首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of red blood cells to oxygen radicals can induce hemoglobin damage and stimulate protein degradation, lipid peroxidation, and hemolysis. To determine if these events are linked, rabbit erythrocytes were incubated at 37 degrees C with various oxygen radical-generating systems and antioxidants. Protein degradation, measured by the production of free alanine, increased more than 11-fold in response to xanthine (X) + xanthine oxidase (XO). A similar increase in proteolysis occurred when the cells were incubated with acetaldehyde plus XO, with ascorbic acid plus iron (Asc + Fe), or with hydrogen peroxide (H2O2) alone. Upon addition of XO, increased proteolysis was evident within 5 min and was linear for up to 5 h. In contrast, lipid peroxidation, as shown by the production of malonyldialdehyde, conjugated dienes, or lipid hydroperoxides was observed only after 2 h of incubation with X + XO, acetaldehyde + XO, or H2O2. Ascorbate plus Fe2+ induced both protein degradation and lipid peroxidation; however, the addition of various antioxidants (urate, xanthine, glucose, or butylated hydroxytoluene) decreased lipid peroxidation without affecting proteolysis. Thus, these processes seem to occur by distinct mechanisms. Furthermore, at low concentrations of XO, protein degradation was clearly increased in the absence of detectable lipid peroxidation products. Hemolysis occurred only in a small number of cells (9%) and followed the appearance of lipid peroxidation products. Thus, an important response of red cells to oxygen radicals is rapid degradation of damaged cell proteins. Increased proteolysis seems to occur independently of membrane damage and to be a more sensitive indicator of cell exposure to oxygen radicals than is lipid peroxidation.  相似文献   

2.
Proteolytic degradation of oxidatively damaged [3H] bovine serum albumin [( 3H]BSA) was studied during incubation with cell-free erythrocyte extracts and a wide variety (14) of purified proteases. [3H]BSA was pretreated by exposure (60Co radiation) to the hydroxyl radical (.OH), the superoxide anion radical (O2-), or the combination of .OH + O2- + oxygen. Treated (and untreated) samples were dialyzed and then incubated with erythrocyte extract or proteases for measurements of proteolytic susceptibility (release of acid-soluble counts). Both .OH and .OH + O2- + caused severalfold increases in proteolytic susceptibility (with extract and proteases), but O2- alone had no effect. Proteolytic susceptibility reached a maximum at 15 nmol of .OH/nmol of BSA and declined thereafter. In contrast, proteolytic susceptibility was still increasing at an .OH + O2-/BSA molar ratio of 100 (50% .OH + 50% O2-). Degradation in erythrocyte extracts was conducted by a novel ATP- and Ca2+-independent pathway, with maximal activity at pH 7.8. Inhibitor profiles indicate that this pathway may involve metalloproteases and serine proteases. Comparisons of proteolytic susceptibility with multiple modifications to BSA primary, secondary, and tertiary structure revealed a high correlation (r = 0.98) with denaturation/increased hydrophobicity by low concentrations of .OH. Covalent aggregation reactions (BSA cross-linking) may explain the declining proteolytic susceptibility observed at .OH/BSA molar ratios greater than 20. Protein denaturation may also have caused the increased proteolytic susceptibility induced by .OH + O2- + O2, but no simple correlation could be obtained. Results with .OH + O2- + O2 appear to have been complicated by direct BSA fragmentation reactions involving (.OH-induced) protein radicals and oxygen. These data indicate a direct and quantitative relationship between protein damage by oxygen radicals and increased proteolytic susceptibility. Oxidative denaturation may exemplify a simple, yet effective inherent mechanism for intracellular proteolysis.  相似文献   

3.
E. coli contains a soluble proteolytic pathway which can recognize and degrade oxidatively denatured proteins and protein fragments, and which may act as a "secondary antioxidant defense." We now provide evidence that this proteolytic pathway is distinct from the previously described ATP-dependent, and protease "La"-dependent, pathway which may degrade other abnormal proteins. Cells (K12) which were depleted of ATP, by arsenate treatment or anaerobic incubation (after growth on succinate), exhibited proteolytic responses to oxidative stress which were indistinguishable from those observed in cells with normal ATP levels. Furthermore, the proteolytic responses to oxidative damage by menadione or H2O2 were almost identical in the isogenic strains RM312 (a K12 derivative) and RM1385 (a lon deletion mutant of RM312). Since the lon (or capR) gene codes for the ATP-dependent protease "La," these results indicate that neither ATP nor protease "La" are required for the degradation of oxidatively denatured proteins. We next prepared cell-free extracts of K12, RM312, and RM1385 and tested the activity of their soluble proteases against proteins (albumin, hemoglobin, superoxide dismutase, catalase) which had been oxidatively denatured (in vitro) by exposure to .OH, .OH + O2- (+O2), H2O2, or ascorbate plus iron. The breakdown of oxidatively denatured proteins was several-fold higher than that of untreated proteins in extracts from all three strains, and ATP did not stimulate degradation. Incubation of extracts at 45 degrees C, which inactivates protease "La," actually stimulated the degradation of oxidatively denatured proteins. Although Ca2+ had little effect on proteolysis, serine reagents, transition metal chelators, and hemin effectively inhibited the degradation of oxidatively denatured proteins in both intact cells and cell-free extracts. Degradation of oxidatively denatured proteins in cell-free extracts was maximal at pH 7.8, and was unaffected by dialysis of the extracts against membranes with molecular weight cutoffs as high as 50,000. Our results indicate the presence of a neutral, ATP- and calcium- independent proteolytic pathway in the E. coli cytosol, which contains serine- and metallo- proteases (with molecular weights greater than 50,000), and which preferentially degrades oxidatively denatured proteins.  相似文献   

4.
Degradation of oxidatively denatured proteins in Escherichia coli   总被引:7,自引:0,他引:7  
When exposed to oxidative stress, by oxygen radicals or H2O2, E. coli exhibited decreased growth, decreased protein synthesis, and dose-dependent increases in protein degradation. The quinone menadione induced proteolysis when cells were incubated in air, but was not effective when cells were incubated without oxygen. Anaerobically grown cells also exhibited significantly lower proteolytic capacity than did cells that were grown aerobically. Xanthine plus xanthine oxidase (which generate O2- and H2O2) caused a stimulation of proteolysis which was inhibitable by catalase, but not by superoxide dismutase: Indicating that H2O2 was responsible for the increased protein degradation. Indeed, H2O2 alone was effective in inducing increased intracellular proteolysis. Two-dimensional polyacrylamide gel electrophoresis of [3H]leucine labeled E. coli revealed greater than 50% decreases in the concentrations of 10-15 cell proteins following H2O2 or menadione exposure, while several other proteins were less severely affected. To test for the presence of soluble proteases, we prepared cell-free extracts of E. coli and incubated them with radio-labeled protein substrates. E. coli extracts degraded casein and globin polypeptides at rapid rates but showed little activity with native proteins such as superoxide dismutase, hemoglobin, bovine serum albumin, or catalase. When these same proteins were denatured by exposure to oxygen radicals or H2O2, however, they became excellent substrates for degradation in E. coli extracts. Studies with albumin revealed correlations greater than 0.95 between the degree of oxidative denaturation and proteolytic susceptibility. Pretreatment of E. coli with menadione or H2O2 did not increase the proteolytic capacity of cell extracts; indicating that neither protease activation, nor protease induction were required.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Protein damage and degradation by oxygen radicals. I. general aspects   总被引:21,自引:0,他引:21  
Aggregation, fragmentation, amino acid modification, and proteolytic susceptibility have been studied following exposure of 17 proteins to oxygen radicals. The hydroxyl radical (.OH) produced covalently bound protein aggregates, but few or no fragmentation products. Extensive changes in net electrical charge (both + and -) were observed. Tryptophan was rapidly lost with .OH exposure, and significant production of bityrosine biphenol occurred. When incubated with cell-free extracts of human and rabbit erythrocytes, rabbit reticulocytes, or Escherichia coli, most .OH-modified proteins were proteolytically degraded up to 50 times faster than untreated proteins. The exceptions were alpha-casein and globin, which were rapidly degraded without .OH modification. ATP did not stimulate the degradation of .OH-modified proteins, but alpha-casein was more rapidly degraded. Leupeptin had little effect under any condition, and degradation was maximal at pH 7.8. The data indicate that proteins which have been denatured by .OH can be recognized and degraded rapidly and selectively by intracellular proteolytic systems. In both red blood cells and E. coli, the degradation appears to be conducted by soluble, ATP-independent (nonlysosomal) proteolytic enzymes. In contrast with the above results, superoxide (O2-) did not cause aggregation or fragmentation, tryptophan loss, or bityrosine production. The combination of .OH + O2- (+O2), which may mimic biological exposure to oxygen radicals, induced charge changes, tryptophan loss, and bityrosine production. The pattern of such changes was similar to that seen with .OH alone, although the extent was generally less severe. In contrast with .OH alone, however, .OH + O2- (+O2) caused extensive protein fragmentation and little or no aggregation. More than 98% of the protein fragments had molecular weights greater than 5000 and formed clusters of ionic and hydrophobic bonds which could be dispersed by denaturing agents. The results indicate a general sensitivity of proteins to oxygen radicals. Oxidative modification can involve direct fragmentation or may provide denatured substrates for intracellular proteolysis.  相似文献   

6.
Red blood cells (RBC) are thought to be well protected against oxidative stress by the antioxidant, cu-pro-zinc enzyme superoxide dismutase (CuZn SOD) which dismutates O2- to H2O2. CuZn SOD, however, is irreversibly inactivated by its product H2O2. Exposure of intact RBC to H2O2 resulted in the inactivation (up to 50%) of endogenous SOD in a concentration-dependent manner. When RBC were exposed to O2- and H2O2, generated by xanthine + xanthine oxidase, an even greater loss of SOD activity (approximately 75%) was observed. Intracellular proteolysis was markedly increased by exposure to these same oxidants; up to a 12-fold increase with H2O2 and a 50-fold increase with xanthine oxidase plus xanthine. When purified SOD was treated with H2O2, inactivation of the enzyme also occurred in a concentration-dependent manner. Accompanying the loss of SOD activity, the binding of the copper ligand to the active site of the enzyme diminished with H2O2 exposure, as evidenced by an increase in accessible copper. Significant direct fragmentation of SOD was evident only under conditions of prolonged exposure (20 h) to relatively high concentrations of H2O2. Gel electrophoresis studies indicated that under most experimental conditions (i.e. 1-h incubation) H2O2, O2-, and H2O2 + O2- treated SOD experienced charge changes and partial denaturation, rather than fragmentation. The proteolytic susceptibility of H2O2-modified SOD, during subsequent incubation with (rabbit, bovine or human) red cell extracts also increased as a function of pretreatment with H2O2. Both enzyme inactivation and altered copper binding appeared to precede the increase in proteolytic susceptibility (whether measured as an effect of H2O2 concentration or as a function of the duration of H2O2 exposure). These results suggest that SOD inactivation and modification of copper binding are prerequisites for increased protein degradation. Proteolytic susceptibility was further enhanced by H2O2 exposure under alkaline conditions, suggesting that the hydroperoxide anion is the damaging species rather than H2O2 itself. In RBC extracts, the proteolysis of H2O2-modified SOD was inhibited by sulfhydryl reagents, serine reagents, transition metal chelators, and ATP; suggesting the existence of an ATP-independent proteolytic pathway of sulfhydryl, serine, and metalloproteases, and peptidases. The proteolytic activity was conserved in a "Fraction II" of both human and rabbit RBC, and was purified from rabbit reticulocytes and erythrocytes to a 670-kDa proteinase complex, for which we have suggested the trivial name macroxyproteinase. In erythrocytes macroxyproteinase may prevent the accumulation of H2O2-modified SOD.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
When OH. radicals are formed in a superoxide-driven Fenton reaction, in which O2.- is generated enzymically, deoxyribose degradation is effectively inhibited by CuZn- and Mn-superoxide dismutases. The products of this reaction are H2O2 and a Fe3+-EDTA chelate. The mixing of H2O2 and a Fe3+-EDTA chelate also generates OH. radicals able to degrade deoxyribose with the release of thiobarbituric acid-reactive material. This reaction too is inhibited by CuZn- and Mn-superoxide dismutases, suggesting that most of the OH. is formed by a non-enzymic O2.--dependent reduction of the Fe3+-EDTA chelate. Since the reaction between the Fe3+-EDTA chelate and H2O2 leads to a superoxide dismutase-inhibitable formation of OH. radicals, it could suggest a much wider protective role for the superoxide dismutase enzymes in biological systems. Urate produced during the reaction of xanthine oxidase and hypoxanthine limits deoxyribose degradation as well as the effectiveness of the superoxide dismutase enzymes to inhibit damage to deoxyribose by H2O2 and the Fe3+-EDTA chelate. Some of this damage may result from an O2.--independent pathway to OH. formation in which urate reduces the ferric complex.  相似文献   

8.
The cupro-zinc enzyme superoxide dismutase (SOD) undergoes an irreversible (oxidative) inactivation when exposed to its product, hydrogen peroxide (H2O2). Recent studies have shown that several oxidatively modified proteins (e.g., hemoglobin, albumin, catalase, etc.) are preferentially degraded by a novel proteolytic pathway in the red blood cell. We report that bovine SOD is oxidatively inactivated by exposure to H2O2, and that the inactivated enzyme is selectively degraded by proteolytic enzymes in cell-free extracts of bovine erythrocytes. For example, 95% inactivation of SOD by 1.5 mM H2O2 was accompanied by a 106 fold increase in the proteolytic susceptibility of the enzyme during (a subsequent) incubation with red cell extract. Both SOD inactivation and proteolytic susceptibility increased with H2O2 concentration and/or time of exposure to H2O2. Pre-incubation of red cell extracts with metal chelators, serine reagents, or sulfhydryl reagents inhibited the (subsequent) preferential degradation of H2O2-modified SOD. Furthermore, a slight inhibition of degradation was observed with the addition of ATP. We suggest that H2O2-inactivated SOD is recognized and preferentially degraded by the same. ATP-independent, metallo- serine- and sulfhydryl- proteinase pathway which degrades other oxidatively denatured red cell proteins. Related work in this laboratory suggests that this novel proteolytic pathway may actually consist of a 700 kDa enzyme complex of proteolytic activities. Mature red cells have no capacity for de novo protein synthesis but do have extremely high concentrations of SOD. Red cell SOD generates (and is, therefore, exposed to) H2O2 on a continuous basis, by dismutation of superoxide (from hemoglobin autooxidation and the interaction of hemoglobin with numerous xenobiotics).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Baby hamster kidney (BHK) 21/C13 cell proteins, labeled with [35S]methionine, [14C]leucine or [3H]leucine in intact cells, were degraded in soluble, cell-free extracts by an ATP-stimulated process. The stimulatory effect of ATP appeared to require ATP hydrolysis and was mediated to a large extent by ubiquitin. Although the cell extracts contained endogenous ubiquitin, supplementation with exogenous ubiquitin increased ATP-dependent proteolysis by up to 2-fold. Furthermore, antibodies against the E1 ubiquitin conjugating enzyme specifically inhibited both conjugation of [125I]ubiquitin to endogenous proteins and ATP/ubiquitin-dependent proteolysis. Addition of purified E1 to antibody-treated extracts restored conjugation and proteolysis. Proteins containing the amino acid analogues canavanine and azatryptophan were also degraded in vitro by an ATP/ubiquitin-dependent process but at a rate up to 2-fold faster than normal proteins. These results indicate that soluble, cell-free extracts of BHK cells can selectively degrade proteins whose rates of degradation are increased in intact cells. Treatment of cell-free extracts with antibodies against the high molecular weight proteinase, macropain, also greatly inhibited the ATP/ubiquitin-dependent degradation of endogenous proteins. Proteolysis was specifically restored when purified macropain L was added to the antibody-treated extracts. Treatment of cell extracts with both anti-macropain and anti-E1 antibodies reduced ATP/ubiquitin-dependent proteolysis to the same extent as treatment with either antibody alone. Furthermore, proteolysis could be restored to the double antibody treated extracts only after addition of both purified E1 and macropain. These results provide strong evidence for an important role for macropain in the ATP/ubiquitin-dependent degradation of endogenous proteins in BHK cell extracts.  相似文献   

10.
Xanthine oxidase has been hypothesized to be an important source of biological free radical generation. The enzyme generates the superoxide radical, .O2- and has been widely applied as a .O2- generating system; however, the enzyme may also generate other forms of reduced oxygen. We have applied electron paramagnetic resonance (EPR) spectroscopy using the spin trap 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) to characterize the different radical species generated by xanthine oxidase along with the mechanisms of their generation. Upon reaction of xanthine with xanthine oxidase equilibrated with air, both DMPO-OOH and DMPO-OH radicals are observed. In the presence of ethanol or dimethyl sulfoxide, alpha-hydroxyethyl or methyl radicals are generated, respectively, indicating that significant DMPO-OH generation occurred directly from OH rather than simply from the breakdown of DMPO-OOH. Superoxide dismutase totally scavenged the DMPO-OOH signal but not the DMPO-OH signal suggesting that .O2- was not required for .OH generation. Catalase markedly decreased the DMPO-OH signal, while superoxide dismutase + catalase totally scavenged all radical generation. Thus, xanthine oxidase generates .OH via the reduction of O2 to H2O2, which in turn is reduced to .OH. In anaerobic preparations, the enzyme reduces H2O2 to .OH as evidenced by the appearance of a pure DMPO-OH signal. The presence of the flavin in the enzyme is required for both .O2- and .OH generation confirming that the flavin is the site of O2 reduction. The ratio of .O2- and .OH generation was affected by the relative concentrations of dissolved O2 and H2O2. Thus, xanthine oxidase can generate the highly reactive .OH radical as well as the less reactive .O2- radical. The direct production of .OH by xanthine oxidase in cells and tissues containing this enzyme could explain the presence of oxidative cellular damage which is not prevented by superoxide dismutase.  相似文献   

11.
Aflatoxin degradative activity was demonstrated in 6- to 12-d-old intact mycelium and cell-free extracts of Aspergillus flavus. The addition of cycloheximide, SKF 525-A or metyrapone to cultures of A. flavus prevented subsequent degradation of the aflatoxins, while in cell-free extracts degradation was inhibited by SKF 525-A, metyrapone and cytochrome c but not by KCN. In cell-free extracts, aflatoxin degradation was enhanced by NADPH and NaIO4. The results suggest the involvement of cytochrome P-450 monooxygenases in the aflatoxin degradative activity of A. flavus.  相似文献   

12.
1. Xanthine oxidase acting aerobically upon acetaldehyde was found to cause the peroxidation of linolenate. This was demonstrated by increased absorbance at 233 nm due to diene conjugation and by the detection of a lipid peroxide spot on the thin layer chromatograms. 2. Superoxide dismutase inhibited this lipid peroxidation, as did catalase, thus indicating that both O2- and H2O2 were essential intermediates. Scavengers of singlet oxygen also inhibited the peroxidation of linolenate, whereas scavengers of hydroxyl radical did not. These effects, which were observed in the absence of iron salts, led to the proposal that O2- and H2O2 can directly give rise to a singlet oxygen, as follows: O2- + H2O2 leads to OH- + OH. + O2. 3. This proposal was further supported through the use of 2,5-dimethylfuran, as an indicating scavenger of singlet oxygen. Thus, when this compound was exposed to a known source of singlet oxygen, it gave a product which was detectable by thin layer chromatography. This product was also observed when 2,5-dimethylfuran was exposed to the xanthine oxidase system, in which case its accumulation was prevented by superoxide dismutase or by catalase, but not by scavengers of hydroxyl radical.  相似文献   

13.
Xanthine oxidase-catalyzed crosslinking of cell membrane proteins   总被引:1,自引:0,他引:1  
Isolated erythrocyte membranes exposed to protease-free xanthine oxidase plus xanthine and ferric iron undergo lipid peroxidation and protein crosslinking (appearance of high molecular weight aggregates on sodium dodecyl sulfate (SDS) gel electrophoresis). Spectrin is more susceptible to crosslinking than the other polypeptides. Thiol-reducible bonds (disulfides) as well as nonreducible bonds are generated, the former type relatively rapidly (detected within 10-20 min) and the latter type more slowly (usually detected after 1 h). Reducible crosslinking is inhibited by catalase, but not by superoxide dismutase, desferrioxamine, butylated hydroxyltoluene, and mannitol; whereas nonreducible crosslinking, like free radical lipid peroxidation, is inhibited by all of these agents except mannitol. Zinc(II) also inhibits lipid peroxidation, but stimulates disulfide bond formation to the virtual exclusion of all other crosslinking. Our results indicate that disulfide formation is dependent on H2O2, but not O2- or iron. However, O2-, H2O2, and iron are all required for lipid peroxidation and nondisulfide crosslinking, suggesting the intermediacy of OH generated via the iron-catalyzed Haber-Weiss reaction. The possible role of malonaldehyde (MDA, a by-product of lipid peroxidation) in the latter type of crosslinking was examined. Solubilized samples of xanthine/xanthine oxidase-treated membranes showed a strong visible fluorescence (emission maximum 450 nm; excitation 390 nm). This resembled the fluorescence of membranes treated with authentic MDA, which forms conjugated imine linkages between amino groups. Fluorescence scanning of SDS gels from MDA-treated membranes showed a strong signal coincident with crosslinked proteins and also one in the low molecular weight, nonprotein region, suggestive of aminolipid conjugates. Similar scanning on xanthine/xanthine oxidase-reacted membranes indicated that all fluorescence is associated with the lipid fraction. Thus, nonreducible protein crosslinks in this system do not appear to be of the MDA-derived, Schiff base type.  相似文献   

14.
The action of xanthine oxidase upon acetaldehyde or xanthine at pH 10.2 has been shown to be accompanied by substantial accumulation of O2- during the first few minutes of the reaction. H2O2 decreases this accumulation of O2- presumably because of the Haber-Weiss reaction (H2O2+O2- leads to OH- +OH+O2) and very small amounts of superoxide dismutase eliminate it. This accumulation of O2- was demonstrated in terms of a burst of reduction of cytochrome c, seen when the latter compound was added after aerobic preincubation of xanthine oxidase with its substrate. The kinetic peculiarities of the luminescence seen in the presence of luminol, which previously led to the proposal of H2O4-, can now be satisfactorily explained entirely on the basis of known radical intermediates.  相似文献   

15.
Zhao G  Arosio P  Chasteen ND 《Biochemistry》2006,45(10):3429-3436
Overexpression of human H-chain ferritin (HuHF) is known to impart a degree of protection to cells against oxidative stress and the associated damage to DNA and other cellular components. However, whether this protective activity resides in the protein's ability to inhibit Fenton chemistry as found for Dps proteins has never been established. Such inhibition does not occur with the related mitochondrial ferritin which displays much of the same iron chemistry as HuHF, including an Fe(II)/H(2)O(2) oxidation stoichiometry of approximately 2:1. In the present study, the ability of HuHF to attenuate hydroxyl radical production by the Fenton reaction (Fe(2+) + H(2)O(2) --> Fe(3+) + OH(-) + *OH) was examined by electron paramagnetic resonance (EPR) spin-trapping methods. The data demonstrate that the presence of wild-type HuHF during Fe(2+) oxidation by H(2)O(2) greatly decreases the amount of .OH radical produced from Fenton chemistry whereas the ferroxidase site mutant 222 (H62K + H65G) and human L-chain ferritin (HuLF) lack this activity. HuHF catalyzes the pairwise oxidation of Fe(2+) by the detoxification reaction [2Fe(2+) + H(2)O(2) + 2H(2)O --> 2Fe(O)OH(core) + 4H(+)] that occurs at the ferroxidase site of the protein, thereby preventing the production of hydroxyl radical. The small amount of *OH radical that is produced in the presence of ferritin (相似文献   

16.
17.
To understand the role of the superoxide (O-2) radical in chromate-related genotoxicity, we investigated whether Cr(VI) can catalyze the Haber-Weiss cycle in vitro: O-2 + Cr(VI)----Cr(V) + O2 Cr(V) + H2O2----Cr(VI) + .OH + OH-. ESR and spin trapping techniques were utilized to monitor the O-2 (produced using xanthine/xanthine oxidase), .OH, and Cr(V) species. Superoxide dismutase as well as catalase inhibited the .OH radical radical formation, attesting to the direct involvement of O-2 and H2O2 in the process. ESR measurements also provided direct evidence for the formation of Cr(V). Kinetic measurements were consistent with the role of Cr(V) and H2O2 as intermediates in .OH formation. These results indicate that in cellular media, especially during chromate phagocytosis, the O-2 radical can become a significant source of .OH radicals and hence a significant factor in the biochemical mechanism of cellular damage due to Cr(VI) exposure.  相似文献   

18.
Substance P (SP(1-11)) was exposed to a continuous flux of superoxide (O2-) or hydroxyl radicals ((.)OH) in a hypoxanthine (HX)/xanthine oxidase (86 mU) system in the presence of 1 mM deferoxamine and 40 mM D-mannitol or 50 muM FeCI(3). 6H(2)O and 50 muM EDTA, respectively. O2- caused fragmentation between the Phe(7) and Phe(8), whereas (.)OH induced cleavage also between the Phe(8) and Gly(9). Reactive oxygen species H(2)O(2) and HCIO did not cause fragmentation, but modification of the amino acid side chains and/or aggregation with altered hydrophobicity in reverse phase high performance liquid chromatography compared to native SP(1-11). Furthermore, exposure of SP(1-11) to phorbol myristate acetate preactivated neutrophils resuited in products similar to those observed upon exposure to superoxide or hydroxyl radicals in a cell-free HX/xanthine oxidase system. This study suggests that, in contrast to rigid proteins, fragmentation is relatively easily induced in a small peptide like SP(1-11), perhaps due to strain on the peptide and t-carbon bonds caused by the movable, random coil configuration acquired by SP(1-11) in an aqueous solution. Oxidative modification might modulate paracrine actions of SP(1-11) at site of inflammation.  相似文献   

19.
The precursor of mitochondrial aspartate aminotransferase accumulates in the cytosol of cultured chicken embryo fibroblasts if its import into mitochondria is inhibited by an uncoupling agent. However, its accumulation is limited by degradation with a half-life of only approximately 5 min (Jaussi, R., Sonderegger, P., Flückiger, J., and Christen, P. (1982) J. Biol. Chem. 257, 13334-13340). The aim of the present study was the characterization of the proteolytic system(s) responsible for this very rapid intracellular degradation. On depleting chicken embryo fibroblasts of ATP, the rate of degradation of the precursor was lowered by approximately 70%. Chicken embryo fibroblasts depleted of divalent metal ions showed a degradative activity of 10% of the initial value. Reconstitution of these cells with Mg2+ and Ca2+ increased the degradative activity from 10 to 107 and 24%, respectively. Thiol reagents almost completely prevented the degradation, whereas specific peptide inhibitors of cysteine proteases or inhibitors of intralysosomal proteolysis decreased the rate of degradation by only approximately 30%. Inhibitors of serine proteases had little effect. No rapid degradation of the precursor was observed in crude extracts of chicken embryo fibroblasts. The data indicate that the bulk of the precursor accumulated under conditions of import block is degraded by one or several cytosolic proteases dependent on ATP, Mg2+, and thiol groups of unknown localization, conceivably by proteolytic enzymes identical with or similar to one of the high molecular weight cytosolic proteases (Waxman, L., Fagan, J.M., Tanaka, K., and Goldberg, A. L. (1985) J. Biol. Chem. 260, 11994-12000). The rest of the precursor appears to be degraded by lysosomes.  相似文献   

20.
Free radicals and reactive oxygen species (ROS) participate in physiological and pathological processes in the thyroid gland. Bivalent iron cation (ferrous, Fe(2+)), which initiates the Fenton reaction (Fe(2+) + H2O2 --> Fe(3+) + *OH + OH(-)) is frequently used to experimentally induce oxidative damage, including that caused by lipid peroxidation. Lipid peroxidation is involved in DNA damage, thus indirectly participating in the early steps of carcinogenesis. In turn, melatonin is a well-known antioxidant and free radical scavenger. The aim of the study was to estimate the effect of melatonin on basal and iron-induced lipid peroxidation in homogenates of the porcine thyroid gland. In order to determine the effect of melatonin on the auto-oxidation of lipids, thyroid homogenates were incubated in the presence of that indoleamine in concentrations of 0.0, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.25, 0.5, 1.0, 2.5, or 5.0 mM. To study melatonin effects on iron-induced lipid peroxidation, the homogenates were incubated in the presence of FeSO(4) (40 microM) plus H2O2 (0.5 mM), and, additionally, in the presence of melatonin in the same concentrations as above. The degree of lipid peroxidation was expressed as the concentration of malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) per mg protein. Melatonin, in a concentration-dependent manner, decreased lipid peroxidation induced by Fenton reaction, without affecting the basal MDA + 4-HDA levels. In conclusion, melatonin protects against iron + H2O2-induced peroxidation of lipids in the porcine thyroid. Thus, the indoleamine would be expected to prevent pathological processes related to oxidative damage in the thyroid, cancer initiation included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号