首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
破骨细胞是一种多核的,具有骨吸收功能的骨组织细胞,在骨吸收过程中起着至关重要的作用.破骨细胞骨吸收功能的异常会引发一系列的临床病症,如骨质疏松症、关节置换术后假体松动、骨硬化症和牙周病变等.破骨细胞骨吸收功能的进一步研究对于各类骨疾病的防治具有重要的意义.然而破骨细胞骨吸收功能的检测方法一直以来是制约破骨细胞研究的瓶颈之一.为此,围绕破骨细胞骨吸收功能的检测方法做一综述.  相似文献   

2.
The presence of spectrin was demonstrated in chick osteoclasts by Western blotting and light and electron microscopic immunolocalization. Additionally, screening of a chick osteoclast cDNA library revealed the presence of α-spectrin. Light microscope level immunocytochemical staining of osteoclasts in situ revealed spectrin staining throughout the cytoplasm with heavier staining found at the marrow-facing cell margin and around the nuclei. Confocal microscopy of isolated osteoclasts plated onto a glass substrate showed that spectrin encircled the organelle-rich cell center. Nuclei and cytoplasmic inclusions were also stained and the plasma membrane was stained in a nonuniform, patchy distribution corresponding to regions of apparent membrane ruffling. Ultracytochemical localization showed spectrin to be found at the plasma membrane and distributed throughout the cytoplasm with especially intense staining of the nuclear membrane and filaments within the nuclear compartment. J. Cell. Biochem. 71:204–215, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
    
Nutritional factors influence bone development. Previous studies demonstrated that bone mass significantly increased with suppressed bone resorption in early life of rats fed with AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB) powder for 2 weeks. However, the effects of increased phenolic acids in animal serum due to this diet on bone and bone resorption were unclear. This in vitro and in ex vivo study examined the effects of phenolic hippuric acid (HA) and 3-(3-hydroxyphenyl) propionic acid (3-3-PPA) on osteoclastic cell differentiation and bone resorption. We cultured murine osteoclast (macrophage) cell line, RAW 264.7 cells, and hematopoietic osteoclast progenitor cells (isolated from 4-week-old C57BL6/J mice) with 50 ng/ml of receptor activator of nuclear factor κ-Β ligand (RANKL). Morphologic studies showed decreased osteoclast number with treatment of 2.5% mouse serum from BB diet–fed animals compared with those treated with serum from standard casein diet–fed mice in both RAW 264.7 cell and primary cell cultures. HA and 3-3-PPA, but not 3–4-PPA, had dose-dependent suppressive effects on osteoclastogenesis and osteoclast resorptive activity in Corning osteo-assay plates. Signaling pathway analysis showed that after pretreatment with HA or 3-3-PPA, RANKL-stimulated increase of osteoclastogenic markers, such as nuclear factor of activated T-cells, cytoplasmic 1 and matrix metallopeptidase 9 gene/protein expression were blunted. Inhibitory effects of HA and 3-3-PPA on osteoclastogenesis utilized RANKL/RANK independent mediators. The study revealed that HA and 3-3-PPA significantly inhibited osteoclastogenesis and bone osteoclastic resorptive activity.  相似文献   

4.
Vitamin D and bone   总被引:5,自引:0,他引:5  
It is now well established that supraphysiological doses of 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] stimulate bone resorption. Recent studies have established that osteoblasts/stromal cells express receptor activator of NF-kappaB ligand (RANKL) in response to several bone-resorbing factors including 1alpha,25(OH)(2)D(3) to support osteoclast differentiation from their precursors. Osteoclast precursors which express receptor activator of NF-kappaB (RANK) recognize RANKL through cell-to-cell interaction with osteoblasts/stromal cells, and differentiate into osteoclasts in the presence of macrophage-colony stimulating factor (M-CSF). Osteoprotegerin (OPG) acts as a decoy receptor for RANKL. We also found that daily oral administration of 1alpha,25(OH)(2)D(3) for 14 days to normocalcemic thyroparathyroidectomized (TPTX) rats constantly infused with parathyroid hormone (PTH) inhibited the PTH-induced expression of RANKL and cathepsin K mRNA in bone. The inhibitory effect of 1alpha,25(OH)(2)D(3) on the PTH-induced expression of RANKL mRNA occurred only with physiological doses of the vitamin. Supraphysiological doses of 1alpha,25(OH)(2)D(3) increased serum Ca and expression of RANKL in vivo in the presence of PTH. These results suggest that the bone-resorbing activity of vitamin D does not occur at physiological dose levels in vivo. A certain range of physiological doses of 1alpha,25(OH)(2)D(3) rather suppress the PTH-induced bone resorption in vivo, supporting the concept that 1alpha,25(OH)(2)D(3) or its derivatives are useful for the treatment of various metabolic bone diseases such as osteoporosis and secondary hyperparathyroidism.  相似文献   

5.
    
Osteoclast (OC) is the only cell involved in bone resorption. Dysfunction of OCs leads to a variety of bone diseases. Ligustilide (LIG) is the main component of the volatile oil isolated and purified from Angelica sinensis. LIG exerts many pharmacological activities, but its effects on osteoclastogenesis and bone resorption are still unclear. Our study showed that LIG inhibited receptor activator of nuclear factor-κB (NF-κB) ligand-induced OC formation and activation in a dose-dependent manner. Additionally, LIG downregulated the messenger RNA (mRNA) expression of OC-specific genes, such as V-ATPase d2, tartrate-resistant acid phosphatase, a dendritic cell-specific transmembrane protein, cathepsin K, and nuclear factor of activated T cells cl. Furthermore, LIG blocked the activation of NF-κB/extracellular signal-regulated kinase/p38/immunoreceptor tyrosine-based activation motif signaling pathways. Crucially, the expression of tumor necrosis factor receptor-associated factor 6 proteins and the expression of receptor activator of NF-κB mRNA were inhibited by LIG. However, LIG did not affect the formation and mineralization of osteoblasts. Collectively, this observation suggests that LIG may serve as a promising agent for the prevention and treatment of diseases caused by abnormal bone resorption.  相似文献   

6.
7.
The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts   总被引:57,自引:0,他引:57  
Osteoprotegerin (OPG) and OPG-ligand (OPGL) potently inhibit and stimulate, respectively, osteoclast differentiation (Simonet, W.S., D.L. Lacey, C.R. Dunstan, M. Kelley, M.-S. Chang, R. Luethy, H.Q. Nguyen, S. Wooden, L. Bennett, T. Boone, et al. 1997. Cell. 89:309-319; Lacey, D.L., E. Timms, H.-L. Tan, M.J. Kelley, C.R. Dunstan, T. Burgess, R. Elliott, A. Colombero, G. Elliott, S. Scully, et al. 1998. Cell. 93: 165-176), but their effects on mature osteoclasts are not well understood. Using primary cultures of rat osteoclasts on bone slices, we find that OPGL causes approximately sevenfold increase in total bone surface erosion. By scanning electron microscopy, OPGL-treated osteoclasts generate more clusters of lacunae on bone suggesting that multiple, spatially associated cycles of resorption have occurred. However, the size of individual resorption events are unchanged by OPGL treatment. Mechanistically, OPGL binds specifically to mature OCs and rapidly (within 30 min) induces actin ring formation; a marked cytoskeletal rearrangement that necessarily precedes bone resorption. Furthermore, we show that antibodies raised against the OPGL receptor, RANK, also induce actin ring formation. OPGL-treated mice exhibit increases in blood ionized Ca++ within 1 h after injections, consistent with immediate OC activation in vivo. Finally, we find that OPG blocks OPGL's effects on both actin ring formation and bone resorption. Together, these findings indicate that, in addition to their effects on OC precursors, OPGL and OPG have profound and direct effects on mature OCs and indicate that the OC receptor, RANK, mediates OPGL's effects.  相似文献   

8.
Regulated fusion of mammalian lysosomes is critical to their ability to acquire both internalized and biosynthetic materials. Here, we report the identification of a novel human protein, hVam6p, that promotes lysosome clustering and fusion in vivo. Although hVam6p exhibits homology to the Saccharomyces cerevisiae vacuolar protein sorting gene product Vam6p/Vps39p, the presence of a citron homology (CNH) domain at the NH(2) terminus is unique to the human protein. Overexpression of hVam6p results in massive clustering and fusion of lysosomes and late endosomes into large (2-3 microm) juxtanuclear structures. This effect is reminiscent of that caused by expression of a constitutively activated Rab7. However, hVam6p exerts its effect even in the presence of a dominant-negative Rab7, suggesting that it functions either downstream of, or in parallel to, Rab7. Data from gradient fractionation, two-hybrid, and coimmunoprecipitation analyses suggest that hVam6p is a homooligomer, and that its self-assembly is mediated by a clathrin heavy chain repeat domain in the middle of the protein. Both the CNH and clathrin heavy chain repeat domains are required for induction of lysosome clustering and fusion. This study implicates hVam6p as a mammalian tethering/docking factor characterized with intrinsic ability to promote lysosome fusion in vivo.  相似文献   

9.
Osteoclasts are large multinucleate cells unique in their capacity to resorb bone. These cells are exposed locally to high levels of ionised calcium during the process of resorption. We have therefore examined the effect of elevated extracellular calcium on the morphology and function of freshly disaggregated rat osteoclasts. Cell size and motility were quantitated by time-lapse video recording together with digitisation and computer-centred image analysis. In order to assess the resorptive capacity of isolated osteoclasts, we measured the total area of resorption of devitalised cortical bone by means of scanning electron microscopy and computer-based morphometry. The results show that elevation of the extracellular calcium concentration causes a dramatic reduction of cell size, accompanied by a marked diminution of enzyme release and abolition of bone resorption. We propose that ionised calcium might play an important role in the local regulation of osteoclastic bone resorption.  相似文献   

10.
    
Bisphosphonates (BPs), especially zoledronic acid (ZOL), are clinically used to treat osteolytic bone lesions. However, serious side-effects may be also induced during the therapeutic process. To improve the BPs drugs, here, we investigated the effects of a series of ZOL derivatives with increasing number of methylene linker between the imidazole ring and the P–C–P backbone named IPrDP, IBDP, IPeDP, and IHDP on cell viability and receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation, function and apoptosis induction in mouse bone marrow-derived macrophages (BMMs). Our results suggested that IPeDP and IHDP, which contains 4 and 5 methylene linkers, respectively, exerted lower toxicity on BMMs compared with ZOL, IPrDP, and IBDP, which contains 1, 2, and 3 methylene linkers respectively. At concentrations below cytotoxicity threshold, IPeDP and IHDP possessed strong abilities of antiosteoclast formation, antibone absorption, and inducing osteoclast apoptosis, which were similar to ZOL and more powerful than IPrDP and IBDP. The mechanism behind these effects of IPeDP and IHDP might involve the interference of small GTPases prenylation through suppression of mevalonate pathway. The downregulation of JNK and Akt phosphorylation and subsequent inhibition of the expression of c-Fos and NFATc1 might also be involved. Our results supported the potential usage of IPeDP and IHDP to treat bone-related disorders involving increased osteoclastogenesis. Our attempt to extend the methylene linker between the imidazole ring and the P–C–P backbone of ZOL also reveals some regularities between the structure and properties of the BPs drugs.  相似文献   

11.
12.
13.
The function of the nonreceptor tyrosine kinase c-Src as a plasma membrane-associated molecular effector of a variety of extracellular stimuli is well known. Here, we show that c-Src is also present within mitochondria, where it phosphorylates cytochrome c oxidase (Cox). Deleting the c-src gene reduces Cox activity, and this inhibitory effect is restored by expressing exogenous c-Src. Furthermore, reducing endogenous Src kinase activity down-regulates Cox activity, whereas activating Src has the opposite effect. Src-induced Cox activity is required for normal function of cells that require high levels of ATP, such as mitochondria-rich osteoclasts. The peptide hormone calcitonin, which inhibits osteoclast function, also down-regulates Cox activity. Increasing Src kinase activity prevented the inhibitory effect of calcitonin on Cox activity and osteoclast function. These results suggest that c-Src plays a previously unrecognized role in maintaining cellular energy stores by activating Cox in mitochondria.  相似文献   

14.
15.
    
Osteoporosis is a form of osteolytic disease caused by an imbalance in bone homeostasis, with reductions in osteoblast bone formation, and augmented osteoclast formation and resorption resulting in reduced bone mass. Cajaninstilbene acid (CSA) is a natural compound derived from pigeon pea leaves. CSA possesses beneficial properties as an anti-inflammatory, antibacterial, antihepatitis, and anticancer agent; however, its potential to modulate bone homeostasis and osteoporosis has not been studied. We observed that CSA has the ability to suppress RANKL-mediated osteoclastogenesis, osteoclast marker gene expression, and bone resorption in a dose-dependent manner. Mechanistically, it was revealed that CSA attenuates RANKL-activated NF-κB and nuclear factor of activated T-cell pathways and inhibited phosphorylation of key signaling mediators c-Fos, V-ATPase-d2, and ERK. Moreover, in osteoclasts, CSA blocked RANKL-induced ROS activity as well as calcium oscillations. We further evaluated the therapeutic effect of CSA in a preclinical mouse model and showed that in vivo treatment of ovariectomized C57BL/6 mice with CSA protects the mice from osteoporotic bone loss. Thus, this study demonstrates that osteolytic bone diseases can potentially be treated by CSA.  相似文献   

16.
破骨细胞是骨髓系细胞经细胞因子RANKL和M-CSF共同刺激后融合而成,在维持骨代谢平衡中发挥重要作用。破骨细胞的“形成”和“活化”是破骨细胞生理活动的两个重要方面。该文综述了最近关于破骨细胞的“形成”和“活化”方面的研究进展。从转录因子、细胞因子、酸性环境、蛋白激酶和淋巴细胞等方面详述了对破骨细胞形成的调节,从整合素、溶酶体、Src蛋白、破骨相关基因、骨保护素、Ephrin/Eph和Semaphorin信号通路等方面详述了对破骨细胞活化的调节,并总结了破骨细胞凋亡方面的最新进展。最后,该文阐述了力学刺激对破骨细胞形成和活化的影响,为以破骨细胞为靶点的药物研发提供了新的思路。  相似文献   

17.
Apoptosis of osteocytes and osteoblasts precedes bone resorption and bone loss with reduced mechanical stimulation, and receptor activator of NF-κB ligand (RANKL) expression is increased with unloading in mice. Because osteocytes are major RANKL producers, we hypothesized that apoptotic osteocytes signal to neighboring osteocytes to increase RANKL expression, which, in turn, increases osteoclastogenesis and bone resorption. The traditional bisphosphonate (BP) alendronate (Aln) or IG9402, a BP analog that does not inhibit resorption, prevented the increase in osteocyte apoptosis and osteocytic RANKL expression. The BPs also inhibited osteoblast apoptosis but did not prevent the increase in osteoblastic RANKL. Unloaded mice exhibited high serum levels of the bone resorption marker C-telopeptide fragments of type I collagen (CTX), elevated osteoclastogenesis, and increased osteoclasts in bone. Aln, but not IG9402, prevented all of these effects. In addition, Aln prevented the reduction in spinal and femoral bone mineral density, spinal bone volume/tissue volume, trabecular thickness, mechanical strength, and material strength induced by unloading. Although IG9402 did not prevent the loss of bone mass, it partially prevented the loss of strength, suggesting a contribution of osteocyte viability to strength independent of bone mass. These results demonstrate that osteocyte apoptosis leads to increased osteocytic RANKL. However, blockade of these events is not sufficient to restrain osteoclast formation, inhibit resorption, or stop bone loss induced by skeletal unloading.  相似文献   

18.
The lytic proteins mediating target cell killing are stored in the lysosomes of activated cytotoxic T lymphocytes (CTL) and are secreted upon recognition of a target cell. These secretory lysosomes cannot be detected in resting T lymphocytes. Interaction of a resting cell with a target cell activates de novo formation of secretory lysosomes. CTL clones in culture mimic this behaviour, and so provide an ideal system for studying secretory lysosome biogenesis and maturation. In the genetic disease, Chediak Higashi syndrome (CHS), all lysosomes in the cells are enlarged and reduced in number compared with wild-type (WT) cells. We have used CTL from this disease to study secretory lysosome biogenesis and maturation. We show that at early stages after activation the secretory lysosomes are identical in WT and mutant cells, and that delivery of proteins to the secretory lysosome along the biosynthetic and endocytic pathways is normal in the mutant cells. With time, the lysosomes in the mutant cells aggregate, become larger and fewer in number and eventually form giant structures. Our results show that the initial steps of secretory lysosome formation are normal in CHS, but that the organelles subsequently fuse together during cell maturation to form the giant secretory lysosomes.  相似文献   

19.
Large multinucleated osteoclasts are the major cells responsible for bone breakdown and have been reported to produce high levels of superoxides which may contribute to the process of bone resorption (Key et al.: J Bone and Mineral Res 4 [suppl. 1]:S206, 1989). Osteoclasts also possess high levels of superoxide dismutase, a protective enzyme capable of converting toxic superoxides to less dtoxic H2O2 (Fridovich: J Biol Chem 264:7761-7764, 1989). The amino acid sequence of manganese and/or iron superoxide dismutase has a conserved region which exhibits substantial homology with a fragment obtained from a high molecular weight osteoclast surface marker glycoprotein which is reactive with monoclonal antibody 121F. In this report, evidence is presented substantiating immunological, biochemical, and functional similarities between the osteoclast membrane antigen recognized by the 121F monoclonal antibody and superoxide dismutase. Western blot and immunoprecipitation studies show that a monospecific polyclonal antibody generated against immunoaffinity purified antigen is cross-reactive with superoxide dismutase. Both the antigen and a high molecular weight superoxide dismutase activity have been detected in osteoclast plasma membrane preparations. The levels of superoxide dismutase activity and the membrane antigen have been found to correlate in antigen depletion studies and in western blots probing osteoclasts and closely related marrow-derived giant cells. Moreover, regions of osteoclast superoxide dismutase activity identified by electrophoretic zymogram analysis have been shown by gel electrophoresis and western blots to contain the high molecular weight antigen, or complexes of the antigen with the 121F monoclonal antibody when these were premixed prior to nondenaturing electrophoresis. It is proposed that the osteoclast plasma membrane possesses a high molecular weight superoxide dismutase activity. Furthermore, it appears that this activity is associated with the osteoclast antigen recognized by the 121F monoclonal antibody.  相似文献   

20.
Regulation of osteoclast protease expression by RANKL   总被引:9,自引:0,他引:9  
Receptor activator of NF-kappaB ligand (RANKL) is essential for osteoclast (OC) differentiation/activation and functions through its receptor RANK at the surface of the osteoclastic cells. This study investigated for the first time the direct effects of hRANKL on protease/protease inhibitor expressions and protease activities in purified rabbit osteoclast cultures, using semi-quantitative RT-PCR, gelatin zymography, and enzymatic assays. RANKL was shown to exert in vitro pro-resorptive effects by increasing osteoclast marker expressions (Tartrate resistant acid phosphatase (TRAP) and cathepsin K), MMP-9 expression, and pro-MMP-9 activity and by diminishing TIMP-1 expression, leading to an up-regulation of the MMP-9/TIMP-1 ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号