首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The cytoprotective effects of pigment epithelium-derived factor (PEDF) require interactions between an as of a yet undefined region with a distinct ectodomain on the PEDF receptor (PEDF-R). Here we characterized the area in PEDF that interacts with PEDF-R to promote photoreceptor survival. Molecular docking studies suggested that the ligand binding site of PEDF-R interacts with the neurotrophic region of PEDF (44-mer, positions 78–121). Binding assays demonstrated that PEDF-R bound the 44-mer peptide. Moreover, peptide P1 from the PEDF-R ectodomain had affinity for the 44-mer and a shorter fragment within it, 17-mer (positions 98–114). Single residue substitutions to alanine along the 17-mer sequence were designed and tested for binding and biological activity. Altered 17-mer[R99A] did not bind to the P1 peptide, whereas 17-mer[H105A] had higher affinity than the unmodified 17-mer. Peptides 17-mer, 17-mer[H105A], and 44-mer exhibited cytoprotective effects in cultured retina R28 cells. Intravitreal injections of these peptides and PEDF in the rd1 mouse model of retinal degeneration decreased the numbers of dying photoreceptors, 17-mer[H105A] being most effective. The blocking peptide P1 hindered their protective effects both in retina cells and in vivo. Thus, in addition to demonstrating that the region composed of positions 98–114 of PEDF contains critical residues for PEDF-R interaction that mediates survival effects, the findings reveal distinct small PEDF fragments with neurotrophic effects on photoreceptors.  相似文献   

2.
Pigment epithelium-derived factor (PEDF) is a collagen-binding protein that is abundantly distributed in various tissues, including the eye. It exhibits various biological functions, such as anti-angiogenic, neurotrophic, and neuroprotective activities. PEDF also interacts with extracellular matrix components such as collagen, heparan sulfate proteoglycans (HSPGs), and hyaluronan. The collagen-binding property has been elucidated to be important for the anti-angiogenic activity in vivo (Hosomichi, J., Yasui, N., Koide, T., Soma, K., and Morita, I. (2005) Biochem. Biophys. Res. Commun. 335, 756-761). Here, we investigated the collagen recognition mechanism by PEDF. We first narrowed down candidate PEDF-binding sequences by taking advantage of previously reported structural requirements in collagen. Subsequent searches for PEDF-binding sequences employing synthetic collagen-like peptides resulted in the identification of one of the critical binding sites for PEDF, human α1(I)(929-938) (IKGHRGFSGL). Further analysis revealed that the collagen recognition by PEDF is sequence- and conformation-specific, and the high affinity binding motif is KGXRGFXGL in the triple helix. The PEDF-binding motif significantly overlapped with the heparin/HSPG-binding motif, KGHRG(F/Y). The interaction of PEDF with collagen I was specifically competed with by heparin but not by chondroitin sulfate-C or hyaluronan. The binding sequences for PEDF and heparin/HSPG also overlapped with the covalent cross-linking sites between collagen molecules. These findings imply a functional relationship between PEDF and HSPGs during angiogenesis, and the interaction of these molecules is regulated by collagen modifications.  相似文献   

3.
Abstract: Pigment epithelium-derived factor (PEDF), purified from human fetal retinal pigment epithelium cell culture medium, was shown to potentiate the differentiation of human Y-79 retinoblastoma cells. To investigate potential neurotrophic effects of PEDF on neurons other than those of retinal derivation, we used cultures of cerebellar granule cells. The number of cerebellar granule cells was significantly larger in the presence of PEDF, as demonstrated by an assay for viable cells that uses 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H -tetrazolium, inner salt, conversion, by cell count, and by immunocytochemistry. The effect of PEDF showed a dose-response relationship, with a larger effect in chemically defined medium than in serum-containing medium [ED50 = 30 ng/ml (0.70 n M ) in chemically defined medium and 100 ng/ml (2.3 n M ) in serum-containing medium]. PEDF had no effect on incorporation of bromodeoxyuridine (cell proliferation) or on neurofilament content (neurite outgrowth) measured by an enzyme-linked immunoadsorbent assay. These results demonstrate that PEDF has a neurotrophic survival effect on cerebellar granule cells in culture and suggest the possibility that it may affect other CNS neurons as well.  相似文献   

4.
5.
Pigment epithelium-derived factor (PEDF) is an extracellular multifunctional protein belonging to the serpin superfamily with demonstrable neurotrophic, gliastatic, neuronotrophic, antiangiogenic, and antitumorigenic properties. We have previously provided biochemical evidence for high affinity PEDF-binding sites and proteins in plasma membranes of retina, retinoblastoma, and CNS cells. This study was designed to reveal a receptor involved in the biological activities of PEDF. Using a yeast two-hybrid screening, we identified a novel gene from pigment epithelium of the human retina that codes for a PEDF-binding partner, which we term PEDF-R. The derived polypeptide has putative transmembrane, intracellular and extracellular regions, and a phospholipase domain. Recently, PEDF-R (TTS-2.2/independent phospholipase A(2) (PLA(2))zeta and mouse desnutrin/ATGL) has been described in adipose cells as a member of the new calcium-independent PLA(2)/nutrin/patatin-like phospholipase domain-containing 2 (PNPLA2) family that possesses triglyceride lipase and acylglycerol transacylase activities. Here we describe the PEDF-R gene expression in the retina and its heterologous expression by bacterial and eukaryotic systems, and we demonstrate that its protein product has specific and high binding affinity for PEDF, has a potent phospholipase A(2) activity that liberates fatty acids, and is associated with eukaryotic cell membranes. Most importantly, PEDF binding stimulates the enzymatic phospholipase A(2) activity of PEDF-R. In conclusion, we have identified a novel PEDF-R gene in the retina for a phospholipase-linked membrane protein with high affinity for PEDF, suggesting a molecular pathway by which ligand/receptor interaction on the cell surface could generate a cellular signal.  相似文献   

6.
The presence of insulin receptors was investigated in human Y-79 retinoblastoma cells grown in suspension culture. The binding of [125I] insulin to these cells was time, temperature, and pH dependent, was competed for by insulin and proinsulin but not other peptides, and was inhibited by antibodies against the insulin receptor. The Scatchard plot of insulin competition data was curvilinear and was resolved into a high-affinity (KD approximately 0.5 X 10(-9) M)/low-capacity (approximately 3,000 sites/cell) and a low-affinity (KD approximately 1 X 10(-7) M)/high-capacity (approximately 155,000 sites/cell) component. Negative cooperativity was not found, in agreement with other studies in rodent neural cells. However, in contrast to studies with rodent cells, insulin specifically down-regulated its receptor on human Y-79 cells after prolonged exposure. In conclusion, these data show for the first time the presence of specific insulin receptors in human Y-79 retinoblastoma cells. Because these cells were previously shown to have several characteristics typical of neural cells, we propose their use as a model to study the effects of insulin on neural and retinal tissues of human origin.  相似文献   

7.
The existence of specific alpha 2-adrenergic receptor sites has been shown in human retinoblastoma (Y-79) and neuroblastoma (SH-SH5Y) cells using direct radioligand binding. [3H]Rauwolscine, a selective alpha 2-adrenergic receptor antagonist, exhibited high affinity, saturable binding to both Y-79 and SH-SY5Y cell membranes. The binding of alpha 1 specific antagonist, [3H]Prazocine, was not detectable in either cell type. Competition studies with antagonists yielded pharmacological characteristics typical of alpha 2-adrenergic receptors: rauwolscine greater than yohimbine greater than phentolamine greater than prazocine. Based on the affinity constants of prazocine and oxymetazoline, it appears that Y-79 cells contain alpha 2A receptor, whereas SH-SY5Y cells probably represent a mixture of alpha 2A and alpha 2B receptors. alpha 2-agonists clonidine and (-)epinephrine inhibition curves yielded high and low affinity states of the receptor in SH-SY5Y cells. Gpp(NH)p and sodium ions reduced the proportion of high affinity sites of alpha 2 receptors. These two neuronal cell lines of human origin would prove useful in elucidating the action and regulation of human alpha 2-adrenergic receptors and their interaction with other receptor systems.  相似文献   

8.
Pigment epithelium-derived factor (PEDF), a neurotrophic and antiangiogenic serpin, is identified in tissues rich in collagen, e.g. cornea, vitreous, bone, and cartilage. We show that recombinant human PEDF formed complexes with collagens from the bovine cornea and vitreous. We have examined the direct binding of PEDF to collagen I and found that interactions were ionic in nature and occurred when PEDF and collagen I were both in solution, when either one was immobilized, or even when collagen I was denatured under reducing conditions. (125)I-PEDF bound to immobilized collagen I in a saturable fashion (K(D) = 123 nm). Compared with neurotrophic PEDF-derived peptides, ovalbumin and angiogenic inhibitors, only full-length PEDF competed efficiently with (125)I-PEDF for the binding to immobilized collagen I (EC(50) = 3 microg/ml). The collagen-binding region was analyzed using controlled proteolysis and chemically modified PEDF. Cleavage of the serpin exposed loop did not prevent binding to collagen I. Conjugation of lysines with fluorescein increased the collagen binding affinity. However, treatment of PEDF with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide abolished it, implicating the PEDF aspartic and/or glutamic acid residues in its interaction with collagen I. A negatively charged region on the surface of the PEDF molecule is rich in acidic residues (Glu(41), Glu(42), Glu(43), Asp(44), Asp(64), Asp(256), Asp(258), Glu(290), Glu(291), Glu(296), Asp(300), Glu(304)) available to interact directly with positively charged areas of collagen. This represents the first collagen-binding site described for a serpin, which in PEDF, is distinct from its heparin-binding region, neurotrophic active site, and its serpin exposed loop. The collagen-binding property of PEDF may play a role in surface localization and modulation of its antiangiogenic effects in the eye and bone.  相似文献   

9.
Pigment epithelium-derived factor (PEDF) is a multifunctional serpin with antitumorigenic, antimetastatic, and differentiating activities. PEDF is found within tissues rich in the glycosaminoglycan hyaluronan (HA), and its amino acid sequence contains putative HA-binding motifs. We show that PEDF coprecipitation with glycosaminoglycans in media conditioned by human retinoblastoma Y-79 cells decreased after pretreatments with hyaluronidase, implying an association between HA and PEDF. Direct binding of human recombinant PEDF to highly purified HA was demonstrated by coprecipitation in the presence of cetylpyridinium chloride. Binding of PEDF to HA was concentration-dependent and saturable. The PEDF-HA interactions were sensitive to increasing NaCl concentrations, indicating an ionic nature of these interactions and having affinity higher than PEDF-heparin. Competition assays showed that PEDF can bind heparin and HA simultaneously. PEDF chemically modified with fluorescein retained the capacity for interacting with HA but lacked heparin affinity, suggesting one or more distinct HA-binding regions on PEDF. The HA-binding region was examined by site-directed mutagenesis. Single-point and cumulative alterations at basic residues within the putative HA-binding motif K189A/K191A/R194A/K197A drastically reduced the HA-binding activity without affecting heparin- or collagen I binding of PEDF. Cumulative alterations at sites critical for heparin binding (K146A/K147A/R149A) decreased HA affinity but not collagen I binding. Thus these clusters of basic residues (BXBXXBXXB and BX3AB2XB motifs) in PEDF are functional regions for binding HA. In the spatial PEDF structure they are located in distinct areas away from the collagen-binding site. The HA-binding activity of PEDF may contribute to deposition in the extracellular matrix and to its reported antitumor/antimetastatic effects.  相似文献   

10.
Pigment epithelium derived factor (PEDF) is non-inhibitory serpin with neurotrophic and antiangiogenic functions. In this study, we have assembled PEDF sequences for 9 additional species by data base mining and performed cross-species alignment for 14 PEDF sequences to identify conserved structural domains. We found evolutionary conservation of a leader sequence, a single C-terminal glycosylation site, collagen-binding residues, and four specific conserved PEDF peptides. The C-terminus, 384--415 and an N-terminal region 78--95, show close homology with many other serpins, and there is strong conservation of 39 of 51 consensus key residues involved in serpin structure and function. Two peptide regions, 40--67 and 277--301, are unique to PEDF but conserved in all species. Conserved residues at the N-terminus, helix d (hD), and helix A (hA) of PEDF form a structure similar to the heparin-binding groove of other serpins. We identified a motif in PEDF that is homologous to the nuclear localization signals of other proteins. A bitopographical localization of PEDF was confirmed by immunocytochemistry and Western blots. Our results suggest that secretion is required for PEDF's activity, that PEDF can migrate to the nucleus, and that PEDF has structural and functional features more common with inhibitory serpins.  相似文献   

11.
Pigment epithelium‐derived factor (PEDF) is a 50 kDa secreted glycoprotein that belongs to the non‐inhibitory serpin family group. PEDF has been described as a natural angiogenesis inhibitor with neurotrophic and immune‐modulation properties; it balances angiogenesis in the eye and blocks tumor progression. The mechanisms underlying most of these events are not completely clear; however, it appears that PEDF acts via multiple high affinity ligands and cell receptors. In this review article, we will summarize the current knowledge on the biochemical properties of PEDF and its receptors, the multimodal activities of PEDF and finally address the therapeutic potential of PEDF in treating angiogenesis‐, neurodegeneration‐ and inflammation‐related diseases. J. Cell. Biochem. 106: 769–775, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Pigment epithelium-derived factor (PEDF), a member of the serine protease inhibitor (serpin) superfamily, possesses anti-angiogenic and neurotrophic activities. PEDF has been reported to bind to extracellular matrix (ECM) components such as collagens and glycosaminoglycans (GAGs). In this study, to determine the binding sites for collagens and GAGs, we analyzed the interaction of recombinant mouse PEDF (rPEDF) with collagen I and heparin. By utilizing residue-specific chemical modification and site-directed mutagenesis techniques, we revealed that the acidic amino acid residues on PEDF (Asp(255), Asp(257), and Asp(299)) are critical to collagen binding, and three clustered basic amino acid residues (Arg(145), Lys(146), and Arg(148)) are necessary for heparin binding. Mapping of these residues on the crystal structure of human PEDF (Simonovic, M., Gettins, P. G. W., and Volz, K. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 11131-11135) demonstrated that the collagen-binding site is oriented toward the opposite side of the highly basic surface where the heparin-binding site is localized. These results indicate that PEDF possesses dual binding sites for different ECM components, and this unique localization of ECM-binding sites implies that the binding to ECM components could regulate PEDF activities.  相似文献   

13.
Dopamine interaction with target cells undoubtably involves binding to plasma membrane receptors. However, the well documented cell growth inhibitory activity of this catecholamine suggests nuclear regulation. To evaluate this possibility, we determined the intracellular localization and binding of [3H]dopamine in human retinoblastoma (Y-79 cells), normal mouse fibroblasts (LM-cells), and in the rat uterus. Cytosol and purified nuclear preparations devoid of plasma membrane components contained specific, saturable, high affinity (Kd approximately 20 nM) binding sites for [3H]dopamine. The nuclear binding affinity for dopamine, L-dopa, and L-dopa methyl ester correlated with the inhibitory effects of these compounds on cell proliferation, suggesting that intracellular dopamine binding sites may also be involved in cellular response to catecholamines.  相似文献   

14.
Endomorphin-2 (Tyr-Pro-Phe-Phe-NH2) binds with high affinity and selectivity to the mu-opioid receptor. In the present study, [125I]endomorphin-2 has been used to characterize mu-opioid-binding sites on transplantable mouse mammary adenocarcinoma cells. Cold saturation experiments performed with [125I]endomorphin-2 (1 nM) show biphasic binding curves in Scatchard coordinates. One component represents high affinity and low capacity (K(d) = 18.79 +/- 1.13 nM, B(max) = 635 +/- 24 fmol/mg protein) and the other shows low affinity and higher capacity (K(d) = 7.67 +/- 0.81 microM, B(max) = 157 +/- 13 pmol/mg protein) binding sites. The rank order of agonists competing for the [125I]endomorphin-2 binding site was [d-1-Nal3]morphiceptin > endomorphin-2 > [d-Phe3]morphiceptin > morphiceptin > [d-1-Nal3]endomorphin-2, indicating binding of these peptides to mu-opioid receptors. The uptake of 131I-labeled peptides administered intraperitoneally to tumor-bearing mice was also investigated. The highest accumulation in the tumor was observed for [d-1-Nal3)morphiceptin, which reached the value of 8.19 +/- 1.14% dose/g tissue.  相似文献   

15.
T Braun  P R Schofield    R Sprengel 《The EMBO journal》1991,10(7):1885-1890
Recombinant expression of truncated receptors for luteinizing hormone/chorionic gonadotropin (LH/CG) revealed that the amino-terminal leucine-rich repeats 1-8 of the extracellular receptor domain bind human chorionic gonadotropin (hCG) with an affinity (Kd = 0.72 +/- 0.2 nM) similar to that of the native LH/CG receptor (Kd = 0.48 +/- 0.05 nM). LH/CG receptor leucine-rich repeats 1-8 were used to replace homologous sequences in the closely related receptor for follicle stimulating hormone (FSH). Cells expressing such chimeric LH/CG-FSH receptors bind hCG and show elevated cylic AMP levels when stimulated by hCG but not by recombinant human FSH (rhFSH). Similarly, a chimeric LH/CG receptor in which leucine-rich repeats 1-11 originated from the FSH receptor is activated by rhFSH but not by hCG. For this chimera, no residual [125I] hCG binding was observed in a range of 2 pM to 10 nM. Our results demonstrate that specificity of gonadotropin receptors is determined by a high affinity hormone binding site formed by the amino-terminal leucine-rich receptor repeats.  相似文献   

16.
We have demonstrated recently that Wilms' tumor suppressor 1 (Wt1),in addition to its role in genitourinary formation,is required for the differentiation of ganglion cells in the developing retina. Here we provide further evidence that Wt1 is associated with neuronal differentiation. Thus, the retinoblastoma-derived human cell line, Y-79, contained robust amounts of Wt1 mRNA and protein. Wt1 expression was down-regulated upon laminin-induced differentiation of Y-79 into neuron-like cells. Inhibition of Wt1 with antisense oligonucleotides dramatically reduced the capacity of undifferentiated Y-79 cells to undergo neuronal differentiation, whereas sense and missense oligonucleotides had no effect. Wt1 immunoreactivity was also detected in solid retinoblastomas, in which it resided mainly in areas with moderate proliferative activity. These findings suggest a role for Wt1 in the differentiation of retinoblastoma cells. Furthermore, Wt1 expression in retinoblastoma may reflect the potential of these tumors to initiate the early steps of neuronal differentiation.  相似文献   

17.
Inflammation, neurodegeneration and microvascular irregularities are included in the spectrum of defects associated with diabetic retinopathy. Here, we evaluated intraocular deliverability features of two pigment epithelium-derived factor (PEDF) derivatives given as eye drops and their efficacy in modulating diabetes-induced retinal complications. The antiangiogenic PEDF60–77 (P60) and neuroprotective PEDF78–121 (P78) derivatives were applied to Ins2Akita mouse eyes once a week for 15 wks at the onset of hyperglycemia. Peptides, labeled with Alexa Fluor 488, were observed penetrating the cornea by 1–4 h and gained access to the ciliary body, retinal pigment epithelium (RPE)-choroid complex, retina microvasculature and vitreous. Peak vitreous levels were 0.2 μg/mL for P60 and 0.9 μg/mL for P78 after 0.5 and 4 h, respectively. Both peptides reduced vascular leakage by ~60% and increased zona occludens 1 (ZO1) and occludin expression in the microvasculature to nondiabetic levels. P60 induced pERK1/2 and P78 promoted pAKT in Muller glia, two signals that were dampened in diabetic conditions. Pharmacologically inhibiting AKT signaling in the retina blocked effects of the peptides on ZO1 and occludin expression. P78 reduced levels of 9/20 cytokines in diabetic vitreous including interferon (IFN)-γ, interleukin (IL)-6, IL-3 and tumor necrosis factor (TNF)-α. P60 lowered levels of 6/20 cytokines but was less effective than P78. Neuroprotective P78 prevented diabetes-induced microglia activation by ~60%, retinal ganglion cell (RGC) death by ~22% and inner plexiform layer thinning by ~13%. In summary, we provide evidence that PEDF bioactive derivatives gained access to the retina by topical delivery and validated their efficacy in reducing diabetic retinopathy complications. Our findings argue for glia regulation of microvascular leakage and an early root cause for RGC degeneration embedded in microglia activation.  相似文献   

18.
Three peptide amides, HPRK(Py)(4)HPRK-NH(2) (PyH-12), HPRK(Py)(3)HPRK-NH(2) (PyH-11) and HPRK(Py)(2)HPRK-NH(2) (PyH-10), incorporating two HPRK motifs and various 4-amino-1-methylpyrrole-2-carboxylic acid residues (Py) were synthesized by solid-phase peptide methodology. The binding of these three peptides to a 5'-32P-labeled 158-mer DNA duplex (Watson fragment) and to a 5'-32P-labeled 135-mer DNA duplex (complementary Crick fragment) was investigated by quantitative DNase I footprinting. On the 158-mer Watson strand, the most distinctive DNase I blockages seen with all three peptides occur around positions 105-112 and 76-79, corresponding to the sequences 5'-GAGAAAAT-3' and 5'-CGGT-3', respectively. However, on the complementary Crick strand, only PyH-12 strongly discriminates the 5'-TTT-3' site around positions 108-110 whereas both PyH-11 and PyH-10 have moderate binding around positions 102-112 comprising the sequence 5'-ATTTTCTCCTT-3'. Possible bidentate and single interactions of the side-chain functions and alpha-amino protons of the peptides with DNA bases are discussed.  相似文献   

19.
3H-naloxone specific binding was carried out on synaptosomal membranes isolated from basal ganglia of the cat brain. A high- and a low-affinity site with Kd1 = 3.7 nM and Kd2 = 35 nM having B max 1 = 79 pmole/g protein and B max 2 = 224 pmole/g protein were found. The Hill number for the high- and low-affinity sites were, respectively, 1.01 and 0.86. Digitonin and Triton X-100 had an inhibitory effect on the binding at concentrations between 10(-5) and 10(-1)% (w/v). Deoxycholate and Nonidet P-40 also inhibited the binding of 3H-naloxone, but at 10(-4)% produced a 50% enhancement. After the binding to membranes, the 3H-naloxone receptor complex is stable to the action of Triton X-100 and dissociates slowly. In membranes bound with 10 nM 3H-naloxone and then submitted to 0.1-0.2% Triton X-100, in which only the presynaptic membrane disintegrates, the specific radioactivity is decreased. With a more drastic treatment that disintegrates the postsynaptic membrane, the 3H-naloxone binding to synaptosomal membranes is almost completely abolished. These results suggest that opiate receptors may be localized both pre- and postsynaptically in central synapses.  相似文献   

20.
The extracellular pigment epithelium-derived factor (PEDF) displays retina survival activity by interacting with receptor proteins on cell surfaces. We have previously reported that PEDF binds and stimulates PEDF receptor (PEDF-R), a transmembrane phospholipase. However, the PEDF binding site of PEDF-R and its involvement in survival activity have not been identified. The purpose of this work is to identify a biologically relevant ligand-binding site on PEDF-R. PEDF bound the PEDF-R ectodomain L4 (Leu159–Met325) with affinity similar to the full-length PEDF-R (Met1–Leu504). Binding assays using synthetic peptides spanning L4 showed that PEDF selectively bound E5b (Ile193–Leu232) and P1 (Thr210–Leu249) peptides. Recombinant C-terminal truncated PEDF-R4 (Met1–Leu232) and internally truncated PEDF-R and PEDF-R4 (ΔHis203–Leu232) retained phospholipase activity of the full-length PEDF-R. However, PEDF-R polypeptides without the His203–Leu232 region lost the PEDF affinity that stimulated their enzymatic activity. Cell surface labeling showed that PEDF-R is present in the plasma membranes of retina cells. Using siRNA to selectively knock down PEDF-R in retina cells, we demonstrated that PEDF-R is essential for PEDF-mediated cell survival and antiapoptotic activities. Furthermore, preincubation of PEDF with P1 and E5b peptides blocked the PEDF·PEDF-R-mediated retina cell survival activity, implying that peptide binding to PEDF excluded ligand-receptor interactions on the cell surface. Our findings establish that PEDF-R is required for the survival and antiapoptotic effects of PEDF on retina cells and has determinants for PEDF binding within its L4 ectodomain that are critical for enzymatic stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号