basswood > hemlock in foliage; hemlock > sugar maple, basswood in the forest floor, and basswood > sugar maple, hemlock in the mineral soil. Base-cation fluxes in throughfall, stemflow, the forest-floor leachate, and the deep-soil leachate (2000 only) were ranked: basswood > sugar maple > hemlock. Our measurements suggest that species-related differences in nutrient cycling are sufficient to produce significant differences in base-cation contents of the soil over short time intervals (<65 years). Moreover, these species-mediated differences may be important controls over the spatial pattern and edaphic processes of northern hardwood-hemlock ecosystems in the upper Great Lakes region.  相似文献   

17.
Eastern hemlock (Tsuga canadensis) is a critical species in eastern North American forests, providing a multitude of ecological and societal benefits while also acting as a foundation species in many habitats. In recent decades, however, hemlock has become threatened by hemlock woolly adelgid (HWA; Adelges tsugae), an invasive sap-feeding insect from Asia. In addition to causing the more commonly assessed metrics of foliar damage, crown decline, and hemlock mortality, HWA also decreases hemlock growth and productivity. Dendrochronological methods provide a more nuanced assessment of HWA impacts on hemlock by quantifying variable rates of radial-growth decline that follow incipient infestation. This information is necessary to better understand the variable response of hemlock to HWA, and identify the characteristics of stands with the highest potential for tolerance and recovery. To quantify decline, we calculated changes in hemlock yearly radial growth using basal area increment (BAI) measurements to identify periods of growth decline from 41 hemlock stands across New England covering a range of infestation density, duration and hemlock vigor. The onset of growth decline periods were predominantly associated with either HWA infestation or drought. However, the magnitude of change in BAI values pre- and post-decline was significantly related to HWA infestation density and crown impacts, indicating that radial growth metrics can be used to identify locations where HWA infestations have incited significant reductions in hemlock health and productivity. Additional site characteristics (slope, hillshade, and January minimum temperatures), were also significantly associated with hemlock health and productivity decline rates. In order to develop a model to identify stands likely to tolerate HWA infestation, these metrics were used to build a logit model to differentiate high- and low-BAI-reduction stands with 78% accuracy. Independent validation of the model applied to 15 hemlock sites in Massachusetts classified high and low BAI reduction classes with 80% accuracy. The model was then applied to GIS layers for New England and eastern New York to produce a spatially-explicit model that predicts the likelihood of severe hemlock growth declines if/when HWA arrives. Currently 26% of the region’s hemlock stands fall into this high risk category. Under projected climate change, this could increase to 43%. This model, along with knowledge of current HWA infestation borders, can be used to direct management efforts of potentially tolerant hemlock stands in eastern North America, with the intention of minimizing HWA-induced hemlock mortality.  相似文献   

18.
通过对铁杉(Tusga chinensis Pritz)-云杉(Picea retroflexac Mast)、铁杉-华山松(Pinus armardi Franch)、云南铁杉(Tusga domosa Eichler)-槭树(Acer mono Maxim)-桦木(Betula platyphylla Suk)四川主要铁杉林类型中铁杉球蚜Adelges tsugae Annand林间定株、种群随机抽样、室内饲养研究表明,铁杉球蚜在四川1年发生2代(越冬代和第1代),世代重叠,成虫营孤雌生殖。越冬代从4月上旬至第2年的4月下旬,产卵盛期在5月下旬,平均产卵量为15.58粒,1龄若虫具有滞育越夏习性;第1代从12月下旬至8月中旬,产卵盛期在3月下旬,平均产卵量为67.37粒,并可产生有翅成虫,但无转主危害现象。种群的发育与温度有相关性,温度高林分种群发育进度快于温度低林分。该虫的危害与生境有一定相关性,铁杉针阔混交林危害重于铁杉针叶林;同一树冠不同层次之间、不同方位之间危害程度差异不显著;当年受害严重的树株第2年受害不严重。  相似文献   

19.
When two tree species co-occur, decomposition and nitrogen (N) release from the foliage litter depend on two factors: the forest floor conditions under each canopy type and the species composition of the litter. We conducted an experiment using fir and oak to answer several questions regarding decomposition beneath canopies of the two species and the effects of litter species composition on decomposition. We compared the rates of decomposition and N release from three different litters (fir needle, oak leaf, and a mixture of the two) in 1-mm-mesh litterbags on the forest floor under three different canopies (a 40-year-old fir plantation, large oak trees, and mixed fir and oak trees) in Hokkaido, Japan, over a 2-year period. Beneath each of these canopy types, the litter decomposition rate and percentage of N remaining in the litterbags containing a mixture of fir and oak litter were not significantly different from the expected values calculated for litterbags containing litter from a single tree species. Oak leaf litter decomposed significantly faster than fir needle litter beneath each canopy type. The litter decomposition rate was significantly higher beneath the fir canopy than under the oak canopy, and was intermediate under the mixed canopy of fir and oak. No net N release, that is, a decrease in the total N compared to the original amount, was detected from fir litter under each canopy type or from oak leaf litter beneath the oak canopy. N increased over the original amount in the fir litter beneath the oak canopy and the mixed canopy of fir and oak, but N was released from the oak litter under the fir canopy and the mixed canopy of fir and oak. These results suggest that oak leaf litter blown onto fir forest floor enhances nutrient cycling, and this might be a positive effect of a mixed stand of conifer and broad-leaved trees.  相似文献   

20.
Laurel wilt disease (LWD), a fungal disease vectored by the non-native redbay ambrosia beetle (Xyleborus glabratus Eichhoff), has caused mortality of redbay (Persea borbonia (L.) Spreng.) in the coastal plain of Georgia since 2003. Despite its rapid spread, little research has evaluated its impacts on redbay population structure and forest communities. Diseased populations of redbay in five sites (2–4 years post infestation) were compared to healthy populations in three uninfested sites in five counties in Georgia. The results showed high redbay mortality, shifts in size structure, and changes in community composition. An average of 90 % of redbay trees ≥3 cm diameter at breast height (DBH) were dead in infested sites, compared to 0–35 % in control sites. Mortality was seen in individuals of the smallest stem diameter category (<1.00 cm diameter at ground height). DBH of live redbay trees in control sites was twice that of those in infested sites. Photosynthetically active radiation was 4.8 times greater at infested sites than control sites due to loss of redbay canopy. Community structure measurements showed redbay trees had the greatest mean importance value (IV) at control sites compared to the 8th mean IV at infested sites for live stems. Two species co-dominant to redbay, sweetbay (Magnolia virginiana L.) and loblolly bay (Gordonia lasianthus (L.) J. Ellis), were of higher importance at infested than control sites, suggesting they are increasing in dominance following the mortality of redbay. This study shows LWD has impacted redbay populations and altered associated forest communities in Georgia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号