首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Cross-linking the B cell Ag receptor (BCR) to surface Fc receptors for IgG (Fc gamma R) inhibits G1-to-S progression; the mechanism by which this occurs is not completely known. We investigated the regulation of three key cell cycle regulatory components by BCR-Fc gamma R co-cross-linking: G1-cyclins, cyclin-dependent kinases (Cdks), and the retinoblastoma gene product (Rb). Rb functions to suppress G1-to-S progression in mammalian cells. Rb undergoes cell-cycle-dependent phosphorylation, leading to its inactivation and thereby promoting S phase entry. We demonstrate in this paper for the first time that BCR-induced Rb phosphorylation is abrogated by co-cross-linking with Fc gamma R. The activation of Cdk4/6- and Cdk2-dependent Rb protein kinases is concomitantly blocked. Fc gamma R-mediated inhibition of Cdk2 activity results in part from an apparent failure to express Cdk2 protein. By contrast, inhibition of Cdk4/6 activities is not due to suppression of Cdk4/6 or cyclins D2/D3 expression or inhibition of Cdk-activating kinase activity. Cdk4- and Cdk6-immune complexes recovered from B cells following BCR-Fc gamma R co-cross-linking are devoid of coprecipitated D-type cyclins, indicating that inhibition of their Rb protein kinase activities is due in part to the absence of bound D-type cyclin. Thus, BCR-derived activation signals that up-regulate D-type cyclin and Cdk4/6 protein expression remain intact; however, Fc gamma R-mediated signals block cyclin D-Cdk4/6 assembly or stabilization. These results suggest that assembly or stabilization of D-type cyclin holoenzyme complexes 1) is an important step in the activation of Cdk4/6 by BCR signals, and 2) suffice in providing a mechanism to account for inhibition of BCR-stimulated Rb protein phosphorylation by Fc gamma R.  相似文献   

2.
The retinoblastoma (RB) and p16ink4a tumor suppressors are believed to function in a linear pathway that is functionally inactivated in a large fraction of human cancers. Recent studies have shown that RB plays a critical role in regulating S phase as a means for suppressing aberrant proliferation and controlling genome stability. Here, we demonstrate a novel role for p16ink4a in replication control that is distinct from that of RB. Specifically, p16ink4a disrupts prereplication complex assembly by inhibiting mini-chromosome maintenance (MCM) protein loading in G1, while RB was found to disrupt replication in S phase through attenuation of PCNA function. This influence of p16ink4a on the prereplication complex was dependent on the presence of RB and the downregulation of cyclin-dependent kinase (CDK) activity. Strikingly, the inhibition of CDK2 activity was not sufficient to prevent the loading of MCM proteins onto chromatin, which supports a model wherein the composite action of multiple G1 CDK complexes regulates prereplication complex assembly. Additionally, p16ink4a attenuated the levels of the assembly factors Cdt1 and Cdc6. The enforced expression of these two licensing factors was sufficient to restore the assembly of the prereplication complex yet failed to promote S-phase progression due to the continued absence of PCNA function. Combined, these data reveal that RB and p16ink4a function through distinct pathways to inhibit the replication machinery and provide evidence that stepwise regulation of CDK activity interfaces with the replication machinery at two discrete execution points.  相似文献   

3.
In eukaryotic cells, an ordered sequence of events leads to the initiation of DNA replication. During the G(1) phase of the cell cycle, a prereplication complex (pre-RC) consisting of ORC, Cdc6, Cdt1, and MCM2-7 is established at replication origins on the chromatin. At the G(1)/S transition, MCM10 and the protein kinases Cdc7-Dbf4 and Cdk2-cyclin E cooperate to recruit Cdc45 to the pre-RC, followed by origin unwinding, RPA binding, and recruitment of DNA polymerases. Using the soluble DNA replication system derived from Xenopus eggs, we demonstrate that immunodepletion of protein phosphatase 2A (PP2A) from egg extracts and inhibition of PP2A activity by okadaic acid abolish loading of Cdc45 to the pre-RC. Consistent with a defect in Cdc45 loading, origin unwinding and the loading of RPA and DNA polymerase alpha are also inhibited. Inhibition of PP2A has no effect on MCM10 loading and on Cdc7-Dbf4 or Cdk2 activity. The substrate of PP2A is neither a component of the pre-RC nor Cdc45. Instead, our data suggest that PP2A functions by dephosphorylating and activating a soluble factor that is required to recruit Cdc45 to the pre-RC. Furthermore, PP2A appears to counteract an unknown inhibitory kinase that phosphorylates and inactivates the same factor. Thus, the initiation of eukaryotic DNA replication is regulated at the level of Cdc45 loading by a combination of stimulatory and inhibitory phosphorylation events.  相似文献   

4.
The eukaryotic origin recognition complex (ORC) selects the genomic sites where prereplication complexes are assembled and DNA replication begins. In proliferating mammalian cells, ORC activity appears to be regulated by reducing the affinity of the Orc1 subunit for chromatin during S phase and then preventing reformation of a stable ORC-chromatin complex until mitosis is completed and a nuclear membrane is assembled. Here we show that part of the mechanism by which this is accomplished is the selective association of Orc1 with Cdk1 (Cdc2)/cyclin A during the G(2)/M phase of cell division. This association accounted for the appearance in M-phase cells of hyperphosphorylated Orc1 that was subsequently dephosphorylated during the M-to-G(1) transition. Moreover, inhibition of Cdk activity in metaphase cells resulted in rapid binding of Orc1 to chromatin. However, chromatin binding was not mediated through increased affinity of Orc1 for Orc2, suggesting that additional events are involved in the assembly of functional ORC-chromatin sites. These results reveal that the same cyclin-dependent protein kinase that initiates mitosis in mammalian cells also concomitantly inhibits assembly of functional ORC-chromatin sites.  相似文献   

5.
Activation of tumor suppressor p53 in response to genotoxic stress imposes cellular growth arrest or apoptosis. We identified Cdc6, a licensing factor of the prereplication complex, as a novel target of the p53 pathway. We show that activation of p53 by DNA damage results in enhanced Cdc6 destruction by the anaphase-promoting complex. This destruction is triggered by inhibition of CDK2-mediated CDC6 phosphorylation at serine 54. Conversely, suppression of p53 expression results in stabilization of Cdc6. We demonstrate that loss of p53 results in more replicating cells, an effect that can be reversed by reducing Cdc6 protein levels. Collectively, our data suggest that initiation of DNA replication is regulated by p53 through Cdc6 protein stability.  相似文献   

6.
Mailand N  Diffley JF 《Cell》2005,122(6):915-926
Cyclin-dependent kinases (CDKs) restrict DNA replication origin firing to once per cell cycle by preventing the assembly of prereplicative complexes (pre-RCs; licensing) outside of G1 phase. Paradoxically, under certain circumstances, CDKs such as cyclin E-cdk2 are also required to promote licensing. Here, we show that CDK phosphorylation of the essential licensing factor Cdc6 stabilizes it by preventing its association with the anaphase promoting complex/cyclosome (APC/C). APC/C-dependent Cdc6 proteolysis prevents pre-RC assembly in quiescent cells and, when cells reenter the cell cycle from quiescence, CDK-dependent Cdc6 stabilization allows Cdc6 to accumulate before the licensing inhibitors geminin and cyclin A which are also APC/C substrates. This novel mechanism for regulating protein stability establishes a window of time prior to S phase when pre-RCs can assemble which we propose represents a critical function of cyclin E.  相似文献   

7.
Wuarin J  Buck V  Nurse P  Millar JB 《Cell》2002,111(3):419-431
We show that in fission yeast the mitotic B type cyclin Cdc13/Cdc2 kinase associates with replication origins in vivo. This association is dependent on the origin recognition complex (ORC), is established as chromosomes are replicated, and is maintained during G2 and early mitosis. Cells expressing an orp2 (ORC2) allele that reduces binding of Cdc13 to replication origins are acutely prone to chromosomal reduplication. In synchronized endoreduplicating cells, following Cdc13 ablation, replication origins are coordinately licensed prior to each successive round of S phase with the same periodicity as in a normal cell cycle. Thus, ORC bound mitotic Cyclin B/Cdc2 kinase imposes the dependency of S phase on an intervening mitosis but not the temporal licensing of replication origins between each S phase.  相似文献   

8.
Mouse knockouts of Cdk2 and Cdk4 have demonstrated that, individually, these genes are not essential for viability. To investigate whether there is functional redundancy, we have generated double knockout (DKO) mice. Cdk2-/- Cdk4-/- DKOs die during embryogenesis around E15 as a result of heart defects. We observed a gradual decrease of Retinoblastoma protein (Rb) phosphorylation and reduced expression of E2F-target genes, like Cdc2 and cyclin A2, during embryogenesis and in embryonic fibroblasts (MEFs). DKO MEFs are characterized by a decreased proliferation rate, impaired S phase entry, and premature senescence. HPV-E7-mediated inactivation of Rb restored normal expression of E2F-inducible genes, senescence, and proliferation in DKO MEFs. In contrast, loss of p27 did not rescue Cdk2-/- Cdk4-/- phenotypes. Our results demonstrate that Cdk2 and Cdk4 cooperate to phosphorylate Rb in vivo and to couple the G1/S phase transition to mitosis via E2F-dependent regulation of gene expression.  相似文献   

9.
Cdc7-Dbf4 serine/threonine kinase is essential for initiation of DNA replication. It was previously found that overexpression of certain replication proteins such as Cdc6 and Cdt1 in fission yeast resulted in multiple rounds of DNA replication in the absence of mitosis. Since this phenomenon is dependent upon the presence of wild-type Cdc7/Hsk1, we hypothesized that high levels of Cdc7 and/or Dbf4 could also cause multiple rounds of DNA replication, or could facilitate entry into S phase. To test this hypothesis, we transiently overexpressed hamster Cdc7, Dbf4 or both in CHO cells. Direct observations of individual cells by fluorescence microscopy and flow cytometric analysis on cell populations suggest that overexpression of Cdc7 and/or Dbf4 does not result in multiple rounds of DNA replication or facilitating entry into S phase. In contrast, moderately increased levels of Dbf4, but not Cdc7, cause cell-cycle arrest in G2/M. This G2/M arrest coincides with hyperphosphorylation of Cdc2/Cdk1 at Tyr-15, raising the possibility that high levels of Dbf4 may activate a G2/M cell-cycle checkpoint. Further increase in Cdc7 and/or Dbf4 by 2–4 fold can arrest cells in G1 and significantly slow down S-phase progression for the cells already in S phase.  相似文献   

10.
The Cdk1p-cyclin B complex drives entry into mitosis in all eukaryotes. Cdc13p is the single essential cyclin in Schizosaccharomyces pombe and a member of the cyclin B family. Cdc13p abundance rises during G(2)-phase and falls as cells progress through mitosis and G(1). Cdc13p degradation, mediated by the anaphase-promoting complex, is an important mechanism of Cdk1p inhibition and mitotic exit. Cdk1p-cyclin B1 complexes shuttle between the nucleus and cytoplasm, and preventing nuclear accumulation of Cdk1p-cyclin B1 in mammalian cells appears to be one mechanism of preventing entry into mitosis during a DNA damage-induced checkpoint delay. In vertebrates, phosphorylation plays a key role in regulating the intracellular distribution of cyclins. Previous mass spectrometric analysis identified sites of Cdc13p phosphorylation. Here, we have confirmed that these sites are the sole in vivo Cdc13p phosphorylation sites and have studied the role that phosphorylation plays in Cdc13p localization and function. Our data indicate that Cdc13p accumulates in the nucleolus in response to G(2) checkpoint delays, rather than in the cytoplasm, and that phosphorylation plays no role in Cdc13p localization or function.  相似文献   

11.
In yeasts, the replication protein Cdc6/Cdc18 is required for the initiation of DNA replication and also for coupling S phase with the following mitosis. In metazoans a role for Cdc6 has only been shown in S phase entry. Here we provide evidence that human Cdc6 (HuCdc6) also regulates the onset of mitosis, as overexpression of HuCdc6 in G(2) phase cells prevents entry into mitosis. This block is abolished when HuCdc6 is expressed together with a constitutively active Cyclin B/CDK1 complex or with Cdc25B or Cdc25C. An inhibitor of Chk1 kinase activity, UCN-01, overcomes the HuCdc6 mediated G(2) arrest indicating that HuCdc6 blocks cells in G(2) phase via a checkpoint pathway involving Chk1. When HuCdc6 is overexpressed in G(2), we detected phosphorylation of Chk1. Thus, HuCdc6 can trigger a checkpoint response, which could ensure that all DNA is replicated before mitotic entry. We also present evidence that the ability of HuCdc6 to block mitosis may be regulated by its phosphorylation.  相似文献   

12.
Mitosis requires precise coordination of multiple global reorganizations of the nucleus and cytoplasm. Cyclin-dependent kinase 1 (Cdk1) is the primary upstream kinase that directs mitotic progression by phosphorylation of a large number of substrate proteins. Cdk1 activation reaches the peak level due to positive feedback mechanisms. By inhibiting Cdk chemically, we showed that, in prometaphase, when Cdk1 substrates approach the peak of their phosphorylation, cells become capable of proper M-to-G1 transition. We interfered with the molecular components of the Cdk1-activating feedback system through use of chemical inhibitors of Wee1 and Myt1 kinases and Cdc25 phosphatases. Inhibition of Wee1 and Myt1 at the end of the S phase led to rapid Cdk1 activation and morphologically normal mitotic entry, even in the absence of G2. Dampening Cdc25 phosphatases simultaneously with Wee1 and Myt1 inhibition prevented Cdk1/cyclin B kinase activation and full substrate phosphorylation and induced a mitotic "collapse," a terminal state characterized by the dephosphorylation of mitotic substrates without cyclin B proteolysis. This was blocked by the PP1/PP2A phosphatase inhibitor, okadaic acid. These findings suggest that the positive feedback in Cdk activation serves to overcome the activity of Cdk-opposing phosphatases and thus sustains forward progression in mitosis.  相似文献   

13.
In vertebrates Cdk1 is required to initiate mitosis; however, any functionality of this kinase during S phase remains unclear. To investigate this, we generated chicken DT40 mutants, in which an analog-sensitive mutant cdk1 as replaces the endogenous Cdk1, allowing us to specifically inactivate Cdk1 using bulky ATP analogs. In cells that also lack Cdk2, we find that Cdk1 activity is essential for DNA replication initiation and centrosome duplication. The presence of a single Cdk2 allele renders S phase progression independent of Cdk1, which suggests a complete overlap of these kinases in S phase control. Moreover, we find that Cdk1 inhibition did not induce re-licensing of replication origins in G2 phase. Conversely, inhibition during mitosis of Cdk1 causes rapid activation of endoreplication, depending on proteolysis of the licensing inhibitor Geminin. This study demonstrates essential functions of Cdk1 in the control of S phase, and exemplifies a chemical genetics approach to target cyclin-dependent kinases in vertebrate cells.  相似文献   

14.
Cyclin-dependent kinases (Cdk) are essential for promoting the initiation of DNA replication, presumably by phosphorylating key regulatory proteins that are involved in triggering the G1/S transition. Human Cdc6 (HsCdc6), a protein required for initiation of DNA replication, is phosphorylated by Cdk in vitro and in vivo. Here we report that HsCdc6 with mutations at potential Cdk phosphorylation sites was poorly phosphorylated in vitro by Cdk, but retained all other biochemical activities of the wild-type protein tested. Microinjection of mutant HsCdc6 proteins into human cells blocked initiation of DNA replication or slowed S phase progression. The inhibitory effect of mutant HsCdc6 was lost at the G1/S transition, indicating that phosphorylation of HsCdc6 by Cdk is critical for a late step in initiation of DNA replication in human cells.  相似文献   

15.
16.
17.
In mammalian cells Cdk2 activity during the G(1)-S transition is mainly controlled by p27(KIP1). Although the amount and subcellular localization of p27 influence Cdk2 activity, how Cdk2 activity is regulated during this phase transition still remains virtually unknown. Here we report an entirely new mechanism for this regulation. Cdc6 the AAA+ ATPase, known to assemble prereplicative complexes on chromosomal replication origins and activate p21(CIP1)-bound Cdk2, also activated p27-bound Cdk2 in its ATPase and cyclin binding motif-dependent manner but only after the p27 bound to the Cdk2 was phosphorylated at the C terminus. ROCK, which mediates a signal for cell anchorage to the extracellular matrix and activates the mTORC1 cascade as well as controls cytoskeleton assembly, was partly responsible for C-terminal phosphorylation of the p27. In vitro reconstitution demonstrated ROCK (Rho-associated kinase)-mediated phosphorylation of Cdk2-bound p27 at the C terminus and subsequent activation of the Cdk2 by Cdc6.  相似文献   

18.
Lau E  Zhu C  Abraham RT  Jiang W 《EMBO reports》2006,7(4):425-430
The Cdc6 protein is required for licensing of replication origins before the onset of DNA replication in eukaryotic cells. Here, we examined whether Cdc6 has other roles in mammalian cell-cycle progression from S to G2/M phase. Using RNA interference, we showed that depletion of Cdc6 in synchronous G1 cells blocks G1 to S transition, confirming the essential role of Cdc6 in the initiation of DNA replication. In contrast, depletion of Cdc6 in synchronous S-phase cells slowed DNA replication and led to mitotic lethality. The Cdc6-depleted S-phase cells showed fewer newly fired origins; however, established replication forks remained active, even during chromatin condensation. Despite such DNA replication abnormalities, loss of Cdc6 failed to activate Chk1 kinase. These results show that Cdc6 is not only required for G1 origin licensing, but is also crucial for proper S-phase DNA replication that is essential for DNA segregation during mitosis.  相似文献   

19.
The p53 tumor suppressor is a mutational target of environmental carcinogen anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE). We now demonstrate that p53 plays an important role in regulation of cellular responses to BPDE. Exposure of p53-null H1299 human lung cancer cells to BPDE resulted in S and G2 phase cell cycle arrest, but not mitotic block, which correlated with induction of cyclin B1 protein expression, down-modulation of cell division cycle 25C (Cdc25C) and Cdc25B protein levels, and hyperphosphorylation of Cdc25C (S216), cyclin-dependent kinase 1 (Cdk1; Y15), checkpoint kinase 1 (Chk1; S317 and S345) and Chk2 (T68). The BPDE-induced S phase block, but not the G2/M phase arrest, was significantly attenuated by knockdown of Chk1 protein level. The BPDE-mediated accumulation of sub-diploid fraction (apoptotic cells) was significantly decreased in H1299 cells transiently transfected with both Chk1 and Chk2 specific siRNAs. The H460 human lung cancer cell line (wild-type p53) was relatively more sensitive to BPDE-mediated growth inhibition and enrichment of sub-diploid apoptotic fraction compared with H1299 cells. The BPDE exposure failed to activate either S or G2 phase checkpoint in H460 cells. Instead, the BPDE-treated H460 cells exhibited a nearly 8-fold increase in sub-diploid apoptotic cells that was accompanied by phosphorylation of p53 at multiple sites. Knockdown of p53 protein level in H460 cells attenuated BPDE-induced apoptosis but enforced activation of S and G2 phase checkpoints. In conclusion, the present study points towards an important role of p53 in regulation of cellular responses to BPDE in human lung cancer cells.  相似文献   

20.
Before S phase, cells license replication origins for initiation by loading them with Mcm2-7 heterohexamers. This process is dependent on Cdc6, which is recruited to unlicensed origins. Using Xenopus egg extracts we show that although each origin can load many Mcm2-7 hexamers, the affinity of Cdc6 for each origins drops once it has been licensed by loading the first hexamers. This encourages the distribution of at least one Mcm2-7 hexamer to each origin, and thereby helps to ensure that all origins are licensed. Although Cdc6 is not essential for DNA replication once licensing is complete, Cdc6 regains a high affinity for origins once replication forks are initiated and Mcm2-7 has been displaced from the origin DNA. We show that the presence of Cdc6 during S phase is essential for the checkpoint kinase Chk1 to become activated in response to replication inhibition. These results show that Cdc6 plays multiple roles in ensuring precise chromosome duplication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号