首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we describe a biological role for endogenous CD45+ stem cells in maintaining muscle integrity by participating in regeneration. Our experiments further establish that Wnt-signaling is the mechanism by which resident CD45+ adult stem cells are induced to undergo myogenic specification during muscle regeneration. Importantly, our study suggests that targeting the Wnt-pathway represents a promising therapeutic approach for the treatment of neuromuscular degenerative diseases.  相似文献   

2.
Polesskaya A  Seale P  Rudnicki MA 《Cell》2003,113(7):841-852
The observation that CD45(+) stem cells injected into the circulation participate in muscle regeneration raised the question of whether CD45(+) stem cells resident in muscle play a physiological role during regeneration. We found that CD45(+) cells cultured from uninjured muscle were uniformly nonmyogenic. However, CD45(+) cells purified from regenerating muscle readily gave rise to determined myoblasts. The number of CD45(+) cells in muscle rapidly expanded following injury, and a high proportion entered the cell cycle. Investigation of candidate pathways involved in embryonic myogenesis revealed that Wnt signaling was sufficient to induce the myogenic specification of muscle-derived CD45(+) stem cells. Moreover, injection of the Wnt antagonists sFRP2/3 into regenerating muscle markedly reduced CD45(+) stem cell proliferation and myogenic specification. Our data therefore suggest that mobilization of resident CD45(+) stem cells is an important factor in regeneration after injury and highlight the Wnt pathway as a potential therapeutic target for degenerative neuromuscular disease.  相似文献   

3.
Functional heterogeneity of side population cells in skeletal muscle   总被引:9,自引:0,他引:9  
Skeletal muscle regeneration has been exclusively attributed to myogenic precursors, satellite cells. A stem cell-rich fraction referred to as side population (SP) cells also resides in skeletal muscle, but its roles in muscle regeneration remain unclear. We found that muscle SP cells could be subdivided into three sub-fractions using CD31 and CD45 markers. The majority of SP cells in normal non-regenerating muscle expressed CD31 and had endothelial characteristics. However, CD31(-)CD45(-) SP cells, which are a minor subpopulation in normal muscle, actively proliferated upon muscle injury and expressed not only several regulatory genes for muscle regeneration but also some mesenchymal lineage markers. CD31(-)CD45(-) SP cells showed the greatest myogenic potential among three SP sub-fractions, but indeed revealed mesenchymal potentials in vitro. These SP cells preferentially differentiated into myofibers after intramuscular transplantation in vivo. Our results revealed the heterogeneity of muscle SP cells and suggest that CD31(-)CD45(-) SP cells participate in muscle regeneration.  相似文献   

4.
Recent studies have shown that cells from bone marrow (BM) can give rise to differentiated skeletal muscle fibers. However, the mechanisms and identities of the cell types involved remain unknown. We performed BM transplantation in acid alpha-glucosidase (GAA) knockout mice, a model of glycogen storage disease type II, and our observations suggested that the BM cells contribute to skeletal muscle fiber formation. Furthermore, we showed that most CD45+:Sca1+ cells have a donor character in regenerating muscle of recipient mice. Based on these findings, CD45+:Sca1+ cells were sorted from regenerating muscles. The cell number was increased with granulocyte colony-stimulating factor after cardiotoxin injury, and the cells were transplanted directly into the tibialis anterior (TA) muscles of GAA knockout mice. Sections of the TA muscles stained with anti-laminin-alpha2 antibody showed that the number of CD45+:Sca1+ cells contributing to muscle fiber formation and glycogen levels were decreased in transplanted muscles. Our results indicated that hematopoietic stem cells, such as CD45+:Sca1+ cells, are involved in skeletal muscle regeneration.  相似文献   

5.
Human perivascular stem cells (PSCs) can be isolated in sufficient numbers from multiple tissues for purposes of skeletal tissue engineering. PSCs are a FACS-sorted population of 'pericytes' (CD146+CD34-CD45-) and 'adventitial cells' (CD146-CD34+CD45-), each of which we have previously reported to have properties of mesenchymal stem cells. PSCs, like MSCs, are able to undergo osteogenic differentiation, as well as secrete pro-osteogenic cytokines. In the present protocol, we demonstrate the osteogenicity of PSCs in several animal models including a muscle pouch implantation in SCID (severe combined immunodeficient) mice, a SCID mouse calvarial defect and a femoral segmental defect (FSD) in athymic rats. The thigh muscle pouch model is used to assess ectopic bone formation. Calvarial defects are centered on the parietal bone and are standardly 4 mm in diameter (critically sized). FSDs are bicortical and are stabilized with a polyethylene bar and K-wires. The FSD described is also a critical size defect, which does not significantly heal on its own. In contrast, if stem cells or growth factors are added to the defect site, significant bone regeneration can be appreciated. The overall goal of PSC xenografting is to demonstrate the osteogenic capability of this cell type in both ectopic and orthotopic bone regeneration models.  相似文献   

6.
We investigated whether stem cells (MDSC) from primary cultures of rat skeletal muscle can differentiate into the smooth muscle lineage in response to vascular endothelial growth factor (VEGF) and coculture with bladder smooth muscle cells. The MDSC were isolated from gastrocnemius muscle biopsies of normal 3-6 week-old Sprague-Dawley rats and purified by the preplate technique. Cells that took approximately 6 days to adhere to the collagen-coated flasks were termed late preplate (LP) cells, and were used in all the experiments. The early plate (EP) cells (pp1-pp4) contained some myogenic cells but were mostly fibroblasts (< 15% desmin+ cells) whereas the LP cells (pp5-pp6) were highly purified muscle-derived cells (pp6) (> 90% desmin+ cells). The muscle-derived stem cells (LP cells) were CD34+ or Sca-1+, CD45- and desmin+ by immunohistochemical staining. After two days of co-culture with bladder smooth muscle cells, about 25% of the muscle-derived stem cells were positive for alpha-smooth muscle actin (alpha-SMA)+. RT-PCR for alpha-SMA was positive in the VEGF stimulated MDSC, but negative in the absence of VEGF. In conclusion, rat muscle-derived stem cells exhibited stem cell properties (CD34+ or Sca-1+), and were not of hematogeous (CD45-) but of myogenic origin (desmin+). RT-PCR of alpha-SMA was positive in the VEGF stimulated muscle-derived stem cells.  相似文献   

7.
Recent studies have shown that cells from the bone marrow can give rise to differentiated skeletal muscle fibers. However, the mechanisms and identities of the cell types involved have remained unknown, and the validity of the observation has been questioned. Here, we use transplantation of single CD45+ hematopoietic stem cells (HSCs) to demonstrate that the entire circulating myogenic activity in bone marrow is derived from HSCs and their hematopoietic progeny. We also show that ongoing muscle regeneration and inflammatory cell infiltration are required for HSC-derived contribution, which does not occur through a myogenic stem cell intermediate. Using a lineage tracing strategy, we show that myofibers are derived from mature myeloid cells in response to injury. Our results indicate that circulating myeloid cells, in response to inflammatory cues, migrate to regenerating skeletal muscle and stochastically incorporate into mature myofibers.  相似文献   

8.
Several recent studies suggest the isolation of stem cells in skeletal muscle, but the functional properties of these muscle-derived stem cells is still unclear. In the present study, we report the purification of muscle-derived stem cells from the mdx mouse, an animal model for Duchenne muscular dystrophy. We show that enrichment of desmin(+) cells using the preplate technique from mouse primary muscle cell culture also enriches a cell population expressing CD34 and Bcl-2. The CD34(+) cells and Bcl-2(+) cells were found to reside within the basal lamina, where satellite cells are normally found. Clonal isolation and characterization from this CD34(+)Bcl-2(+) enriched population yielded a putative muscle-derived stem cell, mc13, that is capable of differentiating into both myogenic and osteogenic lineage in vitro and in vivo. The mc13 cells are c-kit and CD45 negative and express: desmin, c-met and MNF, three markers expressed in early myogenic progenitors; Flk-1, a mouse homologue of KDR recently identified in humans as a key marker in hematopoietic cells with stem cell-like characteristics; and Sca-1, a marker for both skeletal muscle and hematopoietic stem cells. Intramuscular, and more importantly, intravenous injection of mc13 cells result in muscle regeneration and partial restoration of dystrophin in mdx mice. Transplantation of mc13 cells engineered to secrete osteogenic protein differentiate in osteogenic lineage and accelerate healing of a skull defect in SCID mice. Taken together, these results suggest the isolation of a population of muscle-derived stem cells capable of improving both muscle regeneration and bone healing.  相似文献   

9.
The cellular substrate underlying aberrant craniofacial connective tissue accumulation that occurs in disorders such as congenital infiltration of the face (CILF) remain elusive. Here we analyze the in vivo properties of a recently identified population of neural crest-derived CD31-:CD45-:alpha7-:Sca1+:PDGFRa+ fibro/adipogenic progenitors (NCFAPs). In serial transplantation experiments in which NCFAPs were prospectively purified and transplanted into wild type mice, NCFAPs were found to be capable of self-renewal while keeping their adipogenic potential. NCFAPs constitute the main responsive FAP fraction following acute masseter muscle damage, surpassing the number of mesoderm-derived FAPs (MFAPs) during the regenerative response. Lastly, NCFAPs differentiate into adipocytes during muscle regeneration in response to pro-adipogenic systemic cues. Altogether our data indicate that NCFAPs are a population of stem/primitive progenitor cells primarily involved in craniofacial muscle regeneration that can cause tissue degeneration when the damage co-occurs with an obesity inducing diet.  相似文献   

10.
Two hypotheses explain the role of adult progenitor cells in myocardial regeneration. Stem cell plasticity which involves mobilization of stem cells from the bone marrow and other niches, homing to the area of tissue injury and transdifferentiation into functional cardiomyocytes. Alternative hypothesis is based on the observations that bone marrow harbors a heterogenous population of cells positive for CXCR4 - receptor for chemokine SDF-1. This population of non-hematopoietic cells expresses genes specific for early muscle, myocardial and endothelial progenitor cells (EPC). These tissue-committed stem cells circulate in the peripheral blood at low numbers and can be mobilized by hematopoietic cytokines in the setting of myocardial ischemia. Endothelial precursors capable of transforming into mature, functional endothelial cells are present in the pool of peripheral mononuclear cells in circulation. Their number significantly increases in acute myocardial infarction (AMI) with subsequent decrease after 1 month, as well as in patients with unstable angina in comparison to stable coronary heart disease (CHD). There are numerous physiological and pathological stimuli which influence the number of circulating EPC such as regular physical activity, medications (statins, PPAR-gamma agonists, estrogens), as well as numerous inflammatory and hematopoietic cytokines. Mobilization of stem cells in AMI involves not only the endothelial progenitors but also hematopoietic, non-hematopoietic stem cells and most probably the mesenchymal cells. In healthy subjects and patients with stable CHD, small number of circulating CD34+, CXCR4+, CD117+, c-met+ and CD34/CD117+ stem cells can be detected. In patients with AMI, a significant increase in CD34+/CXCR4+, CD117+, c-met+ and CD34/CD117+ stem cell number the in peripheral blood was demonstrated with parallel increase in mRNA expression for early cardiac, muscle and endothelial markers in peripheral blood mononuclear cells. The maximum number of stem cells was found early in ST-segment elevation myocardial infarction (<12 hours) with subsequent decrease through the 7-day follow-up and with concomitant changes in the levels of cytokines involved in the inflammatory response and stem cell recruitment. Moreover, peak expression of cardiac muscle and endothelial markers occurred at the same time as the most significant increase in CD34/CXCR4+ stem cell number. The SDF-1/CXCR-4 axis seems particularly important in stem/muscle progenitor cell homing, chemotaxis, engraftment and retention in ischaemic myocardium. The significance of autologous stem cells mobilization in terms of cardiac salvage and regeneration needs to be proved in humans but it seems to be a reparative mechanism triggered early in the course of acute coronary syndromes.  相似文献   

11.
The molecular basis of development and regeneration of skeletal muscles are reviewed. A model of parent-progeny relationships of mature animals?? skeletal muscles is proposed. Different cellular populations that contribute to myogenesis in vivo and in vitro are described. Both well-known typical cellular sources for muscle regeneration (satellite cells, muscle derived stem cells) and alternative cellular sources (CD133+ cells, pericytes, SP-cells from muscles and from bone marrow, mesangioblasts, embryonic stem cells and mesenchymal stromal cells) are presented. Moreover, some evidence for the existence of ectopic myogenic precursors in nonmuscle tissues is given.  相似文献   

12.
Injuries to the postnatal skeleton are naturally repaired through successive steps involving specific cell types in a process collectively termed “bone regeneration”. Although complex, bone regeneration occurs through a series of well-orchestrated stages wherein endogenous bone stem cells play a central role. In most situations, bone regeneration is successful; however, there are instances when it fails and creates non-healing injuries or fracture nonunion requiring surgical or therapeutic interventions. Transplantation of adult or mesenchymal stem cells (MSCs) defined by the International Society for Cell and Gene Therapy (ISCT) as CD105+CD90+CD73+CD45-CD34-CD14orCD11b-CD79αorCD19-HLA-DR- is being investigated as an attractive therapy for bone regeneration throughout the world. MSCs isolated from adipose tissue, adipose-derived stem cells (ADSCs), are gaining increasing attention since this is the most abundant source of adult stem cells and the isolation process for ADSCs is straightforward. Currently, there is not a single Food and Drug Administration (FDA) approved ADSCs product for bone regeneration. Although the safety of ADSCs is established from their usage in numerous clinical trials, the bone-forming potential of ADSCs and MSCs, in general, is highly controversial. Growing evidence suggests that the ISCT defined phenotype may not represent bona fide osteoprogenitors. Transplantation of both ADSCs and the CD105- sub-population of ADSCs has been reported to induce bone regeneration. Most notably, cells expressing other markers such as CD146, AlphaV, CD200, PDPN, CD164, CXCR4, and PDGFRα have been shown to represent osteogenic sub-population within ADSCs. Amongst other strategies to improve the bone-forming ability of ADSCs, modulation of VEGF, TGF-β1 and BMP signaling pathways of ADSCs has shown promising results. The U.S. FDA reveals that 73% of Investigational New Drug applications for stem cell-based products rely on CD105 expression as the “positive” marker for adult stem cells. A concerted effort involving the scientific community, clinicians, industries, and regulatory bodies to redefine ADSCs using powerful selection markers and strategies to modulate signaling pathways of ADSCs will speed up the therapeutic use of ADSCs for bone regeneration.  相似文献   

13.
Autologous cell therapies in neurodegenerative diseases and stroke will require an efficient generation of neuroprogenitors or neurons. We have previously shown that presumptive neural progenitors can be obtained from a candidate stem cell population isolated from adult skeletal muscle. Here we describe experimental conditions to isolate and characterize the cells with neurogenic potential from this population. Candidate stem cell population was isolated from adult skeletal muscle and expanded for selection during at least 30 cell divisions. FACS analysis revealed that this population was homogeneous with respect to CD45 (-), CD34 (-), and heterogeneous for CD90 (Thy-1) expression. The population was separated by cell sorting into three sub-populations based on CD90 expression (CD90-, CD90+, and CD90++) and each population expanded rapidly as free-floating spheres. When dissociated and plated in a neuronal differentiation medium, a large number of CD90+ cells acquired morphological characteristics of neuroprogenitors and neurons, and expressed markers of neurons but no markers of glial or muscle cells. In contrast, CD90- and CD90++ cells lacked this ability. Comparison of CD90+ and CD90- populations may be useful for studying the molecular characteristics defining the neuronal potential of stem cells from adult muscle. The selection of CD90+ expressing cells, combined with the growth conditions presented here, allows for rapid generation of a large number of cells which may be useful for autologous cell replacement therapies in the central nervous system.  相似文献   

14.
In the past few years it has been established that the heart contains a reservoir of stem and progenitor cells that have the ability to differentiate in vitro and in vivo toward vascular and cardiac lineages and that show cardiac regeneration potential in vivo following injection into the infracted myocardium. The aim of the present study was to characterize cardiac stem cells in the tissue of chronic left ventricular aneurism. It was shown that human c-kit positive cells were scattered in fibrous, muscle and adipose parts of aneurism tissue. C-kit positive cells localized mainly in fibrous tissue nearby large vessels, however, c-kit positive cells did not express endothelial, smooth muscle or cardiomyocyte cell markers. Co-localization experiments demonstrated that all c-kit positive cells were of non-hematopoietic origin, since they did not express markers such as CD34 and CD45. Majority of c-kit positive cells expressed MDR1, but showed no proliferation activity (Ki67). It thus appears that aneurism tissue could be an alternative source of autologous cardiac stem cells. However, their regeneration capacity should be further explored.  相似文献   

15.
16.
The use of stem cells to repair and replace damaged skeletal muscle cells in chronic, debilitating muscle diseases such as the muscular dystrophies holds great promise. Different stem cell populations, both of embryonic and adult origin display the potential to generate skeletal muscle cells and have been studied in animal models of muscular dystrophy. These include muscle derived satellite cells; bone marrow derived mesenchymal stem cells, muscle or bone marrow side population cells, circulating CD133+ cells and cells derived from blood vessel walls such as mesoangioblasts or pericytes. The design of effective stem cell based therapies requires a detailed understanding of the molecules and signaling pathways which determine myogenic lineage commitment and differentiation. We discuss the great strides that have been made in delineating these pathways and how a better understanding of muscle stem cell biology has the potential to lead to more effective stem cell based therapies for skeletal muscle regeneration for devastating muscle diseases.  相似文献   

17.
Cell therapy for tissue regeneration requires cells with high self-renewal potential and with the capacity to differentiate into multiple differentiated cell lineages, like embryonic stem cells (ESCs) and adult somatic cells induced to pluripotency (iPSCs) by genetic manipulation. Here we report that normal adult mammalian bone marrow contains cells, with the cell surface antigen CD34, that naturally express genes characteristic of ESCs and required to generate iPSCs. In addition, these CD34+ cells spontaneously express, without genetic manipulation, genes characteristic of the three embryonic germ layers: ectoderm, mesoderm and endoderm. In addition to the neural lineage genes we previously reported in these CD34+ cells, we found that they express genes of the mesodermal cardiac muscle lineage and of the endodermal pancreatic lineage as well as intestinal lineage genes. Thus, these normal cells in the adult spontaneously exhibit characteristics of embryonic-like stem cells.  相似文献   

18.
Hepatic stellate cells (HSC) play an important role in the development of liver fibrosis. Here, we report that HSC express the stem/progenitor cell marker CD133 and exhibit properties of progenitor cells. CD133+ HSC of rats were selected by specific antibodies and magnetic cell sorting. Selected cells displayed typical markers of HSC, endothelial progenitor cells (EPC), and monocytes. In cell culture, CD133+ HSC transformed into alpha-smooth muscle actin positive myofibroblast-like cells, whereas application of cytokines known to facilitate EPC differentiation into endothelial cells led to the formation of branched tube-like structures and induced expression of the endothelial cell markers endothelial nitric oxide synthase and vascular-endothelial cadherin. Moreover, cytokines that guide stem cells to develop hepatocytes led to the appearance of rotund cells and expression of the hepatocyte markers alpha-fetoprotein and albumin. It is concluded that CD133+ HSC are a not yet recognized progenitor cell compartment with characteristics of early EPC. Their potential to differentiate into endothelial or hepatocyte lineages suggests important functions of CD133+ HSC during liver regeneration.  相似文献   

19.
Ko IK  Ju YM  Chen T  Atala A  Yoo JJ  Lee SJ 《FASEB journal》2012,26(1):158-168
Whereas the conventional tissue engineering strategy involves the use of scaffolds combined with appropriate cell types to restore normal functions, the concept of in situ tissue regeneration uses host responses to a target-specific scaffold to mobilize host cells to a site of injury without the need for cell seeding. For this purpose, local delivery of bioactive molecules from scaffolds has been generally used. However, this approach has limited stem cell recruitment into the implants. Thus, we developed a combination of systemic delivery of substance P (SP) and local release of stromal-derived factor-1α (SDF-1α) from an implant. In this study, we examined whether this combined system would significantly enhance recruitment of host stem cells into the implants. Flow cytometry and immunohistochemistry for CD29/CD45, CD146/α-smooth muscle actin, and c-kit demonstrated that this system significantly increased the number of stem cell-like cells within the implants when compared with other systems. In vitro culture of the cells that had infiltrated into the scaffolds from the combined system confirmed that host stem cells were recruited into these implants and indicated that they were capable of differentiation into multiple lineages. These results indicate that this combined system may lead to more efficient tissue regeneration.  相似文献   

20.
Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1) positive, non-hematopoetic (CD45-) cells were evaluated in wild type (WT) and α7 integrin transgenic (α7Tg) mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1+CD45 stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1+ cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1+CD45 cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs), predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7+ cells and facilitated formation of eMHC+DiI fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号