首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) were originally discovered as growth factors for hematopoietic stem cells (HSCs). It has been well defined that SCF and G-CSF contribute to regulation of lineage commitment for HSCs. However, little is known about whether SCF and G-CSF play roles in the determination and differentiation of neural stem cells (NSCs). Here we demonstrate the novel function of SCF and G-CSF in controlling cell cycle and cell fate determination of NSCs. We also observe that SCF and G-CSF promote neuronal differentiation and inhibit astroglial differentiation at the early stage of differentiation. In addition, our research data reveal that SCF in combination with G-CSF has a dual function in promoting cell cycle exit and directing neuronal fate commitment at the stage of NSC dividing. This coordination effect of SCF+G-CSF on cell cycle arrest and neuronal differentiation is through enhancing neurogenin 1 (Ngn1) activity. These findings extend current knowledge regarding the role of SCF and G-CSF in the regulation of neurogenesis and provide insights into the contribution of hematopoietic growth factors to brain development and remodeling.  相似文献   

2.
Two hematopoietic cytokines are currently gaining increasing attention within neurological research. Erythropoietin (EPO) and granulocyte-colony stimulating factor (G-CSF) have long been known for their ability to induce the proliferation of certain populations of hematopoietic lineage cells. However, it has recently been found that EPO, G-CSF, and their respective receptors are also expressed in the human central nervous system (CNS) and may be an important part of the brain's endogenous system of protection. Both hematopoietic cytokines have been shown to have neuroprotective potential in a variety of animal disease models both in vitro and in vivo, through the inhibition of apoptosis, induction of angiogenesis, exertion of anti-inflammatory and neurotrophic effects, as well as by the enhancement of neurogenesis. EPO and G-CSF have been extensively studied in the context of hematological disorders and have recently been successfully applied in the first clinical trials in stroke patients. Intravenous high-dose EPO therapy was associated with an improvement in the clinical outcome and preclinical studies with intravenous high-dose G-CSF therapy have clearly shown that it has considerable neuroprotective potential in the acute, as well as in the chronic phase of stroke. In this review, the current knowledge of the neuroprotective mechanisms of EPO and G-CSF is summarized with regard to in vitro and in vivo data. Focus is placed on the role of EPO in neurological disease models with an emphasis on its influence on functional outcome. New experimental results are assessed in detail and correlated with the findings of recent clinical studies.  相似文献   

3.

Background  

Granulocyte colony-stimulating (G-CSF) factor is a well-known hematopoietic growth factor stimulating the proliferation and differentiation of myeloid progenitors. Recently, we uncovered that G-CSF acts also as a neuronal growth factor in the brain, which promotes adult neural precursor differentiation and enhances regeneration of the brain after insults. In adults, the receptor for G-CSF is predominantly expressed in neurons in many brain areas. We also described expression in neurogenic regions of the adult brain, such as the subventricular zone and the subgranular layer of the dentate gyrus. In addition, we found close co-localization of the G-CSF receptor and its ligand G-CSF. Here we have conducted a systematic expression analysis of G-CSF receptor and its ligand in the developing embryo.  相似文献   

4.

Background  

Granulocyte-colony stimulating factor (G-CSF) is known as a powerful regulator of white blood cell proliferation and differentiation in mammals. We, and others, have shown that G-CSF is effective in treating cerebral ischemia in rodents, both relating to infarct size as well as functional recovery. G-CSF and its receptor are expressed by neurons, and G-CSF regulates apoptosis and neurogenesis, providing a rational basis for its beneficial short- and long-term actions in ischemia. In addition, G-CSF may contribute to re-endothelialisation and arteriogenesis in the vasculature of the ischemic penumbra. In addition to these trophic effects, G-CSF is a potent neuroprotective factor reliably reducing infarct size in different stroke models.  相似文献   

5.
6.
Stroke has a high incidence in the elderly. Stroke enters the chronic phase 3 months after initial stroke onset. Currently, there is no pharmaceutical treatment available for chronic stroke. We have demonstrated the therapeutic effects of the combination of stem cell factor (SCF) and granulocyte-colony stimulating factor (G-CSF) (SCF+G-CSF) on chronic stroke. However, it remains unclear how SCF+G-CSF repairs the brain in chronic stroke. In this study, we determined the effects of SCF+G-CSF on neuronal network remodeling in the aged brain of chronic stroke. Cortical brain ischemia was produced in 16–18 month-old transgenic mice expressing yellow fluorescent protein in layer V pyramidal neurons. SCF+G-CSF was subcutaneously injected for 7 days beginning at 3.5 months post-ischemia. Using both live brain imaging and immunohistochemistry, we observed that SCF+G-CSF increased the mushroom-type spines on the apical dendrites of layer V pyramidal neurons adjacent to the infarct cavities 2 and 6 weeks after treatment. SCF+G-CSF also augmented dendritic branches and post-synaptic density protein 95 puncta in the peri-infarct cortex 6 weeks after treatment. These data suggest that SCF+G-CSF treatment in chronic stroke remodels neural circuits in the aged brain. This study provides evidence to support the development of a new therapeutic strategy for chronic stroke.  相似文献   

7.
The enteric nervous system (ENS) controls and modulates gut motility and responds to food intake and to internal and external stimuli such as toxins or inflammation. Its plasticity is maintained throughout life by neural progenitor cells within the enteric stem cell niche. Granulocyte-colony stimulating factor (G-CSF) is known to act not only on cells of the immune system but also on neurons and neural progenitors in the central nervous system (CNS). Here, we demonstrate, for the first time, that G-CSF receptor is present on enteric neurons and progenitors and that G-CSF plays a role in the expansion and differentiation of enteric neural progenitor cells. Cultured mouse ENS-neurospheres show increased expansion with increased G-CSF concentrations, in contrast to CNS-derived spheres. In cultures from differentiated ENS- and CNS-neurospheres, neurite outgrowth density is enhanced depending on the amount of G-CSF in the culture. G-CSF might be an important factor in the regeneration and differentiation of the ENS and might be a useful tool for the investigation and treatment of ENS disorders.  相似文献   

8.
We have recently shown that the hematopoietic Granulocyte-Colony Stimulating Factor (G-CSF) is neuroprotective in rodent stroke models, and that this action appears to be mediated via a neuronal G-CSF receptor. Here, we report that the G-CSF receptor is expressed in rodent dopaminergic substantia nigra neurons, suggesting that G-CSF might be neuroprotective for dopaminergic neurons and a candidate molecule for the treatment of Parkinson's disease. Thus, we investigated protective effects of G-CSF in 1-methyl-4-phenylpyridinium (MPP+)-challenged PC12 cells and primary neuronal midbrain cultures, as well as in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease. Substantial protection was found against MPP+-induced dopaminergic cell death in vitro. Moreover, subcutaneous application of G-CSF at a dose of 40 microg/Kg body weight daily over 13 days rescued dopaminergic substantia nigra neurons from MPTP-induced death in aged mice, as shown by quantification of tyrosine hydroxylase-positive substantia nigra cells. Using HPLC, a corresponding reduction in striatal dopamine depletion after MPTP application was observed in G-CSF-treated mice. Thus our data suggest that G-CSF is a novel therapeutic opportunity for the treatment of Parkinson's disease, because it is well-tolerated and already approved for the treatment of neutropenic conditions in humans.  相似文献   

9.
10.
The p53 family member p73 is essential for brain development, but its precise role and scope remain unclear. Global p73 deficiency determines an overt and highly penetrant brain phenotype marked by cortical hypoplasia with ensuing hydrocephalus and hippocampal dysgenesis. The ΔNp73 isoform is known to function as a prosurvival factor of mature postmitotic neurons. In this study, we define a novel essential role of p73 in the regulation of the neural stem cell compartment. In both embryonic and adult neurogenesis, p73 has a critical role in maintaining an adequate neurogenic pool by promoting self-renewal and proliferation and inhibiting premature senescence of neural stem and early progenitor cells. Thus, products of the p73 gene locus are essential maintenance factors in the central nervous system, whose broad action stretches across the entire differentiation arch from stem cells to mature postmitotic neurons.  相似文献   

11.
Ischemic stroke, although causing brain infarction and neurological deficits, can activate innate neuroprotective mechanisms, including regional mechanisms within the ischemic brain and distant mechanisms from non-ischemic organs such as the liver, spleen, and pancreas, supporting neuronal survival, confining brain infarction, and alleviating neurological deficits. Both regional and distant mechanisms are defined as systems neuroprotective mechanisms. The regional neuroprotective mechanisms involve release and activation of neuroprotective factors such as adenosine and bradykinin, inflammatory responses, expression of growth factors such as nerve growth factors and neurotrophins, and activation and differentiation of resident neural stem cells to neurons and glial cells. The distant neuroprotective mechanisms are implemented by expression and release of endocrine neuroprotective factors such as fibroblast growth factor 21, resistin like molecule γ, and trefoil factor 3 from the liver; brain-derived neurotrophic factor and nerve growth factor from the spleen; and neurotrophin 3 and vascular endothelial growth factor C from the pancreas. Furthermore, ischemic stroke induces mobilization of bone marrow hematopoietic stem cells and endothelial progenitor cells into the circulatory system and brain, contributing to neuroprotection. The regional and distant mechanisms may act in coordination and synergy to protect the ischemic brain from injury and death. This paper addresses these mechanisms and associated signaling networks.  相似文献   

12.
Hematopoiesis is the process by which blood cells (hemocytes) mature and subsequently enter the circulation and we have developed a new technique to culture the hematopoietic progenitor cells in vitro. The reason for the successful culture was the isolation of a plasma protein that turned out to be a novel cytokine, astakine 1 (Ast1) containing a domain present in several vertebrates, so-called prokineticins. Now we have detected several astakines from other invertebrate species. Depending on our discovery of the cytokine Ast1 we have an opportunity to study in detail the differentiation of cells in the hematopoietic tissue of a crustacean, a tissue of evolutionary interest for studies of the connection between the vascular system and the nervous system. We have been able to isolate the entire hematopoietic tissue and for the first time detected a link between this tissue and the brain. We have further localized a proliferation center in the tissue and characterized its different parts. We have also used this system to isolate a new hematopoietic factor CHF that is important in the crossroad between apoptosis and hemocyte differentiation. Our technique for culture of crayfish hematopoietic stem cells provides a simple tool for studying the mechanism of hematopoiesis, but also enables detailed studies of immune defense reactions. Further, the culture system has been used for studies of viral defense and the system is suitable for gene silencing which allows functional characterization of different molecules involved in host defense as well as in hemocyte differentiation.  相似文献   

13.
Once hematopoiesis is established in the bone marrow, a continuous egress of hematopoietic stem cells (HSCs) to the periphery occurs at a low frequency. It has been proposed that this phenomenon is part of a regenerative homeostatic mechanism that ensures the maintenance of hematopoiesis through the life of the individual. The administration of certain cytotoxic drugs or cytokines can enhance the mobilization of hematopoietic progenitors to the periphery. During the past 15 years, granulocyte-colony stimulating factor (G-CSF) has been used as a standard cytokine for mobilization protocols in experimental models and in humans. Despite extensive efforts by multiple groups, a definitive mechanism explaining its role in mobilization has not been provided. In a recent paper, Katayama et al., through a series of clever associations supported by well-defined experimental systems, proposed that signals through the sympathetic nervous system modify the activity of the hematopoietic niche, acting as regulators of the mobilization of hematopoietic progenitors. This surprising finding adds a new level of complexity to the cellular milieu responsible for generation and maintenance of the hematopoietic niche.  相似文献   

14.
Nagai A  Kim WK  Lee HJ  Jeong HS  Kim KS  Hong SH  Park IH  Kim SU 《PloS one》2007,2(12):e1272
Human bone marrow contains two major cell types, hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). MSCs possess self-renewal capacity and pluripotency defined by their ability to differentiate into osteoblasts, chondrocytes, adipocytes and muscle cells. MSCs are also known to differentiate into neurons and glial cells in vitro, and in vivo following transplantation into the brain of animal models of neurological disorders including ischemia and intracerebral hemorrhage (ICH) stroke. In order to obtain sufficient number and homogeneous population of human MSCs, we have clonally isolated permanent and stable human MSC lines by transfecting primary cell cultures of fetal human bone marrow MSCs with a retroviral vector encoding v-myc gene. One of the cell lines, HM3.B10 (B10), was found to differentiate into neural cell types including neural stem cells, neurons, astrocytes and oligodendrocytes in vitro as shown by expression of genetic markers for neural stem cells (nestin and Musashi1), neurons (neurofilament protein, synapsin and MAP2), astrocytes (glial fibrillary acidic protein, GFAP) and oligodendrocytes (myelin basic protein, MBP) as determined by RT-PCR assay. In addition, B10 cells were found to differentiate into neural cell types as shown by immunocytochical demonstration of nestin (for neural stem cells), neurofilament protein and beta-tubulin III (neurons) GFAP (astrocytes), and galactocerebroside (oligodendrocytes). Following brain transplantation in mouse ICH stroke model, B10 human MSCs integrate into host brain, survive, differentiate into neurons and astrocytes and induce behavioral improvement in the ICH animals. B10 human MSC cell line is not only a useful tool for the studies of organogenesis and specifically for the neurogenesis, but also provides a valuable source of cells for cell therapy studies in animal models of stroke and other neurological disorders.  相似文献   

15.
促红细胞生成素是一种促进红系造血前体细胞增殖、分化的细胞因子,主要作用为促进红细胞增殖,应用于临床各种贫血治疗。随着研究进展,学者发现促红细胞生成素为一种多功能营养因子及神经保护因子,具有调节中枢神经系统发育、神经营养及神经保护作用。脑缺血性卒中实验研究显示,促红细胞生成素可有效改善中枢神经系统疾病所致的神经功能缺损,本文主要概述促红细胞生成素在脑缺血性卒中动物模型的研究进展,及其发挥神经保护作用所经由的分子机制。相信随着实验研究进展,其在脑缺血性卒中临床治疗方面将拥有更广阔的前景。  相似文献   

16.
Hematopoiesis, the process of blood cell formation, is orchestrated by cytokines and growth factors that stimulate the expansion of different progenitor cell subsets and regulate their survival and differentiation into mature blood cells. Granulocyte colony-stimulating factor (G-CSF) is the major hematopoietic growth factor involved in the control of neutrophil development. G-CSF is now applied on a routine basis in the clinic for treatment of congenital and acquired neutropenias. G-CSF activates a receptor of the hematopoietin receptor superfamily, the G-CSF receptor (G-CSF-R), which subsequently triggers multiple signaling mechanisms. Here we review how these mechanisms contribute to the specific responses of hematopoietic cells to G-CSF and how perturbations in the function of the G-CSF-R are implicated in various types of myeloid disease.  相似文献   

17.
Contrary to the long-held dogma according to which the adult mammalian brain does not produce neurons anymore, neuronal turnover has been reported in two discrete areas of the adult brain: the hippocampus and the olfactory bulb. Adult-generated neurons are produced from neural stem cells located in the hippocampal subgranular zone and the subventricular zone of the lateral ventricles. Recently, number of genetic and epigenetic factors that modulate proliferation of stem cells, migration, differentiation and survival of newborn neurons have been characterized. We know that neurogenesis increases in the diseased brain, after stroke or after traumatic brain injury. Importantly, progenitors from the subventricular zone, but not from the subgranular zone, are incorporated at the sites of injury, where they replace some of the degenerated neurons. Thus, the central nervous system has the capacity to regenerate itself after injury and, today, researchers develop strategies aimed at promoting neurogenesis in diseased areas. This basic research is attracting a lot of attention because of the hope that it will lead to regeneration and reconstruction therapy for the damaged brain. In this review, we discuss major findings concerning the organization of the neurogenic niche located in the subventricular zone and examine both intrinsic and extrinsic factors that regulate adult neurogenesis. Then, we present evidences for the intrinsic capability of the adult brain for cell replacement, and shed light on recent works demonstrating that one can greatly enhance appropriate brain cell replacement by using molecular cues known to endogenously control proliferation, migration, differentiation and/or survival of subventricular zone progenitors. Finally, we review some of the advantages and limits of strategies aimed at using endogenous progenitors and their relevance to human clinics.  相似文献   

18.
Granulocyte-Macrophage colony stimulating factor (GM-CSF) and Granulocyte colony stimulating factor (G-CSF) are cytokines involved in the differentiation of bone marrow progenitor cells into myeloid cells. They also activate mature myeloid cells to mediate a variety of antimicrobial activities and inflammatory responses. Recombinant GM-CSF and G-CSF proteins have been used to treat various diseases including cancer and hematopoietic diseases and to isolate peripheral blood progenitor cells for bone marrow transplantation. A plasmid construct expressing recombinant human G-CSF/GM-CSF fusion protein has now been prepared by linking the human G-CSF and GM-CSF coding regions and the recombinant fusion protein has been successfully expressed in E. coli. The recombinant human G-CSF/GM-CSF fusion protein was extracted and purified from the cellular inclusion and refolded into the biologically active form to show colony stimulating activity. The recombinant fusion protein exhibited colony stimulating activity on human bone marrow cell cultures, indicating that the linkage of GM-CSF and G-CSF by a linker peptide may not interrupt activities of the cytokines in the fusion protein. The colony forming unit of the fusion protein was also higher than those of the cultures treated with the same molar numbers of the recombinant human GM-CSF and G-CSF separately, which suggests that the fusion protein presumably retains both G-CSF and GM-CSF activities.  相似文献   

19.
Granulocyte colony-stimulating factor (G-CSF) is a lineage-restricted hematopoietic growth factor that stimulates proliferation and maturation of hematopoietic progenitors and is a known powerful mobilizer of bone marrow-derived stem cells. Very little has been reported on G-CSF expression and modulation of vascular smooth muscle cell (VSMC) activation. The purpose of this study was to characterize the expression and effects of G-CSF on primary human VSMC and balloon angioplasty-injured rat carotid arteries. In cultured human VSMC, G-CSF mRNA and protein expression are induced by several cytokines, with the most potent being fetal calf serum and T-lymphocyte-conditioned media. G-CSF is not expressed in naive rat carotid arteries but is induced in neointimal SMC in carotid arteries subject to balloon angioplasty. G-CSF is chemotactic for human VSMC. There is a significant difference between unstimulated cells and those treated with G-CSF at 100 and 1,000 pg/ml (P < 0.01 and 0.05 for 3 experiments). G-CSF also activates the GTPase Rac1, a regulator of cellular migration in VSMC. Inhibition of Rac1 inhibits G-CSF-driven VSMC migration. Important signal transduction protein kinases, including p44/42 MAPK, Akt, and S6 kinase, are also activated in response to G-CSF. This is the first report describing the expression of G-CSF in injured arteries and the multiple effects of G-CSF on VSMC activation. Together, our data suggest that G-CSF is an important mediator of inflammatory cell-VSMC communication and VSMC autocrine activation and may be an important mediator of the VSMC response to injury.  相似文献   

20.
Possible strategies for treating ischemic stroke include: (1) Neuroprotection: preventing damaged neurons from undergoing apoptosis in the acute phase of cerebral ischemia; (2) Stem cell therapy: the repair of broken neuronal networks with newly born neurons in the chronic phase of cerebral ischemia. Firstly, we studied the neuroprotective effect of a calcium channel blocker, azelnidipine, or a by-product of heme degradation, biliverdin, in the ischemic brain. These results revealed both azelnidipine and biliverdin had a neuroprotective effect in the ischemic brain through their anti-oxidative property. Secondly, we investigated the role of granulocyte colony-stimulating factor (G-CSF) by administering G-CSF to rats after cerebral ischemia and found G-CSF plays a critical role in neuroprotection. Lastly, we developed a restorative stroke therapy with a bio-affinitive scaffold, which is able to provide an appropriate environment for newly born neurons. In the future, we will combine these strategies to develop more effective therapies for treatment of strokes. Special issue article in honor of Dr. Akitane Mori.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号