首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
L Ghisolfi  AC Keates  X Hu  DK Lee  CJ Li 《PloS one》2012,7(8):e43628
The cancer stem cell (CSC) model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.  相似文献   

2.
Cancer stem cells (CSCs) exhibit specific characteristics including decontrolled self-renewal, tumor-initiating, promoting, and metastatic potential, abnormal stemness signaling, and chemotherapy resistance. Thus, targeting CSC is becoming an emerging cancer treatment. α-Mangostin has been shown to have potent and multiple anticancer activities. Accordingly, we hypothesized that α-mangostin may diminish the stemness and proliferation of CSC-like cervical cancer cells. In our results, comparing to the parent cells, CSC-like SiHa and HeLa cells highly expressed CSC marker Sox2, Oct4, Nanog, CK-17, and CD49f. α-Mangostin significantly reduced the cell viability, sphere-forming ability, and expression of the CSC stemness makers of CSC-like cervical cancer cells. Further investigation showed that α-mangostin induced mitochondrial depolarization and mitochondrial apoptosis signaling, including upregulation of Bax, downregulation of Mcl-1 and Bcl-2, and activation of caspase-9/3. Moreover, α-mangostin synergically enhanced the cytotoxicity of cisplatin on CSC-like SiHa cells by promoting mitochondrial apoptosis and inhibiting the expression of CSC markers. Consistent with in vitro findings, in vivo tumor growth assay revealed that α-mangostin administration significantly inhibited the growth of inoculated CSC-like SiHa cells and synergically enhanced the antitumor effect of cisplatin. Our findings indicate that α-mangostin can reduce the stemness and proliferation of CSC-like SiHa and HeLa cells and promote the cytotoxicity of cisplatin, which may attribute to the mitochondrial apoptosis activation. Thus, it suggests that α-mangostin may have clinical potential to improve chemotherapy for cervical cancer by targeting cervical CSC.  相似文献   

3.
4.
Increasing evidence has confirmed the existence of cancer stem cells (CSCs) in both hematological malignancies and solid tumors. However, the origin of CSCs is still uncertain, and few agents have been capable of eliminating CSCs till now. The aim of this study was to investigate whether bulk pancreatic cancer cells could convert into CSCs under certain conditions and explore whether metformin and curcumin can kill pancreatic CSCs. Aspc1, Bxpc3 and Panc1 pancreatic cancer cells were cultured in stem cell culture medium (serum-free Dulbecco's modified Eagle medium/Nutrient Mixture F-12 containing basic fibroblast growth factor, epidermal growth factor, B27 and insulin) for 5 days and it was found that all the pancreatic cancer cells aggregated into spheres and expressed pancreatic cancer stem cell surface markers. Then characteristics of Panc1 sphere cells were analyzed and cytotoxicity assays were performed. The results show that Panc1 sphere cells exhibited CSC characteristics and were more resistant to conventional chemotherapy and more sensitive to metformin and curcumin than their parent cells. These findings suggested that bulk pancreatic cancer cells could acquire CSC characteristics under certain conditions, which may support the “yin-yang” model of CSCs (interconversion between bulk cancer cells and CSCs). These results also showed that metformin and curcumin could be candidate drugs for targeting pancreatic CSCs.  相似文献   

5.
6.
7.
The incidence of pancreatic cancer is on the rise. Risk factors for pancreatic cancer include alcohol toxicity and metabolic conditions such as obesity, hypertension, dyslipidaemia, insulin resistance and type 2 diabetes. However, the molecular mechanism by which chronic alcohol consumption contributes to pancreatic cancer is not well understood. The purpose of the study was to demonstrate the effects of long‐term chronic ethanol exposure on the transformation of human pancreatic normal ductal epithelial (HPNE) cells. Our data showed that ethanol‐transformed HPNE cells were more progressively transformed exhibiting spheroids and colonies, and anchorage‐independent growth. These transformed cells contained high levels of reactive oxygen species and induced SATB2 expression. Furthermore, during ethanol‐induced cellular transformation, cells gained the phenotypes of cancer stem cells (CSCs) by expressing pluripotency maintaining factors (Oct4, Sox2, cMyc and KLF4) and stem cell markers (CD24, CD44 and CD133). Ethanol‐induced SATB2 can bind to the promoters of KLF4, Oct4, cMyc, Sox2, Bcl‐2 and XIAP genes. Suppression of SATB2 expression in ethanol‐transformed HPNE cells inhibited cell proliferation, colony formation and markers of CSCs and pluripotency. These data suggest that chronic alcohol consumption may contribute toward the development of pancreatic cancer by converting HPNE cells to cancer stem‐like cells.  相似文献   

8.
Nowadays, research on CSCs is still in an initial stage, and there are few studies reporting the successful isolation and identification of CSCs. In the present study, we attempted to isolate CSCs through cultivating the cell line MKN45 in defined serum‐free medium and study the expression of stem cell markers or related proteins (Oct3/4, Sox2, Nanog and CD44) in CSCs. Moreover, immunofluorescence staining was performed to validate the stem cell markers of spheroid body‐forming cells. Further experiments were used to evaluate the SPOP expression in tumorsphere cells. In addition, ADAMTS9‐AS2 is a lncRNA that contributes to the genesis and development of many cancers, including gastric cancer (GC). We found ADAMTS9‐AS2 functioned as an anti‐oncogene and positively correlated with the expression of SPOP in GC tissues by combining bioinformatics analyses. Furthermore, we reported that ADAMTS9‐AS2 regulated the expression of SPOP in GC cells and tumorsphere cells to inhibit GC progression. Together, our results demonstrated that SPOP and ADAMTS9‐AS2 can be potential targets for GC treatment.  相似文献   

9.
Although early detection of breast cancer improved in recent years, prognosis of patients with late stage breast cancer remains poor, mostly due to development of multidrug resistance (MDR) followed by tumor recurrence. Cancer stem cells (CSCs), with higher drug efflux capability and other stem cell-like properties, are concentrated in a side population (SP) of cells, which were proposed to be responsible for MDR and tumor repopulation that cause patients to succumb to breast cancer. Therefore, targeting of CSCs as an adjuvant to chemotherapy should be able to provide a more effective treatment of this disease. Here, we used IMD-0354, an inhibitor of NF-κB, identified for targeting CSCs, in a combination therapy with doxorubicin encapsulated in targeted nanoparticles. IMD-0354 did target CSCs, evidenced by a decrease in the SP, demonstrated by the inhibition of the following: dye/drug efflux, reduction in ABC transporters as well as in colony formation in soft agar and low attachment plates. Decrease of stem-like gene expression of Oct4, Nanog and Sox2, and apoptosis resistance related to the Survivin gene also was observed after treatment with this compound. In addition, IMD-0354 targeted non-CSCs as indicated by reducing viability and increasing apoptosis. Targeted drug delivery, achieved with a legumain inhibitor, proved to enhance drug delivery under hypoxia, a hallmark of the tumor microenvironment, but not under normoxia. Together, this allowed a safe, non-toxic delivery of both anticancer agents to the tumor microenvironment of mice bearing syngeneic metastatic breast cancer. Targeting both bulk tumor cells with a chemotherapeutic agent and CSCs with IMD-0354 should be able to reduce MDR. This could eventually result in decreasing tumor recurrences and/or improve the outcome of metastatic disease.  相似文献   

10.
11.
Hepatocellular carcinoma (HCC) treatments are evaluated by two-dimensional (2D) in vitro culture systems, despite their limited ability to predict drug efficacy. The three-dimensional (3D) microporous scaffold provides the possibility of generating more reliable preclinical models to increase the efficacy of cancer treatments. The physical properties of a microporous cellulosic scaffold were evaluated. The cellulosic scaffold was biocompatible and had a highly porous network with appropriate pore size, swelling rate, and stiffness of cancer cell cultures. Cellulosic scaffolds were compared with 2D polystyrene for the culture of HepG2 and Huh7 human HCC cells. Cellulosic scaffolds promoted tumor spheroid formation. Cells cultured on scaffolds were more resistant to chemotherapy drugs and showed upregulation of EpCAM and Oct4. The migration ability of HCC cells cultured on scaffolds was significantly greater than that of cells grown in 2D cultures as evidenced by the downregulation of E-cadherin. In addition, the proportion of CD44+/CD133+ HCC cancer stem cells (CSCs) was significantly greater in cells cultured on scaffolds than in those grown in 2D cultures. These findings suggest that cellulosic scaffolds effectively mimic the in vivo tumor behavior and may serve as a platform for the study of anticancer therapeutics and liver CSCs.  相似文献   

12.
J Mao  S Fan  W Ma  P Fan  B Wang  J Zhang  H Wang  B Tang  Q Zhang  X Yu  L Wang  B Song  L Li 《Cell death & disease》2014,5(1):e1039
The Wnt1 protein, a secreted ligand that activates Wnt signaling pathways, contributes to the self-renewal of cancer stem cells (CSCs) and thus may be a major determinant of tumor progression and chemoresistance. In a series of gastric cancer specimens, we found strong correlations among Wnt1 expression, CD44 expression, and the grade of gastric cancer. Stable overexpression of Wnt1 increased AGS gastric cancer cells'' proliferation rate and spheroids formation, which expressed CSC surface markers Oct4 and CD44. Subcutaneous injection of nude mice with Wnt1-overexpressing AGS cells resulted in larger tumors than injection of control AGS cells. Salinomycin, an antitumor agent, significantly reduced the volume of tumor caused by Wnt1-overexpressing AGS cells in vivo. This is achieved by inhibiting the proliferation of CD44+Oct4+ CSC subpopulation, at least partly through the suppression of Wnt1 and β-catenin expression. Taken together, activation of Wnt1 signaling accelerates the proliferation of gastric CSCs, whereas salinomycin acts to inhibit gastric tumor growth by suppressing Wnt signaling in CSCs. These results suggest that Wnt signaling might have a critical role in the self-renewal of gastric CSCs, and salinomycin targeting Wnt signaling may have important clinical applications in gastric cancer therapy.  相似文献   

13.
Cancer stem cells (CSCs) are a specific subset of cancer cells that sustain tumor growth and dissemination. They might represent a significant treatment target to reduce malignant progression and prevent tumor recurrence. In solid tumors, several hierarchically organized CSC clones coexist, even within a single tumor. Among them, CSCs displaying an embryonic stem cell ‘stemness'' signature, based on the expression of Oct-4, Nanog and Sox2, are present in distinct high-grade tumor types associated with poor prognosis. We previously designed a model to isolate pure populations of these CSCs from distinct solid tumors and used it to screen for molecules showing selective toxicity for this type of CSC. Here we show that human immunodeficiency virus (HIV)-protease inhibitors (HIV-PIs) specifically target CSCs expressing an embryonic signature derived from tumors with distinct origins. They reduced proliferation in a dose-dependent manner with a higher specificity as compared with the total population of cancer cells and/or healthy stem cells, and they were efficient in inducing cell death. Lopinavir was the most effective HIV-PI among those tested. It reduced self-renewal and induced apoptosis of CSCs, subsequently impairing in vivo CSC-induced allograft formation. Two key pharmacophores in the LPV structure were also identified. They are responsible for the specificity of CSC targeting and also for the overall antitumoral activity. These results contribute to the identification of molecules presenting selective toxicity for CSCs expressing an embryonic stemness signature. This paves the way to promising therapeutic opportunities for patients suffering from solid cancer tumors of poor prognosis.  相似文献   

14.
Hepatocellular carcinoma (HCC), a highly malignant disease and the third leading cause of all cancer mortalities worldwide, often responses poorly to current treatments and results in dismal outcomes due to frequent chemoresistance and tumor relapse. The heterogeneity of HCC is an important attribute of the disease. It is the outcome of many factors, including the cross-talk between tumor cells within the tumor microenvironment and the acquisition and accumulation of genetic and epigenetic alterations in tumor cells. In addition, there is accumulating evidence in recent years to show that the malignancy of HCC can be attributed partly to the presence of cancer stem cell (CSC). CSCs are capable to self-renew, differentiate and initiate tumor formation. The regulation of the stem cell-like properties by several important signaling pathways have been found to endow the tumor cells with an increased level of tumorigenicity, chemoresistance, and metastatic ability. In this review, we will discuss the recent findings on hepatic CSCs, with special emphasis on their putative origins, relationship with hepatitis viruses, regulatory signaling networks, tumor microenvironment, and how these factors control the stemness of hepatic CSCs. We will also discuss some novel therapeutic strategies targeted at hepatic CSCs for combating HCC and perspectives of future investigation.  相似文献   

15.
16.
17.
Cancer stem cells (CSCs) are defined as a subset of slow cycling and undifferentiated cells that divide asymmetrically to generate highly proliferative, invasive, and chemoresistant tumor cells. Therefore, CSCs are an attractive population of cells to target therapeutically. CSCs are predicted to contribute to a number of types of malignancies including those in the blood, brain, lung, gastrointestinal tract, prostate, and ovary. Isolating and enriching a tumor cell population for CSCs will enable researchers to study the properties, genetics, and therapeutic response of CSCs. We generated a protocol that reproducibly enriches for ovarian cancer CSCs from ovarian cancer cell lines (SKOV3 and OVCA429). Cell lines are treated with 20 µM cisplatin for 3 days. Surviving cells are isolated and cultured in a serum-free stem cell media containing cytokines and growth factors. We demonstrate an enrichment of these purified CSCs by analyzing the isolated cells for known stem cell markers Oct4, Nanog, and Prom1 (CD133) and cell surface expression of CD177 and CD133. The CSCs exhibit increased chemoresistance. This method for isolation of CSCs is a useful tool for studying the role of CSCs in chemoresistance and tumor relapse.  相似文献   

18.
Normal cells mainly rely on oxidative phosphorylation as an effective energy source in the presence of oxygen. In contrast, most cancer cells use less efficient glycolysis to produce ATP and essential biomolecules. Cancer cells gain the characteristics of metabolic adaptation by reprogramming their metabolic mechanisms to meet the needs of rapid tumor growth. A subset of cancer cells with stem characteristics and the ability to regenerate exist throughout the tumor and are therefore called cancer stem cells (CSCs). New evidence indicates that CSCs have different metabolic phenotypes compared with differentiated cancer cells. CSCs can dynamically transform their metabolic state to favor glycolysis or oxidative metabolism. The mechanism of the metabolic plasticity of CSCs has not been fully elucidated, and existing evidence indicates that the metabolic phenotype of cancer cells is closely related to the tumor microenvironment. Targeting CSC metabolism may provide new and effective methods for the treatment of tumors. In this review, we summarize the metabolic characteristics of cancer cells and CSCs and the mechanisms of the metabolic interplay between the tumor microenvironment and CSCs, and discuss the clinical implications of targeting CSC metabolism.  相似文献   

19.
Increasing evidence has suggested cancer stem cells (CSCs) are considered to be responsible for cancer formation, recurrence, and metastasis. Recently, many studies have also revealed that microRNAs (miRNAs) strongly implicate in regulating self renewal and tumorigenicity of CSCs in human cancers. However, with respect to colon cancer, the role of miRNAs in stemness maintenance and tumorigenicity of CSCs still remains to be unknown. In the present study, we isolated a population of colon CSCs expressing a CD133 surface phenotype from human HT29 colonic adenocarcinoma cell line by Flow Cytometry Cell Sorting. The CD133+ cells possess a greater tumor sphere-forming efficiency in vitro and higher tumorigenic potential in vivo. Furthermore, the CD133+ cells are endowed with stem/progenitor cells-like property including expression of “stemness” genes involved in Wnt2, BMI1, Oct3/4, Notch1, C-myc and other genes as well as self-renewal and differentiation capacity. Moreover, we investigated the miRNA expression profile of colon CSCs using miRNA array. Consequently, we identified a colon CSCs miRNA signature comprising 11 overexpressed and 8 underexpressed miRNAs, such as miR-429, miR-155, and miR-320d, some of which may be involved in regulation of stem cell differentiation. Our results suggest that miRNAs might play important roles in stemness maintenance of colon CSCs, and analysis of specific miRNA expression signatures may contribute to potential cancer therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号