首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Inherited mutations of SCN5A, the gene that encodes Na(V)1.5, the alpha subunit of the principle voltage-gated Na(+) channel in the heart, cause congenital Long QT Syndrome variant 3 (LQT-3) by perturbation of channel inactivation. LQT-3 mutations induce small, but aberrant, inward current that prolongs the ventricular action potential and subjects mutation carriers to arrhythmia risk dictated in part by the biophysical consequences of the mutations. Most previously investigated LQT-3 mutations are associated with increased arrhythmia risk during rest or sleep. Here we report a novel LQT-3 mutation discovered in a pediatric proband diagnosed with LQTS but who experienced cardiac events during periods of mild exercise as well as rest. The mutation, which changes a single amino acid (S1904L) in the Na(V)1.5 carboxy terminal domain, disrupts the channel inactivation gate complex and promotes late Na(+) channel currents, not by promoting a bursting mode of gating, but by increasing the propensity of the channel to reopen during prolonged depolarization. Incorporating a modified version of the Markov model of the Na(V)1.5 channel into a mathematical model of the human ventricular action potential predicts that the biophysical consequences of the S1904L mutation result in action potential prolongation that is seen for all heart rates but, in contrast to other previously-investigated LQT-3 mutant channels, is most pronounced at fast rates resulting in a drastic reduction in the cells ability to adapt APD to heart rate.  相似文献   

2.
Brugada syndrome is a life-threatening, inherited arrhythmia disorder associated with autosomal dominant mutations in SCN5A, the gene encoding the human cardiac Na+ channel α subunit (Nav1.5). Here, we characterized the biophysical properties of a novel Brugada syndrome-associated Nav1.5 mutation, A551T, identified in a proband who was successfully resuscitated from an episode of ventricular fibrillation with sudden collapse. Whole-cell currents through wild-type (WT) Nav1.5 and mutant (A551T) channels were recorded and compared in the human embryonic kidney cell line HEK293T transfected with SCN5A cDNA and SCN1B cDNA, using the patch-clamp technique. Current density was decreased in the A551T mutant compared to the WT. In addition, the A551T mutation reduced Nav1.5 activity by promoting entry of the channel into fast inactivation from the closed state, thereby shifting the steady-state inactivation curve by -5 mV. Furthermore, when evaluated at -90 mV, the resting membrane potential, but not at the conventionally used -120 mV, both the percentage, and rate, of channel recovery from inactivation were reduced in the mutant. These results suggest that the DI-DII linker may be involved in the stability of inactivation gating process. This study supports the notion that a reduction in Nav1.5 channel function is involved in the pathogenesis of Brugada syndrome. The structural-functional study of the Nav1.5 channel advances our understanding of its pathophysiolgocial function.  相似文献   

3.
Na(+) channel blockers such as flecainide have found renewed usefulness in the diagnosis and treatment of two clinical syndromes arising from inherited mutations in SCN5A, the gene encoding the alpha subunit of the cardiac voltage-gated Na(+) channel. The Brugada syndrome (BrS) and the LQT-3 variant of the Long QT syndrome are caused by disease-linked SCN5A mutations that act to change functional and pharmacological properties of the channel. Here we have explored a set of SCN5A mutations linked both to BrS and LQT-3 to determine what disease-modified channel properties underlie distinct responses to the Na(+) channel blocker flecainide. We focused on flecainide block that develops with repetitive channel activity, so-called use-dependent block (UDB). Our results indicate that mutation-induced changes in the voltage-dependence of channel availability (inactivation) may act as determinants of flecainide block. The data further indicate that UDB by flecainide requires channel opening, but is not likely due to open channel block. Rather, flecainide appears to interact with inactivation states that follow depolarization-induced channel opening, and mutation-induced changes in channel inactivation will alter flecainide block independent of the disease to which the mutation is linked. Analysis of flecainide block of mutant channels linked to these rare disorders has provided novel insight into the molecular determinants of drug action.  相似文献   

4.
Defects of the SCN5A gene encoding the cardiac sodium channel alpha-subunit are associated with both the long QT-3 (LQT-3) subtype of long-QT syndrome and Brugada syndrome (BrS). One previously described SCN5A mutation (1795insD) in the C terminus results in a clinical phenotype combining QT prolongation and ST segment elevation, indicating a close interrelationship between the two disorders. Here we provide additional evidence that these two disorders are closely related. We report the analysis of two novel mutations on the same codon, Y1795C (LQT-3) and Y1795H (BrS), expressed in HEK 293 cells and characterized using whole-cell patch clamp procedures. We find marked and opposing effects on channel gating consistent with activity associated with the cellular basis of each clinical disorder. Y1795H speeds and Y1795C slows the onset of inactivation. The Y1795H, but not the Y1795C, mutation causes a marked negative shift in the voltage dependence of inactivation, and neither mutation affects the kinetics of the recovery from inactivation. Interestingly, both mutations increase the expression of sustained Na+ channel activity compared with wild type (WT) channels, although this effect is most pronounced for the Y1795C mutation, and both mutations promote entrance into an intermediate or a slowly developing inactivated state. These data confirm the key role of the C-terminal tail of the cardiac Na+ channel in the control of channel gating, illustrate how subtle changes in channel biophysics can have significant and distinct effects in human disease, and, additionally, provide further evidence of the close interrelationship between BrS and LQT-3 at the molecular level.  相似文献   

5.
Long QT syndrome type 3 (LQT3) has been traced to mutations of the cardiac Na(+) channel (Na(v)1.5) that produce persistent Na(+) currents leading to delayed ventricular repolarization and torsades de pointes. We performed mutational analyses of patients suffering from LQTS and characterized the biophysical properties of the mutations that we uncovered. One LQT3 patient carried a mutation in the SCN5A gene in which the cysteine was substituted for a highly conserved tyrosine (Y1767C) located near the cytoplasmic entrance of the Na(v)1.5 channel pore. The wild-type and mutant channels were transiently expressed in tsA201 cells, and Na(+) currents were recorded using the patch-clamp technique. The Y1767C channel produced a persistent Na(+) current, more rapid inactivation, faster recovery from inactivation, and an increased window current. The persistent Na(+) current of the Y1767C channel was blocked by ranolazine but not by many class I antiarrhythmic drugs. The incomplete inactivation, along with the persistent activation of Na(+) channels caused by an overlap of voltage-dependent activation and inactivation, known as window currents, appeared to contribute to the LQTS phenotype in this patient. The blocking effect of ranolazine on the persistent Na(+) current suggested that ranolazine may be an effective therapeutic treatment for patients with this mutation. Our data also revealed the unique role for the Y1767 residue in inactivating and forming the intracellular pore of the Na(v)1.5 channel.  相似文献   

6.
Modifications of human cardiac sodium channel gating by UVA light   总被引:5,自引:0,他引:5  
Voltage-gated Na(+) channels are membrane proteins responsible for the generation of action potentials. In this report we demonstrate that UVA light elicits gating changes of human cardiac Na+ channels. First, UVA irradiation hampers the fast inactivation of cardiac Nav1.5 Na(+) channels expressed in HEK293t cells. A maintained current becomes conspicuous during depolarization and reaches its maximal quasi steady-state level within 5-7 min. Second, the activation time course is slowed by UVA light; modification of the activation gating by UVA irradiation continues for 20 min without reaching steady state. Third, along with the slowed activation time course, the peak current is reduced progressively. Most Na(+) currents are eliminated during 20 min of UVA irradiation. Fourth, UVA light increases the holding current nonlinearly; this phenomenon is slow at first but abruptly fast after 20 min. Other skeletal muscle Nav1.4 isoforms and native neuronal Na(+) channels in rat GH(3) cells are likewise sensitive to UVA irradiation. Interestingly, a reactive oxygen metabolite (hydrogen peroxide at 1.5%) and an oxidant (chloramine-T at 0.5 mM) affect Na(+) channel gating similarly, but not identically, to UVA. These results together suggest that UVA modification of Na(+) channel gating is likely mediated via multiple reactive oxygen metabolites. The potential link between oxidative stress and the impaired Na(+) channel gating may provide valuable clues for ischemia/reperfusion injury in heart and in CNS.  相似文献   

7.
Ca2+ has been proposed to regulate Na+ channels through the action of calmodulin (CaM) bound to an IQ motif or through direct binding to a paired EF hand motif in the Nav1 C terminus. Mutations within these sites cause cardiac arrhythmias or autism, but details about how Ca2+ confers sensitivity are poorly understood. Studies on the homologous Cav1.2 channel revealed non-canonical CaM interactions, providing a framework for exploring Na+ channels. In contrast to previous reports, we found that Ca2+ does not bind directly to Na+ channel C termini. Rather, Ca2+ sensitivity appears to be mediated by CaM bound to the C termini in a manner that differs significantly from CaM regulation of Cav1.2. In Nav1.2 or Nav1.5, CaM bound to a localized region containing the IQ motif and did not support the large Ca(2+)-dependent conformational change seen in the Cav1.2.CaM complex. Furthermore, CaM binding to Nav1 C termini lowered Ca2+ binding affinity and cooperativity among the CaM-binding sites compared with CaM alone. Nonetheless, we found suggestive evidence for Ca2+/CaM-dependent effects upon Nav1 channels. The R1902C autism mutation conferred a Ca(2+)-dependent conformational change in Nav1.2 C terminus.CaM complex that was absent in the wild-type complex. In Nav1.5, CaM modulates the Cterminal interaction with the III-IV linker, which has been suggested as necessary to stabilize the inactivation gate, to minimize sustained channel activity during depolarization, and to prevent cardiac arrhythmias that lead to sudden death. Together, these data offer new biochemical evidence for Ca2+/CaM modulation of Na+ channel function.  相似文献   

8.
In developmentally regulated D1:S3 splicing of Nav1.5, there are 31 nucleotide differences between the 5'-exon ('neonatal') and the 3'-exon ('adult') forms, resulting in 7 amino acid differences in D1:S3-S3/S4 linker. In particular, splicing replaces a conserved negative aspartate residue in the 'adult' with a positive lysine. Here, 'neonatal' and 'adult' Nav1.5 alpha-subunit splice variants were stably transfected into EBNA-293 cells and their electrophysiological properties investigated by whole-cell patch-clamp recording. Compared with the 'adult' isoform, the 'neonatal' channel exhibited (1) a depolarized threshold of activation and voltage at which the current peaked; (2) much slower kinetics of activation and inactivation; (3) 50% greater transient charge (Na(+)) influx; (4) a stronger voltage dependence of time to peak; and (5) a slower recovery from inactivation. Tetrodotoxin sensitivity and VGSCbeta1-4 mRNA expression levels did not change. The significance of the charge-reversing aspartate to lysine substitution was investigated by mutating the lysine in the 'neonatal' channel back to aspartate. In this 'neonatal K211D' mutant, the electrophysiological parameters studied strongly shifted back towards the 'adult', that is the lysine residue was primarily responsible for the electrophysiological effects of Nav1.5 D1:S3 splicing. Taken together, these data suggest that the charge reversal in 'neonatal' Nav1.5 would (1) modify the channel kinetics and (2) prolong the resultant current, allowing greater intracellular Na(+) influx. Developmental and pathophysiological consequences of such differences are discussed.  相似文献   

9.
Hypokalemic periodic paralysis type 2 (hypoPP2) is an inherited skeletal muscle disorder caused by missense mutations in the SCN4A gene encoding the alpha subunit of the skeletal muscle Na+ channel (Nav1.4). All hypoPP2 mutations reported so far target an arginine residue of the voltage sensor S4 of domain II (R672/G/H/S). We identified a novel hypoPP2 mutation that neutralizes an arginine residue in DIII-S4 (R1132Q), and studied its functional consequences in HEK cells transfected with the human SCN4A cDNA. Whole-cell current recordings revealed an enhancement of both fast and slow inactivation, as well as a depolarizing shift of the activation curve. The unitary Na+ conductance remained normal in R1132Q and in R672S mutants, and cannot therefore account for the reduction of Na+ current presumed in hypoPP2. Altogether, our results provide a clear evidence for the role of R1132 in channel activation and inactivation, and confirm loss of function effects of hypoPP2 mutations leading to muscle hypoexcitability.  相似文献   

10.

Introduction

We functionally analyzed a frameshift mutation in the SCN5A gene encoding cardiac Na+ channels (Nav1.5) found in a proband with repeated episodes of ventricular fibrillation who presented bradycardia and paroxysmal atrial fibrillation. Seven relatives also carry the mutation and showed a Brugada syndrome with an incomplete and variable expression. The mutation (p.D1816VfsX7) resulted in a severe truncation (201 residues) of the Nav1.5 C-terminus.

Methods and Results

Wild-type (WT) and mutated Nav1.5 channels together with hNavβ1 were expressed in CHO cells and currents were recorded at room temperature using the whole-cell patch-clamp. Expression of p.D1816VfsX7 alone resulted in a marked reduction (≈90%) in peak Na+ current density compared with WT channels. Peak current density generated by p.D1816VfsX7+WT was ≈50% of that generated by WT channels. p.D1816VfsX7 positively shifted activation and inactivation curves, leading to a significant reduction of the window current. The mutation accelerated current activation and reactivation kinetics and increased the fraction of channels developing slow inactivation with prolonged depolarizations. However, late INa was not modified by the mutation. p.D1816VfsX7 produced a marked reduction of channel trafficking toward the membrane that was not restored by decreasing incubation temperature during cell culture or by incubation with 300 μM mexiletine and 5 mM 4-phenylbutirate.

Conclusion

Despite a severe truncation of the C-terminus, the resulting mutated channels generate currents, albeit with reduced amplitude and altered biophysical properties, confirming the key role of the C-terminal domain in the expression and function of the cardiac Na+ channel.  相似文献   

11.
Computational methods that predict three-dimensional structures from amino acid sequences have become increasingly accurate and have provided insights into structure-function relationships for proteins in the absence of structural data. However, the accuracy of computational structural models requires experimental approaches for validation. Here we report direct testing of the predictions of a previously reported structural model of the C-terminus of the human heart Na(+) channel. We focused on understanding the structural basis for the unique effects of an inherited C-terminal mutation (Y1795C), associated with long QT syndrome variant 3 (LQT-3), that has pronounced effects on Na(+) channel inactivation. Here we provide evidence that this mutation, in which a cysteine replaces a tyrosine at position 1795 (Y1795C), enables the formation of disulfide bonds with a partner cysteine in the channel. Using the predictions of the model, we identify the cysteine and show that three-dimensional information contained in the sequence for the channel protein is necessary to understand the structural basis for some of the effects of the mutation. The experimental evidence supports the accuracy of the predicted structural model of the human heart Na(+) channel C-terminal domain and provides insight into a structural basis for some of the mutation-induced altered channel function underlying the disease phenotype.  相似文献   

12.
Perturbation of sodium channel inactivation, a finely tuned process that critically regulates the flow of sodium ions into excitable cells, is a common functional consequence of inherited mutations associated with epilepsy, skeletal muscle disease, autism, and cardiac arrhythmias. Understanding the structural basis of inactivation is key to understanding these disorders. Here we identify a novel role for a structural motif in the COOH terminus of the heart NaV1.5 sodium channel in determining channel inactivation. Structural modeling predicts an interhelical hydrophobic interface between paired EF hands in the proximal region of the NaV1.5 COOH terminus. The predicted interface is conserved among almost all EF hand-containing proteins and is the locus of a number of disease-associated mutations. Using the structural model as a guide, we provide biochemical and biophysical evidence that the structural integrity of this interface is necessary for proper Na+ channel inactivation gating. We thus demonstrate a novel role of the sodium channel COOH terminus structure in the control of channel inactivation and in pathologies caused by inherited mutations that disrupt it.  相似文献   

13.
Missense mutations in the skeletal muscle Na+ channel alpha subunit occur in several heritable forms of myotonia and periodic paralysis. Distinct phenotypes arise from mutations at two sites within the III-IV cytoplasmic loop: myotonia without weakness due to substitutions at glycine 1306, and myotonia plus weakness caused by a mutation at threonine 1313. Heterologous expression in HEK cells showed that substitutions at either site disrupted inactivation, as reflected by slower inactivation rates, shifts in steady-state inactivation, and larger persistent Na+ currents. For T1313M, however, the changes were an order of magnitude larger than any of three substitutions at G1306, and recovery from inactivation was hastened as well. Model simulations demonstrate that these functional difference have distinct phenotypic consequences. In particular, a large persistent Na+ current predisposes to paralysis due to depolarization-induced block of action potential generation.  相似文献   

14.
Mutations in one of the ion channels shaping the cardiac action potential can lead to action potential prolongation. However, only in a minority of cardiac arrest cases mutations in the known arrhythmia-related genes can be identified. In two patients with arrhythmia and cardiac arrest, we identified the point mutations P91L and E33V in the KCNA5 gene encoding the Kv1.5 potassium channel that has not previously been associated with arrhythmia. We functionally characterized the mutations in HEK293 cells. The mutated channels behaved similarly to the wild-type with respect to biophysical characteristics and drug sensitivity. Both patients also carried a D85N polymorphism in KCNE1, which was neither found to influence the Kv1.5 nor the Kv7.1 channel activity. We conclude that although the two N-terminal Kv1.5 mutations did not show any apparent electrophysiological phenotype, it is possible that they may influence other cellular mechanisms responsible for proper electrical behaviour of native cardiomyocytes.  相似文献   

15.
Voltage-gated sodium channels (Nav) are modulated by many bilayer mechanical amphiphiles, but whether, like other voltage-gated channels (Kv, HCN, Cav), they respond to physical bilayer deformations is unknown. We expressed human heart Nav1.5 pore alpha-subunit in oocytes (where, unlike alphaNav1.4, alphaNav1.5 exhibits normal kinetics) and measured small macroscopic currents in cell-attached patches. Pipette pressure was used to reversibly stretch the membrane for comparison of I(Na)(t) before, during, and after stretch. At all voltages, and in a dose-dependent fashion, stretch accelerated the I(Na)(t) time course. The sign of membrane curvature was not relevant. Typical stretch stimuli reversibly accelerated both activation and inactivation by approximately 1.4-fold; normalization of peak I(Na)(t) followed by temporal scaling ( approximately 1.30- to 1.85-fold) resulted in full overlap of the stretch/no-stretch traces. Evidently the rate-limiting outward voltage sensor motion in the Nav1.5 activation path (as in Kv1) accelerated with stretch. Stretch-accelerated inactivation occurred even with activation saturated, so an independently stretch-modulated inactivation transition is also a possibility. Since Nav1.5 channel-stretch modulation was both reliable and reversible, and required stretch stimuli no more intense than what typically activates putative mechanotransducer channels (e.g., stretch-activated TRPC1-based currents), Nav channels join the ranks of putative mechanotransducers. It is noteworthy that at voltages near the activation threshold, moderate stretch increased the peak I(Na) amplitude approximately 1.5-fold. It will be important to determine whether stretch-modulated Nav current contributes to cardiac arrhythmias, to mechanosensory responses in interstitial cells of Cajal, to touch receptor responses, and to neuropathic (i.e., hypermechanosensitive) and/or normal pain reception.  相似文献   

16.
The structures of the cytosolic portion of voltage activated sodium channels (CTNav) in complexes with calmodulin and other effectors in the presence and the absence of calcium provide information about the mechanisms by which these effectors regulate channel activity. The most studied of these complexes, those of Nav1.2 and Nav1.5, show details of the conformations and the specific contacts that are involved in channel regulation. Another voltage activated sodium channel, Nav1.4, shows significant calcium dependent inactivation, while its homolog Nav1.5 does not. The available structures shed light on the possible localization of the elements responsible for this effect. Mutations in the genes of these 3 Nav channels are associated with several disease conditions: Nav1.2, neurological conditions; Nav1.4, syndromes involving skeletal muscle; and Nav1.5, cardiac arrhythmias. Many of these disease-specific mutations are located at the interfaces involving CTNav and its effectors.  相似文献   

17.
18.
We have previously shown that fibroblast growth factor homologous factor 1B (FHF1B), a cytosolic member of the fibroblast growth factor family, associates with the sensory neuron-specific channel Na(v)1.9 but not with the other sodium channels present in adult rat dorsal root ganglia neurons. We show in this study that FHF1B binds to the C terminus of the cardiac voltage-gated sodium channel Na(v)1.5 and modulates the properties of the channel. The N-terminal 41 amino acid residues of FHF1B are essential for binding to Na(v)1.5, and the conserved acidic rich domain (amino acids 1773-1832) in the C terminus of Na(v)1.5 is sufficient for association with this factor. Binding of the growth factor to recombinant wild type human Na(v)1.5 in human embryonic kidney 293 cells produces a significant hyperpolarizing shift in the voltage dependence of channel inactivation. An aspartic acid to glycine substitution at position 1790 of the channel, which underlies one of the LQT-3 phenotypes of cardiac arrythmias, abolishes the interaction of the Na(v)1.5 channel with FHF1B. This is the first report showing that interaction with a growth factor can modulate properties of a voltage-gated sodium channel.  相似文献   

19.
Electrocardiographic QT- and T-wave alternans, presaging ventricular arrhythmia, reflects compromised adaptation of action potential (AP) duration (APD) to altered heart rate, classically attributed to incomplete Na(v)1.5 channel recovery prior to subsequent stimulation. The restitution hypothesis suggests a function whose slope directly relates to APD alternans magnitude, predicting a critical instability condition, potentially generating arrhythmia. The present experiments directly test for such correlations among arrhythmia, APD alternans and restitution. Mice haploinsufficient in the Scn5a, cardiac Na(+) channel gene (Scn5a(+/-)), previously used to replicate Brugada syndrome, were used, owing to their established arrhythmic properties increased by flecainide and decreased by quinidine, particularly in right ventricular (RV) epicardium. Monophasic APs, obtained during pacing with progressively decrementing cycle lengths, were systematically compared at RV and left ventricular epicardial and endocardial recording sites in Langendorff-perfused Scn5a(+/-) and wild-type hearts before and following flecainide (10 μM) or quinidine (5 μM) application. The extent of alternans was assessed using a novel algorithm. Scn5a(+/-) hearts showed greater frequencies of arrhythmic endpoints with increased incidences of ventricular tachycardia, diminished by quinidine, and earlier onsets of ventricular fibrillation, particularly following flecainide challenge. These features correlated directly with increased refractory periods, specifically in the RV, and abnormal restitution and alternans properties in the RV epicardium. The latter variables were related by a unique, continuous higher-order function, rather than a linear relationship with an unstable threshold. These findings demonstrate a specific relationship between alternans and restitution, as well as confirming their capacity to predict arrhythmia, but implicate mechanisms additional to the voltage feedback suggested in the restitution hypothesis.  相似文献   

20.
Genetic mutations of the cardiac sodium channel (SCN5A) specific only to the phenotype of atrial fibrillation have recently been described. However, data on the biophysical properties of SCN5A variants associated with atrial fibrillation are scarce. In a mother and son with lone atrial fibrillation, we identified a novel SCN5A coding variant, K1493R, which altered a highly conserved residue in the DIII-IV linker and was located six amino acids downstream from the fast inactivation motif of sodium channels. Biophysical studies of K1493R in tsA201 cells demonstrated a significant positive shift in voltage-dependence of inactivation and a large ramp current near resting membrane potential, indicating a gain-of-function. Enhanced cellular excitability was observed in transfected HL-1 atrial cardiomyocytes, including spontaneous action potential depolarizations and a lower threshold for action potential firing. These novel biophysical observations provide molecular evidence linking cellular “hyperexcitability” as a mechanism inducing vulnerability to this common arrhythmia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号