首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Time-resolved 31-phosphorus nuclear magnetic resonance spectroscopy (31P-MRS) of the biceps femoris muscles was performed during exercise and recovery in six healthy sedentary male subjects (maximal oxygen uptake; 46.6 +/- 1.7 (SEM) ml.kg-1.min-1), 5 male sprinters (56.2 +/- 2.5), and 5 male long-distance runners (73.6 +/- 2.2). Each performed 4 min of knee flexion exercises at absolute values of 1.63 W and 4.90 W, followed by 5 min of recovery in a prone position in a 2.1 T superconducting magnet with a 67 cm bore. 31P-MRS spectra were recorded every 12.8 s during the rest-exercise-recovery sequence. Computer-aided contour analysis and pixel imaging of phosphocreatine peaks (PCr) and inorganic phosphate (Pi) were performed. The work loads in the present study were selected as mild exercise (1.63 W) and heavy exercise (4.90 W), corresponding to 18-23% and 54-70% of maximal exercise intensity. Long-distance runners showed a significantly smaller decrement in PCr and less acidification at a given exercise intensity compared to those shown by sedentary subjects. The transient responses of PCr and Pi during recovery were characterized by first-order kinetics. After exercise, the recovery rates of PCr and Pi were significantly faster in long-distance runners than in sedentary subjects (P < 0.05). Since it is postulated that PCr resynthesis is controlled by aerobic metabolism and mitochondrial creatine kinase, it is suggested that the faster PCr and Pi recovery rates and decreased acidification seen in long-distance runners during and after exercise might be attributed to their greater capacity for aerobic metabolism.  相似文献   

2.
To investigate quantitatively how sweating and cutaneous blood flow responses at the onset of dynamic exercise are affected by increasing exercise intensity in mildly heated humans, 18 healthy male subjects performed cycle exercise at 30, 50, and 70% of maximal O2 uptake (VO2 max) for 60 s in a warm environment. The study was conducted in a climatic chamber with a regulated ambient temperature of 35 degrees C and relative humidity of 50%. The subjects rested in the semisupine position in the chamber for 60 min, and then sweating rate (SR) and skin blood flow were measured during cycle exercise at three different intensities. Changes in the heart rate, rating of perceived exertion, and mean arterial blood pressure were proportional to increasing exercise intensity, whereas esophageal and mean skin temperatures were essentially constant throughout the experiment. The SR on the chest, forearm, and thigh, but not on the palm, increased significantly with increasing exercise intensity (P < 0.05). The mean SR of the chest, forearm, and thigh increased 0.05 mg.cm-2.min-1 with an increase in exercise intensity equivalent to 10% VO2 max. On the other hand, the cutaneous vascular conductance (CVC) on the chest, forearm, and palm decreased significantly with increasing exercise intensity (P < 0.05). The mean CVC of the chest and forearm decreased 5.5% and the CVC on the palm decreased 8.0% with an increase in exercise intensity equivalent to 10% VO2 max. In addition, the reduction in CVC was greater on the palm than on the chest and forearm at all exercise intensities (P < 0.01). We conclude that nonthermal sweating and cutaneous blood flow responses are exercise intensity dependent but directionally opposite at the onset of dynamic exercise in mildly heated humans. Furthermore, cutaneous blood flow responses to increased exercise intensity are greater in glabrous (palm) than in nonglabrous (chest and forearm) skin.  相似文献   

3.
The purpose of the present study was to investigate whether, in humans, hypoxia results in an elevated lactate production from exercising skeletal muscle. Under conditions of both hypoxia [inspired oxygen fraction (F1O2): 11.10%] and normoxia (F1O2: 20.94%), incremental exercise of a forearm was performed. The exercise intensity was increased every minute by 1.6 kg.m.min-1 until exhaustion. During the incremental exercise the partial pressure of oxygen (PO2) and carbon dioxide (PCO2), oxygen saturation (SO2), pH and lactate concentration [HLa] of five subjects, were measured repeatedly in blood from the brachial artery and deep veins from muscles in the forearm of both the active and inactive sides. The hypoxia (arterial SO2 approximately 70%) resulted in (1) the difference in [HLa] in venous blood from active muscle (values during exercise-resting value) often being more than twice that for normoxia, (2) a significantly greater difference in venous-arterial (v-a) [HLa] for the exercising muscle compared to normoxia, and (3) a difference in v-a [HLa] for non-exercising muscle that was slightly negative during normoxia and more so with hypoxia. These studies suggest that lower O2 availability to the exercising muscle results in increased lactate production.  相似文献   

4.
The rate of metabolism in forearm flexor muscles (MO2) was derived from near-infrared spectroscopy (NIRS-O2) during ischaemia at rest rhythmic handgrip at 15% and 30% of maximal voluntary contraction (MVC), post-exercise muscle ischaemia (PEMI), and recovery in seven subjects. The MO2 was compared with forearm oxygen uptake (VO2) [flow x (oxygen saturation in arnterial blood-oxygen saturation in venous blood, SaO2 - SvO2)], and with the 31P-magnetic resonance spectroscopy-determined ratio of inorganic phosphate to phosphocreatine (P(I):PCr). During ischaemia at rest, the fall in NIRS-O2 was more pronounced [76 (SEM 3) to 3 (SEM 1)%] than in SvO2 [71 (SEM 3) to 59 (SEM 2)%]. During the handgrip, NIRS-O2 was lower at 30% compared to 15% MVC [58 (SEM 3) v.s. 67 (SEM 3)%] while the SvO2 was similar [29 (SEM 3) v.s. 31 (SEM 4)%]. Accordingly, MO2 as well as P(I):PCr increased twofold, while VO2 increased only 30%. During PEMI after 15% and 30% MVC, NIRS-O2 fell to 9 (SEM 1)% and "0", but the use of oxygen by forearm muscles was not reflected in SvO2. During reperfusion after PEMI, the peak NIRS-O2 was lowest after intense exercise, while for SvO2 the reverse was seen. The discrepancies between NIRS-O2 and SvO2, and therefore between the estimates of the metabolic rate, would suggest significant limitations in sampling venous blood which is representative of the flexor muscle capillaries. In support of this contention, SvO2 and venous pH decreased during the first seconds of reperfusion after PEMI. To conclude, NIRS-O2 of forearm flexor muscles closely reflected the exercise intensity and the metabolic rate determined by magnetic resonance spectroscopy but not that rate derived from flow and the arterio-venous oxygen difference.  相似文献   

5.
To isolate the peripheral adaptations to training, five normal subjects exercised the nondominant (ND) wrist flexors for 41 +/- 11 days, maintaining an exercise intensity below the threshold required for cardiovascular adaptations. Before and after training, intracellular pH and the ratio of inorganic phosphate to phosphocreatine (Pi/PCr) were measured by 31P magnetic resonance spectroscopy. Also maximal O2 consumption (VO2 max), muscle mass, and forearm blood flow were determined by graded systemic exercise, magnetic resonance imaging, and venous occlusion plethysmography, respectively. Blood flow, Pi/PCr, and pH were measured in both forearms at rest and during submaximal wrist flexion at 5, 23, and 46 J/min. Training did not affect VO2 max, exercise blood flow, or muscle mass. Resting pH, Pi/PCr, and blood flow were also unchanged. After training, the ND forearm demonstrated significantly lower Pi/PCr at 23 and 46 J/min. Endurance, measured as the number of contractions to exhaustion, also was increased significantly (63%) after training in the ND forearm. We conclude that 1) forearm training results in a lower Pi/PCr at identical submaximal work loads; 2) this improvement is independent of changes in VO2 max, muscle mass, or limb blood flow; and 3) these differences are associated with improved endurance and may reflect improved oxidative capacity of skeletal muscle.  相似文献   

6.
To investigate the splitting of the inorganic phosphate (Pi) peak during exercise and recovery, a time-resolved 31phosphorus nuclear magnetic resonance spectroscopy (31P-MRS) technique was used. Seven healthy young sedentary male subjects performed knee flexion exercise in the prone position inside a 2.1-T magnet, with the surface coil for 31P-MRS being placed on the biceps femoris muscle. After a 1-min warm-up without loading, the exercise intensity was increased by 0.41 W at 15-s intervals until exhaustion, followed by a 5-min recovery period. The 31P-MRS were recorded every 5 s during the rest-exercise-recovery sequence. Computer-aided contour analysis and pixel imaging of the Pi and phosphocreatine peaks were performed. Five of the seven subjects showed two distinct Pi peaks during exercise, suggesting two different pH distributions in exercising muscle (high pH and low pH region). In these five subjects, the high-pH increased rapidly just after the onset of exercise, while the low-pH peak increased gradually approximately 60 s after the onset of exercise. During recovery, the disappearance of the high-pH peak was more rapid than that of the low-pH peak. These findings suggest that our method 31P-MRS provides a simple approach for studying the kinetics of the Pi peak and intramuscular pH during exercise and recovery.  相似文献   

7.
To determine upper body peak O2 uptake (VO2) in a group of young females and to obtain information on possible sex differences, 40 subjects, 20 females and 20 males, mean age 26 +/- 4 (SD) and 31 +/- 6 yr, respectively, were studied during maximal arm-cranking exercise. Peak values for power output, VO2, minute ventilation (VE), and heart rate (HR) were determined for each subject. In addition, arm-shoulder volume (A-SV) was measured before exercise. Significant differences between males and females (P less than 0.05) were found for peak power output (134 +/- 18 vs. 86 +/- 13 W), peak VO2 expressed in liters per minute (2.55 +/- 0.45 vs. 1.81 +/- 0.36) and milliliters per kilogram per minute (34.2 +/- 5.3 vs. 29.2 +/- 4.9), peak VE (95.4 +/- 14.5 vs. 70.1 +/- 19.2 1 X min-1), and A-SV (3,126 +/- 550 vs. 2,234 +/- 349 ml), whereas peak HR was not significantly different between the two groups (174 +/- 14 vs. 174 +/- 36 beats X min-1). However, when peak VO2 was corrected for arm and shoulder size there was no significant difference between the groups (0.82 +/- 0.13 vs. 0.78 +/- 0.13 ml X ml A-SV-1 X min-1). These results suggest that the observed differences between men and women for peak VO2 elicited during arm cranking when expressed in traditional terms (1 X min-1 and ml X kg-1 X min-1) are a function of the size of the contracting muscle mass and are not due to sex-related differences in either O2 delivery or the O2 utilization capacity of the muscle itself.  相似文献   

8.
31P NMR spectroscopy at 4.7 T has been used in vivo to follow metabolic changes associated with exercise and subsequent recovery in the forearm flexor digitorum superficialis muscle of 14 healthy volunteers. The muscle content in phosphomonoesters at rest provides an index of glycogenolytic activity. Quantitative linear correlations have been shown to link end-of-exercise acidosis to recovery kinetics of phosphocreatine and phosphocreatine/organic phosphate ratio. These linear relationships constitute new metabolic invariants to be used in the study of myopathies and muscle adaptation to exercise.  相似文献   

9.
Forearm oxygen uptake during maximal forearm dynamic exercise   总被引:1,自引:0,他引:1  
This study was undertaken in an attempt to determine the maximal oxygen uptake in a small muscle group by measuring directly the oxygen expenditure of the forearm. Five healthy medical students volunteered. The subjects' maximal forearm work capacity was determined on a spring-loaded hand ergometer. Exercise was continued until exhaustion by pain or fatigue. Two weeks later intra-arterial and intravenous catheters were placed in the dominant arm. Blood samples for measurement of oxygen concentration were collected via the catheters. Forearm blood flow was measured by means of the indicator dilution technique. Oxygen uptake was determined according to the Fick principle. The forearm oxygen uptake attained at maximal work loads was a mean of 201 (SD +/- 56) mumol.min-1.100 ml-1. It was impossible at maximal exercise to discern a plateau of the oxygen uptake curve in relation to work output. It is suggested that a plateau in the oxygen uptake curve is not a useful criterion for maximal oxygen uptake in a small muscle group. Skeletal muscle may have an unused capacity for oxygen consumption even at maximal exercise intensity where muscle work cannot be continued due to muscle pain and fatigue.  相似文献   

10.
During exercise in a hot environment, blood flow in the exercising muscles may be reduced in favour of the cutaneous circulation. The aim of our study was to examine whether an acute heat exposure (65-70 degrees C) in sauna conditions reduces the blood flow in forearm muscles during handgrip exercise in comparison to tests at thermoneutrality (25 degrees C). Nine healthy men performed dynamic handgrip exercise of the right hand by rhythmically squeezing a water-filled rubber tube at 13% (light), and at 34% (moderate) of maximal voluntary contraction. The left arm served as a control. The muscle blood flow was estimated as the difference in plethysmographic blood flow between the exercising and the control forearm. Skin blood flow was estimated by laser Doppler flowmetry in both forearms. Oesophageal temperature averaged 36.92 (SEM 0.08) degrees C at thermoneutrality, and 37.74 (SEM 0.07) degrees C (P less than 0.01) at the end of the heat stress. The corresponding values for heart rate were 58 (SEM 2) and 99 (SEM 5) beats.min-1 (P less than 0.01), respectively. At 25 degrees C, handgrip exercise increased blood flow in the exercising forearm above the control forearm by 6.0 (SEM 0.8) ml.100 ml-1.min-1 during light exercise, and by 17.9 (SEM 2.5) ml.100 ml-1.min-1 during moderate exercise. In the heat, the increases were significantly higher: 12.5 (SEM 2.2) ml.100 ml-1.min-1 at the light exercise level (P less than 0.01), and 32.2 (SEM 5.9) ml.100 ml-1.min-1 (P less than 0.05) at the moderate exercise level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
To determine the vascular changes induced by local cold acclimation, post-ischaemia and exercise vasodilatation were studied in the finger and the forearm of five subjects cold-acclimated locally and five non-acclimated subjects. Peak blood flow was measured by venous occlusion plethysmography after 5 min of arterial occlusion (PBFisc), after 5 min of sustained handgrip at 10% maximal voluntary contraction (PBFexe), and after 5 min of both treatments simultaneously (PBFisc + exe). Each test was performed at room temperature (25 degrees C, SE 1 C) (non-cooled condition) and after 5 min of 5 degrees C cold water immersion (cooled condition). After the cold acclimation period, the decrease in skin temperature was more limited in the cold-acclimated compared to the non-acclimated (P less than 0.01). The PBFisc was significantly reduced in the cooled condition only in the cold-acclimated subjects (finger: 8.4 ml.100 ml-1.min-1, SE 1.1, P less than 0.01; forearm: 5.8 ml.100 ml-1.min-1, SE 1.5, P less than 0.01) compared to the non-cooled condition. Forearm PBFexe was significantly decreased in the cooled condition only in the cold-acclimated subjects (non-cooled: 7.4 ml.100 ml-1.min-1, SE 1.2; cooled: 3.9 ml.100 ml-1.min-1, SE 2.6, P less than 0.05) indicating that muscle blood flow was also reduced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
ObjectiveTo study the effects of L-arginine (L-Arg) on total body aerobic capacity and muscle metabolism as assessed by 31Phosphorus Magnetic Resonance Spectroscopy (31P-MRS) in patients with MELAS (Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-like episodes) syndrome.MethodsWe performed a case control study in 3 MELAS siblings (m.3243A>G tRNAleu(UUR) in MTTL1 gene) with different % blood mutant mtDNA to evaluate total body maximal aerobic capacity (VO2peak) using graded cycle ergometry and muscle metabolism using 31P-MRS. We then ran a clinical trial pilot study in MELAS sibs to assess response of these parameters to single dose and a 6-week steady-state trial of oral L-Arginine.ResultsAt baseline (no L-Arg), MELAS had lower serum Arg (p = 0.001). On 31P-MRS muscle at rest, MELAS subjects had increased phosphocreatine (PCr) (p = 0.05), decreased ATP (p = 0.018), and decreased intracellular Mg2+ (p = 0.0002) when compared to matched controls. With L-arginine therapy, the following trends were noted in MELAS siblings on cycle ergometry: (1) increase in mean % maximum work at anaerobic threshold (AT) (2) increase in % maximum heart rate at AT (3) small increase in VO2peak. On 31P-MRS the following mean trends were noted: (1) A blunted decrease in pH after exercise (less acidosis) (2) increase in Pi/PCr ratio (ADP) suggesting increased work capacity (3) a faster half time of PCr recovery (marker of mitochondrial activity) following 5 minutes of moderate intensity exercise (4) increase in torque.SignificanceThese results suggest an improvement in aerobic capacity and muscle metabolism in MELAS subjects in response to supplementation with L-Arg. Intramyocellular hypomagnesemia is a novel finding that warrants further study.

Classification of Evidence

Class III evidence that L-arginine improves aerobic capacity and muscle metabolism in MELAS subjects.

Trial Registration

ClinicalTrials.gov NCT01603446.  相似文献   

13.
Forearm metabolic asymmetry detected by 31P-NMR during submaximal exercise   总被引:2,自引:0,他引:2  
This study evaluated the relationship of skeletal muscle energy metabolism to forearm blood flow and muscle mass in the dominant (D) and nondominant (ND) forearms of normal subjects. 31P-Magnetic resonance spectroscopy was used to determine intracellular pH and the ratio of inorganic phosphate to phosphocreatine (Pi/PCr), an index of energy metabolism. Forearm blood flow and muscle mass were measured by venous occlusion plethysmography and magnetic resonance imaging, respectively. Metabolic measurements and flow were determined at rest and during submaximal exercise in both forearms. After a warm-up period, six normal right-handed male subjects performed 7.5 min of wrist flexion exercise in the magnet (1 contraction every 5 s), first with the ND forearm and then with the D forearm, at 23, 46, and 69 J/min. At rest, there were no differences between forearms in Pi/PCr or pH. However, at each work load the D forearm demonstrated significantly lower Pi/PCr and higher pH than the ND forearm. Blood flow was not significantly different between the forearms at rest or during exercise. Because these subjects were not engaged in unilateral arm training, we conclude that 1) Pi/PCr is lower and pH is higher in the D compared with the ND forearm in normal subjects during submaximal exercise, 2) these differences are independent of muscle mass and blood flow, and 3) the cumulative effect of long-term, low-level daily activity provides an adequate training stimulus for muscular metabolic adaptations.  相似文献   

14.
Twenty-eight subjects (6 normal men, 14 distance runners, and 8 rowers) were tested for maximal oxygen uptake (VO2max) and associated physiological measures during bicycle ergometer exercise with toe stirrups while standing (BEts) and during treadmill exercise (TM). Correlation between BEts VO2max and TM VO2max was high (r = 0.901, p less than 0.05). No significant difference existed between the two VO2max values (60.3 +/- 8.9 vs. 60.5 +/- 9.7 ml.kg-1.min-1; n = 28). No differences were found even when three different subgroups were separately compared. It is concluded that the higher VO2max elicited during BEts as compared with normal sitting cycling may be attributed to the increased muscle blood flow and/or involvement of a larger muscle mass, the latter being partly evidenced by the observation of greater electromyographic activity during BEts.  相似文献   

15.
Seventeen normal subjects performed maximal wrist flexion exercise with continuous monitoring of forearm muscle pH and H2PO4-, measured with 31P nuclear magnetic resonance, and muscle fatigue, expressed as a percentage of decline in maximal developed force. Four minutes of exercise (flexion duration = 1 s) reduced maximal developed force from 100 to 74 +/- 9% and pH from 6.99 +/- 0.04 to 6.17 +/- 0.33 and increased H2PO4- to 927 +/- 401% of resting levels. In all subjects, linear relationships were noted between developed force and pH (r = 0.90 +/- 0.08) and between developed force and H2PO4- (r = -0.89 +/- 0.08). Doubling the contraction duration to 2 s produced more rapid changes in developed force, pH, and H2PO4- but no change in the relationship of force to pH and H2PO4-. Two minutes of submaximal exercise before maximal exercise significantly reduced pH and increased H2PO4-. During subsequent maximal exercise, the relationship between developed force and H2PO4- remained unchanged. In contrast, the relationship between developed force and pH was shifted leftward; muscle pH remained lower throughout maximal exercise, and developed force remained comparable to that noted during control exercise. These observations suggest that muscle fatigue during intense short-term exercise is primarily caused by an increase in intramuscular H2PO4- rather than by a decrease in intramuscular pH.  相似文献   

16.
The purpose of this study was to examine the effects of the increased sympathetic activity elicited by the upright posture on blood flow to exercising human forearm muscles. Six subjects performed light and heavy rhythmic forearm exercise. Trials were conducted with the subjects supine and standing. Forearm blood flow (FBF, plethysmography) and skin blood flow (laser Doppler) were measured during brief pauses in the contractions. Arterial blood pressure and heart rate were also measured. During the first 6 min of light exercise, blood flow was similar in the supine and standing positions (approximately 15 ml.min-1.100 ml-1); from minutes 7 to 20 FBF was approximately 3-7 ml.min-1.100 ml-1 less in the standing position (P less than 0.05). When 5 min of heavy exercise immediately followed the light exercise, FBF was approximately 30-35 ml.min-1.100 ml-1 in the supine position. These values were approximately 8-12 ml.min-1.100 ml-1 greater than those observed in the upright position (P less than 0.05). When light exercise did not precede 8 min of heavy exercise, the blood flow at the end of minute 1 was similar in the supine and standing positions but was approximately 6-9 ml.min-1.100 ml-1 lower in the standing position during minutes 2-8. Heart rate was always approximately 10-20 beats higher in the upright position (P less than 0.05). Forearm skin blood flow and mean arterial pressure were similar in the two positions, indicating that the changes in FBF resulted from differences in the caliber of the resistance vessels in the forearm muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Ten normal subjects performed a 90-s isometric exercise [20, 30, and 40% of maximal voluntary contraction (MVC) of the flexor muscle of the right index finger or quadriceps muscle of the right leg. Contralateral forearm and calf blood flows (strain gauge plethysmography) and arterial blood pressure (auscultation) were measured simultaneously. Each exercise caused a decrease in forearm vascular resistance and a progressive increase in calf resistance. These changes were greatest with the 40% MVC. With finger exercise at 20 and 40% MVC, the percentage decreases in forearm vascular resistance from control were 12.3 and 22.7%, respectively (P less than 0.01). Similar decreases (9.5 and 24.9%, respectively; P less than 0.01) were noted with exercise of the quadriceps muscle. By contrast, the corresponding increases in calf vascular resistance were greater (P less than 0.01) with quadriceps exercise (13.3 and 55.4%, respectively) than with finger exercise (6.0 and 36.0%). Arrest of the circulation to the exercising muscles just before the exercise ended caused an abrupt increase in forearm vascular resistance and a decrease in calf resistance. These studies provide further evidence of the heterogeneity of responses of forearm and calf resistance vessels to certain cardiovascular stimuli.  相似文献   

18.
In skeletal muscle, phosphocreatine (PCr) recovery from submaximal exercise has become a reliable and accepted measure of muscle oxidative capacity. During exercise, O2 availability plays a role in determining maximal oxidative metabolism, but the relationship between O2 availability and oxidative metabolism measured by 31P-magnetic resonance spectroscopy (MRS) during recovery from exercise has never been studied. We used 31P-MRS to study exercising human gastrocnemius muscle under conditions of varied fractions of inspired O2 (FIO2) to test the hypothesis that varied O2 availability modulates PCr recovery from submaximal exercise. Six male subjects performed three bouts of 5-min steady-state submaximal plantar flexion exercise followed by 5 min of recovery in a 1.5-T magnet while breathing three different FIO2 concentrations (0.10, 0. 21, and 1.00). Under each FIO2 treatment, the PCr recovery time constants were significantly different, being longer in hypoxia [33. 5 +/- 4.1 s (SE)] and shorter in hyperoxia (20.0 +/- 1.8 s) than in normoxia (25.0 +/- 2.7 s) (P 相似文献   

19.
The purpose of this investigation was to compare differences between one- and two-legged exercise on the lactate (LT) and ventilation (VT) threshold. On four separate occasions, eight male volunteer subjects (1-leg VO2max = 3.36 l X min-1; 2-leg VO2max = 4.27 l X min-1) performed 1- and 2-legged submaximal and maximal exercise. Submaximal threshold tests for 1- and 2-legs, began with a warm-up at 50 W and then increased every 3 minutes by 16 W and 50 W, respectively. Similar increments occurred every minute for the maximal tests. Venous blood samples were collected during the last 30 s of each work load, whereas noninvasive gas measures were calculated every 30 s. No differences in VO2 (l X min-1) were found between 1- and 2-legs at LT or VT, but significant differences (p less than 0.05) were recorded at a given power output. Lactate concentration ([LA]) was different (p less than 0.05) between 1- and 2-legs (2.52 vs. 1.97 mmol X l-1) at LT. This suggests it is VO2 rather than muscle mass which affects LT and VT. VO2max for 1-leg exercise was 79% of the 2-leg value. This implies the central circulation rather than the peripheral muscle is limiting to VO2max.  相似文献   

20.
In this study we measured (n = 6) the phosphocreatine-to-inorganic phosphate ratio (PCr/Pi), Pi, and pH with 31P-nuclear magnetic resonance (31P-NMR) in the human forearm during static work at 30% of maximal voluntary contraction (MVC) for 2 min followed immediately by 3 min of circulatory arrest (forearm arterial occlusion). Static exercise, with its central volitional and skeletal muscle metabolic and mechanical afferent components, caused a rise in heart rate (HR, 32%), blood pressure (BP, 29%), and calf vascular resistance (calf R, 30%). During forearm occlusion after static exercise, HR returned to base line, the increase in BP was attenuated by 30%, and calf R remained elevated and unchanged. The percent change in calf R was correlated with forearm cellular pH (R = 0.56, P less than 0.001) but only weakly associated with PCr/Pi (R = 0.33, P less than 0.042). 30% MVC for 1 min followed by arterial occlusion (3 min) reduced PCr/Pi by 65% and pH by 0.16 U (P less than 0.05). Calf R was unchanged. Circulatory arrest alone (20 min) caused no change in either pH or calf R but large changes in PCr/Pi (50% reduction). We conclude that 1) there is an association between forearm cellular acidosis and calf vasconstriction during static forearm exercise and 2) large changes in PCr/Pi without concomitant changes in pH are not associated with changes in calf R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号