首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ubiquitination of proliferating cell nuclear antigen (PCNA) to ub-PCNA is essential for DNA replication across bulky template lesions caused by UV radiation and alkylating agents, as ub-PCNA orchestrates the recruitment and switching of translesion synthesis (TLS) polymerases with replication polymerases. This allows replication to proceed, leaving the DNA to be repaired subsequently. Defects in a TLS polymerase, Pol η, lead to a form of Xeroderma pigmentosum, a disease characterized by severe skin sensitivity to sunlight damage and an increased incidence of skin cancer. Structurally, however, information on how ub-PCNA orchestrates the switching of these two classes of polymerases is lacking. We have solved the structure of ub-PCNA and demonstrate that the ubiquitin molecules in ub-PCNA are radially extended away from the PCNA without structural contact aside from the isopeptide bond linkage. This unique orientation provides an open platform for the recruitment of TLS polymerases through ubiquitin-interacting domains. However, the ubiquitin moieties, to the side of the equatorial PCNA plane, can place spatial constraints on the conformational flexibility of proteins bound to ub-PCNA. We show that ub-PCNA is impaired in its ability to support the coordinated actions of Fen1 and Pol δ in assays mimicking Okazaki fragment processing. This provides evidence for the novel concept that ub-PCNA may modulate additional DNA transactions other than TLS polymerase recruitment and switching.  相似文献   

2.
Cells have evolved mutagenic bypass mechanisms that prevent stalling of the replication machinery at DNA lesions. This process, translesion DNA synthesis (TLS), involves switching from high-fidelity DNA polymerases to specialized DNA polymerases that replicate through a variety of DNA lesions. In eukaryotes, polymerase switching during TLS is regulated by the DNA damage-triggered monoubiquitylation of PCNA. How the switch operates is unknown, but all TLS polymerases of the so-called Y-family possess PCNA and ubiquitin-binding domains that are important for their function. To gain insight into the structural mechanisms underlying the regulation of TLS by ubiquitylation, we have probed the interaction of ubiquitin with a conserved ubiquitin-binding motif (UBM2) of Y-family polymerase Polι. Using NMR spectroscopy, we have determined the structure of a complex of human Polι UBM2 and ubiquitin, revealing a novel ubiquitin recognition fold consisting of two α-helices separated by a central trans-proline residue conserved in all UBMs. We show that, different from the majority of ubiquitin complexes characterized to date, ubiquitin residue Ile44 only plays a modest role in the association of ubiquitin with Polι UBM2. Instead, binding of UBM2 is centered on the recognition of Leu8 in ubiquitin, which is essential for the interaction.  相似文献   

3.
Translesion synthesis (TLS), the process by which DNA polymerases replicate through DNA lesions, is the source of most DNA damage-induced mutations. Sometimes TLS is carried out by replicative polymerases that have evolved to synthesize DNA on non-damaged templates. Most of the time, however, TLS is carried out by specialized translesion polymerases that have evolved to synthesize DNA on damaged templates. TLS requires the mono-ubiquitylation of the replication accessory factor proliferating cell nuclear antigen (PCNA). PCNA and ubiquitin-modified PCNA (UbPCNA) stimulate TLS by replicative and translesion polymerases. Two mutant forms of PCNA, one with an E113G substitution and one with a G178S substitution, support normal cell growth but inhibit TLS thereby reducing mutagenesis in yeast. A re-examination of the structures of both mutant PCNA proteins revealed substantial disruptions of the subunit interface that forms the PCNA trimer. Both mutant proteins have reduced trimer stability with the G178S substitution causing a more severe defect. The mutant forms of PCNA and UbPCNA do not stimulate TLS of an abasic site by either replicative Pol δ or translesion Pol η. Normal replication by Pol η was also impacted, but normal replication by Pol δ was much less affected. These findings support a model in which reduced trimer stability causes these mutant PCNA proteins to occasionally undergo conformational changes that compromise their ability to stimulate TLS by both replicative and translesion polymerases.  相似文献   

4.
5.
Replication of damaged DNA by translesion synthesis in human cells   总被引:6,自引:0,他引:6  
Lehmann AR 《FEBS letters》2005,579(4):873-876
Most types of DNA damage block the passage of the replication machinery. In order to bypass these blocks, cells employ special translesion synthesis (TLS) DNA polymerases, which have lower stringency than replicative polymerases. DNA polymerase eta is the major polymerase responsible for bypassing UV lesions in DNA and its absence results in the variant form of the genetic disorder, xeroderma pigmentosum. Other TLS polymerases have specificities for different types of damage, but their precise roles inside the cell have not yet been established. These polymerases are located in replication factories during DNA replication and the polymerase sliding clamp PCNA plays an important role in mediating switching between different polymerases.  相似文献   

6.
Many DNA lesions cause pausing of replication forks at lesion sites; thus, generating gaps in the daughter strands that are filled‐in by post‐replication repair (PRR) pathways. In Saccharomyces cerevisiae, PRR involves translesion synthesis (TLS) mediated by Polη or Polζ, or Rad5‐dependent gap filling through a poorly characterized error‐free mechanism. We have developed an assay to monitor error‐free and mutagenic TLS across single DNA lesions in Schizosaccharomyces pombe. For both main UV photolesions, we have delineated a major error‐free pathway mediated by a distinct combination of TLS polymerases. Surprisingly, these TLS pathways require enzymes needed for poly‐ubiquitination of proliferating cell nuclear antigen (PCNA) as well as those required for mono‐ubiquitination. For pathways that require several TLS polymerases the poly‐ubiquitin chains of PCNA may facilitate their recruitment through specific interactions with their multiple ubiquitin‐binding motifs. These error‐free TLS pathways may at least partially account for the previously described poly‐ubiquitination‐dependent error‐free branch of PRR. This work highlights major differences in the control of lesion tolerance pathways between S. pombe and S. cerevisiae despite the homologous sets of PRR genes these organisms share.  相似文献   

7.
Stalled DNA replication forks activate specific DNA repair mechanism called post-replication repair (PRR) pathways that simply bypass DNA damage. The bypassing of DNA damage by PRR prevents prolonged stalling of DNA replication that could result in double strand breaks (DSBs). Proliferating cell nuclear antigen (PCNA) functions to initiate and choose different bypassing pathways of PRR. In yeast, DNA replication forks stalled by DNA damage induces monoubiquitination of PCNA at K164, which is catalyzed by Rad6/Rad18 complex. PCNA monoubiquitination triggers the replacement of replicative polymerase with special translesion synthesis (TLS) polymerases that are able to replicate past DNA lesions. The PCNA interaction motif and/or the ubiquitin binding motif in most TLS polymerases seem to be important for the regulation of TLS. The TLS pathway is usually error-prone because TLS polymerases have low fidelity and no proofreading activity. PCNA can also be further polyubiquitinated by Ubc13/ Mms2/Rad5 complex, which adds an ubiquitin chain onto monoubiquitinated K164 of PCNA. PCNA polyubiquitination directs a different PRR pathway known as error-free damage avoidance, which uses the newly synthesized sister chromatid as a template to bypass DNA damage presumably through template switching mechanism. Mammalian homologues of all of the yeast PRR proteins have been identified, thus PRR is well conserved throughout evolution. Mutations of some PRR genes are associated with a higher risk for cancers in mice and human patients, strongly supporting the importance of PRR as a tumor suppressor pathway.  相似文献   

8.
The Y-family of DNA polymerases support of translesion DNA synthesis (TLS) associated with stalled DNA replication by DNA damage. Recently, a number of studies suggest that some specialized TLS polymerases also support other aspects of DNA metabolism beyond TLS in vivo. Here we show that mouse polymerase kappa (Polκ) could accumulate at laser-induced sites of damage in vivo resembling polymerases eta and iota. The recruitment was mediated through Polκ C-terminus which contains the PCNA-interacting peptide, ubiquitin zinc finger motif 2 and nuclear localization signal. Interestingly, this recruitment was significantly reduced in MSH2-deficient LoVo cells and Rad18-depleted cells. We further observed that Polκ-deficient mouse embryo fibroblasts were abnormally sensitive to H2O2 treatment and displayed defects in both single-strand break repair and double-strand break repair. We speculate that Polκ may have an important role in strand break repair following oxidative stress in vivo.  相似文献   

9.
It has long been appreciated that Cdc7 is an essential protein kinase that phosphorylates Mcm2-7 helicase subunits to promote initiation of DNA replication. In addition to its well-elucidated role in DNA replication, recent studies suggest that DDK is active in genotoxin-treated cells and may mediate aspects of the DNA damage response. However, specific role(s) of DDK and its effector targets in DNA damage signaling have not been defined. A recent study from our laboratories has identified the E3 ubiquitin ligase Rad18 as novel substrate of DDK in vitro and in human cells. Rad18 plays a central role in a post-replication DNA repair pathway termed ‘Trans-Lesion Synthesis’ (TLS) by promoting recruitment of DNA Polymerase eta (Polη) and other TLS polymerases to stalled replication forks. DDK-mediated Rad18 phosphorylation promotes Rad18-Polη complex formation and facilitates Rad18-dependent recruitment of Polη to stalled replication forks. The mechanisms that regulate Rad18-dependent TLS are incompletely understood. Our study provides the first demonstration of Rad18 regulation by direct phosphorylation and defines a novel mechanism for Rad18-dependent recruitment of TLS polymerases to stalled forks. This study also demonstrates a molecular basis for integration of TLS with S-phase progression via the essential Cdc7 kinase. These findings reveal unexpected mechanistic insights to the regulation of the TLS pathway and Polη recruitment.  相似文献   

10.
Translesion synthesis polymerases (TLS Pols) are required to tolerate DNA lesions that would otherwise cause replication arrest and cell death. Aberrant expression of these specialized Pols may be responsible for increased mutagenesis and loss of genome integrity in human cancers. The molecular events that control the usage of TLS Pols in non-pathological conditions remain largely unknown. Here, we show that aberrant recruitment of TLS Polκ to replication forks results in genomic instability and can be mediated through the loss of the deubiquitinase USP1. Moreover, artificial tethering of Polκ to proliferating cell nuclear antigen (PCNA) circumvents the need for its ubiquitin-binding domain in the promotion of genomic instability. Finally, we show that the loss of USP1 leads to a dramatic reduction of replication fork speed in a Polκ-dependent manner. We propose a mechanism whereby reversible ubiquitination of PCNA can prevent spurious TLS Pol recruitment and regulate replication fork speed to ensure the maintenance of genome integrity.  相似文献   

11.
Ubiquitin conjugation provides a crucial signaling role in hundreds of cellular pathways; however, a structural understanding of ubiquitinated substrates is lacking. One important substrate is monoubiquitinated PCNA (PCNA-Ub), which signals for recruitment of damage-tolerant polymerases in the translesion synthesis (TLS) pathway of DNA damage avoidance. We use a novel and efficient enzymatic method to produce PCNA-Ub at high yield with a native isopeptide bond and study its Usp1/UAF1-dependent deconjugation. In solution we find that the ubiquitin moiety is flexible relative to the PCNA, with its hydrophobic patch mostly accessible for recruitment of TLS polymerases, which promotes the interaction with polymerase η. The studies are a prototype for the nature of the ubiquitin modification.  相似文献   

12.
Mutagenesis is a hallmark and enabling characteristic of cancer cells. The E3 ubiquitin ligase RAD18 and its downstream effectors, the ‘Y-family’ Trans-Lesion Synthesis (TLS) DNA polymerases, confer DNA damage tolerance at the expense of DNA replication fidelity. Thus, RAD18 and TLS polymerases are attractive candidate mediators of mutagenesis and carcinogenesis. The skin cancer-propensity disorder xeroderma pigmentosum-variant (XPV) is caused by defects in the Y-family DNA polymerase Pol eta (Polη). However it is unknown whether TLS dysfunction contributes more generally to other human cancers. Recent analyses of cancer genomes suggest that TLS polymerases generate many of the mutational signatures present in diverse cancers. Moreover biochemical studies suggest that the TLS pathway is often reprogrammed in cancer cells and that TLS facilitates tolerance of oncogene-induced DNA damage. Here we review recent evidence supporting widespread participation of RAD18 and the Y-family DNA polymerases in the different phases of multi-step carcinogenesis.  相似文献   

13.
The generation of high affinity antibodies in B cells critically depends on translesion synthesis (TLS) polymerases that introduce mutations into immunoglobulin genes during somatic hypermutation (SHM). The majority of mutations at A/T base pairs during SHM require ubiquitination of PCNA at lysine 164 (PCNA-Ub), which activates TLS polymerases. By comparing the mutation spectra in B cells of WT, TLS polymerase η (Polη)-deficient, PCNA(K164R)-mutant, and PCNA(K164R);Polη double-mutant mice, we now find that most PCNA-Ub-independent A/T mutagenesis during SHM is mediated by Polη. In addition, upon exposure to various DNA damaging agents, PCNA(K164R) mutant cells display strongly impaired recruitment of TLS polymerases, reduced daughter strand maturation and hypersensitivity. Interestingly, compared to the single mutants, PCNA(K164R);Polη double-mutant cells are dramatically delayed in S phase progression and far more prone to cell death following UV exposure. Taken together, these data support the existence of PCNA ubiquitination-dependent and -independent activation pathways of Polη during SHM and DNA damage tolerance.  相似文献   

14.
Göhler T  Munoz IM  Rouse J  Blow JJ 《DNA Repair》2008,7(5):775-787
Monoubiquitination of proliferating cell nuclear antigen (PCNA) enables translesion synthesis (TLS) by specialized DNA polymerases to replicate past damaged DNA. We have studied PCNA modification and chromatin recruitment of TLS polymerases in Xenopus egg extracts and mammalian cells. We show that Xenopus PCNA becomes ubiquitinated and sumoylated after replication stress induced by UV or aphidicolin. Under these conditions the TLS polymerase eta was recruited to chromatin and also became monoubiquitinated. PTIP/Swift is an adaptor protein for the ATM/ATR kinases. Immunodepletion of PTIP/Swift from Xenopus extracts prevented efficient PCNA ubiquitination and polymerase eta recruitment to chromatin during replicative stress. In addition to PCNA ubiquitination, efficient polymerase eta recruitment to chromatin also required ATR kinase activity. We also show that PTIP depletion from mammalian cells by RNAi reduced PCNA ubiquitination in response to DNA damage, and also decreased the recruitment to chromatin of polymerase eta and the recombination protein Rad51. Our results suggest that PTIP/Swift is an important new regulator of DNA damage avoidance in metazoans.  相似文献   

15.
PCNA is monoubiquitinated in response to DNA damage and fork stalling and then initiates recruitment of specialized polymerases in the DNA damage tolerance pathway, translesion synthesis (TLS). Since PCNA is reported to associate with Epstein-Barr virus (EBV) DNA during its replication, we investigated whether the EBV deubiquitinating (DUB) enzyme encoded by BPLF1 targets ubiquitinated PCNA and disrupts TLS. An N-terminal BPLF1 fragment (a BPLF1 construct containing the first 246 amino acids [BPLF1 1-246]) associated with PCNA and attenuated its ubiquitination in response to fork-stalling agents UV and hydroxyurea in cultured cells. Moreover, monoubiquitinated PCNA was deubiquitinated after incubation with purified BPLF1 1-246 in vitro. BPLF1 1-246 dysregulated TLS by reducing recruitment of the specialized repair polymerase polymerase η (Polη) to the detergent-resistant chromatin compartment and virtually abolished localization of Polη to nuclear repair foci, both hallmarks of TLS. Expression of BPLF1 1-246 decreased viability of UV-treated cells and led to cell death, presumably through deubiquitination of PCNA and the inability to repair damaged DNA. Importantly, deubiquitination of PCNA could be detected endogenously in EBV-infected cells in comparison with samples expressing short hairpin RNA (shRNA) against BPLF1. Further, the specificity of the interaction between BPLF1 and PCNA was dependent upon a PCNA-interacting peptide (PIP) domain within the N-terminal region of BPLF1. Both DUB activity and PIP sequence are conserved in the members of the family Herpesviridae. Thus, deubiquitination of PCNA, normally deubiquitinated by cellular USP1, by the viral DUB can disrupt repair of DNA damage by compromising recruitment of TLS polymerase to stalled replication forks. PCNA is the first cellular target identified for BPLF1 and its deubiquitinating activity.  相似文献   

16.
Replicative DNA polymerases are blocked by damage in the template DNA. To get past this damage, the cell employs specialised translesion synthesis (TLS) polymerases, which have reduced stringency and are able to bypass different lesions. For example, DNA polymerase ? (pol?) is able to carry out TLS past UV-induced cyclobutane pyrimidine dimers. How does the cell bring about the switch from replicative to TLS polymerase? We have shown that, in human cells, when the replication machinery is blocked at DNA damage, PCNA, the sliding clamp required for DNA replication, is mono-ubiquitinated and that this modified form of PCNA has increased affinity for pol?. This provides a mechanism for the polymerase switch. In this Extra-View, we discuss the possible signals that might trigger ubiquitination of PCNA, whether PCNA becomes de-ubiquitinated after TLS has been accomplished and the role of the hREV1 protein in TLS. We point out some apparent differences between mechanisms in Saccharomyces cerevisiae and human cells.  相似文献   

17.
DNA damage blocks the progression of the replication fork. In order to circumvent the damaged bases, cells employ specialized low stringency DNA polymerases, which are able to carry out translesion synthesis (TLS) past different types of damage. The five polymerases used in TLS in human cells have different substrate specificities, enabling them to deal with many different types of damaged bases. PCNA plays a central role in recruiting the TLS polymerases and effecting the polymerase switch from replicative to TLS polymerase. When the fork is blocked PCNA gets ubiquitinated. This increases its affinity for the TLS polymerases, which all have novel ubiquitin-binding motifs, thereby facilitating their engagement at the stalled fork to effect TLS.  相似文献   

18.
Replicative DNA polymerases duplicate genomes in a very efficient and accurate mode. However their progression can be blocked by DNA lesions since they are unable to accommodate bulky damaged bases in their active site. In response to replication blockage, monoubiquitination of PCNA promotes the switch between replicative and specialized polymerases proficient to overcome the obstacle. In this study, we characterize novel connections between proteins involved in replication and TransLesion Synthesis (TLS). We demonstrate that PDIP38 (Polδ interacting protein of 38 kDa) directly interacts with the TLS polymerase Polη. Interestingly, the region of Polη interacting with PDIP38 is found to be located within the ubiquitin-binding zinc finger domain (UBZ) of Polη. We show that the depletion of PDIP38 increases the number of cells with Polη foci in the absence of DNA damage and diminishes cell survival after UV irradiation. In addition, PDIP38 is able to interact directly not only with Polη but also with the specialized polymerases Rev1 and Polζ (via Rev7). We thus suggest that PDIP38 serves as a mediator protein helping TLS Pols to transiently replace replicative polymerases at damaged sites.  相似文献   

19.
Lehmann AR 《FEBS letters》2011,585(18):2772-2779
The cell uses specialised Y-family DNA polymerases or damage avoidance mechanisms to replicate past damaged sites in DNA. These processes are under complex regulatory systems, which employ different types of post-translational modification. All the Y-family polymerases have ubiquitin binding domains that bind to mono-ubiquitinated PCNA to effect the switching from replicative to Y-family polymerase. Ubiquitination and de-ubiquitination of PCNA are tightly regulated. There is also evidence for another as yet unidentified ubiquitinated protein being involved in recruitment of Y-family polymerases to chromatin. Poly-ubiquitination of PCNA stimulates damage avoidance, and, at least in yeast, PCNA is SUMOylated to prevent unwanted recombination events at the replication fork. The Y-family polymerases themselves can be ubiquitinated and, in the case of DNA polymerase η, this results in the polymerase being excluded from chromatin.  相似文献   

20.
Translesion synthesis (TLS) provides a mechanism of copying damaged templates during DNA replication. This potentially mutagenic process may operate either at the replication fork or at post-replicative gaps. We used the example of T-T cyclobutane pyrimidine dimer (CPD) bypass to determine the influence of polymerase recruitment via PCNA ubiquitylation versus the REV1 protein on the efficiency and mutagenic outcome of TLS. Using mutant chicken DT40 cell lines we show that, on this numerically most important UV lesion, defects in polymerase η or in PCNA ubiquitylation similarly result in the long-term failure of lesion bypass with persistent strand gaps opposite the lesion, and the elevation of mutations amongst successful TLS events. Our data suggest that PCNA ubiquitylation promotes CPD bypass mainly by recruiting polymerase η, resulting in the majority of CPD lesions bypassed in an error-free manner. In contrast, we find that polymerase ζ is responsible for the majority of CPD-dependent mutations, but has no essential function in the completion of bypass. These findings point to a hierarchy of access of the different TLS polymerases to the lesion, suggesting a temporal order of their recruitment. The similarity of REV1 and REV3 mutant phenotypes confirms that the involvement of polymerase ζ in TLS is largely determined by its recruitment to DNA by REV1. Our data demonstrate the influence of the TLS polymerase recruitment mechanism on the success and accuracy of bypass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号