首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Anti-EGFR therapy is among the most promising molecular targeted therapies against cancer developed in the past decade. However, drug resistance eventually arises in most, if not all, treated patients. Emerging evidence has linked epigenetic changes, such as DNA methylation at CpG islands, to the development of resistance to multiple anticancer drugs. In addition, genes that are differentially methylated have increasingly been appreciated as a source of clinically relevant biomarker candidates. To identify genes that are specifically methylated during the evolution of resistance to anti-EGFR therapeutic agents, we performed a methylation-specific array containing a panel of 56 genes that are commonly known to be regulated through promoter methylation in two parental non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC) cell lines and their resistant derivatives to either erlotinib or cetuximab. We found that death-associated protein kinase (DAPK) was hypermethylated in drug-resistant derivatives generated from both parental cell lines. Restoration of DAPK into the resistant NSCLC cells by stable transfection re-sensitized the cells to both erlotinib and cetuximab. Conversely, siRNA-mediated knockdown of DAPK induced resistance in the parental sensitive cells. These results demonstrate that DAPK plays important roles in both cetuximab and erlotinib resistance, and that gene silencing through promoter methylation is one of the key mechanisms of developed resistance to anti-EGFR therapeutic agents. In conclusion, DAPK could be a novel target to overcome resistance to anti-EGFR agents to improve the therapeutic benefit, and further evaluation of DAPK methylation as a potential biomarker of drug response is needed.  相似文献   

2.
3.
SOX1 was aberrant methylated in hepatocellular cancer and non-small cell lung cancer (NSCLC). Long-term cisplatin exposure promotes methylation of SOX1 in ovarian cancer cell, suggesting that SOX1 may be involved in cisplatin resistance. Our aim was to test the hypothesis that cisplatin resistance is associated with alteration of SOX1 expression in NSCLC. Expression of levels of SOX1 was examined using RT-PCR in cisplatin resistance cells and parental cells. The level of SOX1 mRNA in cisplatin resistance cells was markedly reduced when compared to parental cells. Promoter methylation of SOX1 was induced in cisplatin resistance cells. We also found that SOX1 silencing enhanced the cisplatin-mediated autophagy in NSCLC. This study shows that inactivation of SOX1 by promoter hypermethylation, at least in part, is responsible for cisplatin resistance in human NSCLC.  相似文献   

4.
5.
6.
《Cytotherapy》2019,21(6):603-611
BackgroundTreatment with tyrosine kinase inhibitors (TKIs) has improved the outcomes for patients with non-small cell lung cancer (NSCLC) harboring targetable driver mutations. However, acquired resistance to TKIs invariably develops within approximately 1 year of treatment by various mechanisms, including gatekeeper mutations, alternative pathway activation and histological transformations. Because immunotherapy is an option for patients with drug-resistant cancers, we generated several TKI-resistant NSCLC cell lines in vitro, and then evaluated the cytotoxicity of NK92-CD16 cells to these resistant cells.Materials and MethodsTKI-resistant NSCLC cells (H3122CR1, H3122LR1, H3122CR1LR1, PC-9GR, PC-9ER, EBC-CR1 and EBC-CR2) were established from NCI-H3122 (EML4-ALK fusion), PC-9 (EGFR exon19 deletion) and EBC-1 (MET amplification) after continuous exposure to crizotinib, ceritinib, gefitinib, erlotinib and capmatinib. Expression of ligands for natural killer (NK) cell receptors and total EGFR were analyzed using flow cytometry. NK cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC) using anti-EGFR monoclonal antibody (mAb) cetuximab were measured using NK92-CD16 as effectors and detected using the 51Chromium-release assay.ResultsWe found that NK92-CD16 cells preferentially killed TKI-resistant NSCLC cells when compared with their parental NSCLC cells. Mechanistically, intracellular adhesion molecule 1 (ICAM-1) was up-regulated in the TKI-resistant NSCLC cells and patients’ tumors, and the ICAM-1 up-regulated cancer cells lines were less susceptible to NK cytotoxicity by blocking ICAM-1. Moreover, NK92-CD16 cell-induced cytotoxicity toward TKI-resistant NSCLC cells was enhanced in the presence of cetuximab, an EGFR-targeting mAb.ConclusionThese data suggest that combinational treatment with NK cell–based immunotherapy and cetuximab may be promising for patients with TKI-resistant NSCLC.  相似文献   

7.
Death-associated protein (DAP) kinase plays an important role in IFN-gamma, tumor necrosis factor (TNF)-alpha, or Fas-ligand induced apoptosis. TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF ligand family and can induce caspase-dependent apoptosis in cancer cells while sparing most of the normal cells. However, some of the cancer cell lines are insensitive to TRAIL, and such resistance cannot be explained by the dysfunction of TRAIL receptors or their known downstream targets. We reported previously that DAP kinase promoter is frequently methylated in non-small cell lung cancer (NSCLC), and such methylation is associated with a poor clinical outcome. To determine whether DAP kinase promoter methylation contributes to TRAIL resistance in NSCLC cells, we measured DAP kinase promoter methylation and its gene expression status in 11 NSCLC cell lines and correlated the methylation/expression status with the sensitivity of cells to TRAIL. Of the 11 cell lines, 1 had a completely methylated DAP kinase promoter and no detectable DAP kinase expression, 4 exhibited partial promoter methylation and substantially decreased gene expression, and the other 6 cell lines showed no methylation in the promoter and normal DAP kinase expression. Therefore, the amount of DAP kinase expression amount was negatively correlated to its promoter methylation (r = -0.77; P = 0.003). Interestingly, the cell lines without the DAP kinase promoter methylation underwent substantial apoptosis even in the low doses of TRAIL, whereas those with DAP kinase promoter methylation were resistant to the treatment. The resistance to TRAIL was reciprocally correlated to DAP kinase expression in 10 of the 11 cell lines at 10 ng/mL concentration (r = 0.91; P = 0.001). We treated cells resistant to TRAIL with 5-aza-2'-deoxycytidine, a demethylating reagent, and found that these cells expressed DAP kinase and became sensitive to TRAIL. These results suggest that DAP kinase is involved in TRAIL-mediated cell apoptosis and that a demethylating agent may have a role in enhancing TRAIL-mediated apoptosis in some NSCLC cells by reactivation of DAP kinase.  相似文献   

8.
9.

Background

DNA methylation is associated with aberrant gene expression in cancer, and has been shown to correlate with therapeutic response and disease prognosis in some types of cancer. We sought to investigate the biological significance of DNA methylation in lung cancer.

Results

We integrated the gene expression profiles and data of gene promoter methylation for a large panel of non-small cell lung cancer cell lines, and identified 578 candidate genes with expression levels that were inversely correlated to the degree of DNA methylation. We found these candidate genes to be differentially methylated in normal lung tissue versus non-small cell lung cancer tumors, and segregated by histologic and tumor subtypes. We used gene set enrichment analysis of the genes ranked by the degree of correlation between gene expression and DNA methylation to identify gene sets involved in cellular migration and metastasis. Our unsupervised hierarchical clustering of the candidate genes segregated cell lines according to the epithelial-to-mesenchymal transition phenotype. Genes related to the epithelial-to-mesenchymal transition, such as AXL, ESRP1, HoxB4, and SPINT1/2, were among the nearly 20% of the candidate genes that were differentially methylated between epithelial and mesenchymal cells. Greater numbers of genes were methylated in the mesenchymal cells and their expressions were upregulated by 5-azacytidine treatment. Methylation of the candidate genes was associated with erlotinib resistance in wild-type EGFR cell lines. The expression profiles of the candidate genes were associated with 8-week disease control in patients with wild-type EGFR who had unresectable non-small cell lung cancer treated with erlotinib, but not in patients treated with sorafenib.

Conclusions

Our results demonstrate that the underlying biology of genes regulated by DNA methylation may have predictive value in lung cancer that can be exploited therapeutically.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1079) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.
《Epigenetics》2013,8(9):1220-1227
Silencing of tumor suppressor genes (TSGs) by DNA promoter hypermethylation is an early event in carcinogenesis and a potential target for personalized cancer treatment. In head and neck cancer, little is known about the role of promoter hypermethylation in survival. Using methylation specific multiplex ligation-dependent probe amplification (MS-MLPA) we investigated the role of promoter hypermethylation of 24 well-described genes (some of which are classic TSGs), which are frequently methylated in different cancer types, in 166 HPV-negative early oral squamous cell carcinomas (OSCC), and 51 HPV-negative early oropharyngeal squamous cell carcinomas (OPSCC) in relation to clinicopathological features and survival. Early OSCC showed frequent promoter hypermethylation in RARB (31% of cases), CHFR (20%), CDH13 (13%), DAPK1 (12%), and APC (10%). More hypermethylation (≥ 2 genes) independently correlated with improved disease specific survival (hazard ratio 0.17, P = 0.014) in early OSCC and could therefore be used as prognostic biomarker. Early OPSCCs showed more hypermethylation of CDH13 (58%), TP73 (14%), and total hypermethylated genes. Hypermethylation of two or more genes has a significantly different effect on survival in OPSCC compared with OSCC, with a trend toward worse instead of better survival. This could have a biological explanation, which deserves further investigation and could possibly lead to more stratified treatment in the future.  相似文献   

12.
The inactivation of tumor-related genes through the aberrant methylation of promoter CpG islands is thought to contribute to tumor initiation and progression. We therefore investigated promoter methylation events involved in cutaneous melanoma by screening 30 genes of interest for evidence of promoter hypermethylation, examining 20 melanoma cell lines and 40 freshly procured melanoma samples. Utilizing quantitative methylation-specific PCR, we identified five genes (SOCS1, SOCS2, RAR-beta 2, TNFSF10C, and TNFSF10D) with hypermethylation frequencies ranging from 50% to 80% in melanoma cell lines as well as freshly procured tissue samples. Eighteen genes (LOX, RASSF1A, WFDC1, TM, APC, TFPI2, TNFSF10A, CDKN2A, MGMT, TIMP3, ASC, TPM1, IRF8, CIITA-PIV, CDH1, SYK, HOXB13, and DAPK1) were methylated at lower frequencies (2-30%). Two genes (CDKN1B and PTEN), previously reported as methylated in melanoma, and five other genes (RECK, IRF7, PAWR, TNFSF10B, and Rb) were not methylated in the samples screened here. Daughter melanoma cell lines showed identical methylation patterns when compared with original samples from which they were derived, as did synchronous metastatic lesions from the same patient. We identified four genes (TNFSF10C, TNFSF10D, LOX, and TPM1) that have never before been identified as hypermethylated in melanoma, with an overall methylation frequency of 60, 80, 50, and 10%, respectively, hypothesizing that these genes may play an important role in melanoma progression.  相似文献   

13.
MicroRNAs play an important role in the regulation of expression of many genes and are involved in carcinogenesis. The regulation of miRNA gene expression can involve the methylation of promoter CpG islands. In this work, the methylation of six miRNA genes (mir-107, mir-125b-1, mir-130b, mir-137, mir-375, and mir-1258) in non-small-cell lung cancer (NSCLC) was studied for the first time by methylation-specific PCR using a representative set of specimens (39 cases). Four new genes (mir-125b-1, mir-137, mir-375, and mir-1258) methylated in primary NSCLC tumors were identified with frequencies of 56, 31, 56, and 36%, respectively. The frequencies of miRNA promoter methylation in DNA of tumors and histologically normal tissues differed significantly (P ≤ 0.05 by Fisher’s test). In lung tissues of 20 donors without a history of cancer, these genes were only methylated in a few cases. It was also shown that the previously unstudied promoter CpG islands of mir-107 and mir-130b were not methylated in NSCLC. The frequencies of mir-125b-1 and mir-137 methylation were shown for the first time to correlate with NSCLC progression (clinical stage and metastasis).  相似文献   

14.
15.
16.
《Epigenetics》2013,8(4):500-507
Heterogeneous DNA methylation leads to difficulties in accurate detection and quantification of methylation. Methylation-sensitive high resolution melting (MS-HRM) is unique among regularly used methods for DNA methylation analysis in that heterogeneous methylation can be readily identified, although not quantified, by inspection of the melting curves. Bisulfite pyrosequencing has been used to estimate the level of heterogeneous methylation by quantifying methylation levels present at individual CpG dinucleotides. Sequentially combining the two methodologies using MS-HRM to screen the amplification products prior to bisulfite pyrosequencing would be advantageous. This would not only replace the quality control step using agarose gel analysis prior to the pyrosequencing step but would also provide important qualitative information in its own right. We chose to analyze DAPK1 as it is an important tumor suppressor gene frequently heterogeneously methylated in a number of malignancies, including chronic lymphocytic leukemia (CLL). A region of the DAPK1 promoter was analyzed in ten CLL samples by MS-HRM. By using a biotinylated primer, bisulfite pyrosequencing could be used to directly analyze the samples. MS-HRM revealed the presence of various extents of heterogeneous DAPK1 methylation in all CLL samples. Further analysis of the biotinylated MS-HRM products by bisulfite pyrosequencing provided quantitative information for each CpG dinucleotide analyzed, and confirmed the presence of heterogeneous DNA methylation. Whereas each method could be used individually, MS-HRM and bisulfite pyrosequencing provided complementary information for the assessment of heterogeneous methylation.  相似文献   

17.
目的:研究非小细胞肺癌RASSF1A基因启动子甲基化及下游基因表达情况。方法:留取58例非小细胞肺癌患者手术标本及正常肺组织,甲基化特异性PCR分析RASSF1A基因启动子甲基化情况,同时Northern blot分析SM22、SPARC、SDHB和CC-ND3等4种RASSFIA下游基因的表达情况。结果:58例非小细胞肺癌中RASSFIA基因启动子甲基化阳性率为34.5%,甲基化与各临床参数之间无显著相关性,SM22和SPARC在RASSF1A甲基化组表迭明显下调。结论:原发性非小细胞肺癌中存在着较高比例的RASSF1A启动子过度甲基化,并与下游基因SM22和SPARC的表达下调密切相关。提示RASSF1A在非小细胞肺癌的发生中起着多种作用。  相似文献   

18.
Tyrosine kinase inhibitors, such as erlotinib, display reliable responses and survival benefits for the treatment of human non‐small cell lung cancer (NSCLC) patients. However, primary or acquired resistance limits their therapeutic success. In this study, we conducted in‐depth mass spectrometric analyses of NSCLC cell secretomes. To identify secreted proteins that are differentially regulated in erlotinib‐sensitive (PC‐9) and ‐resistant (PC‐9ER) NSCLC cell lines, SILAC experiments were performed. On average, 900 proteins were identified in each sample with low variations in the numbers of identified proteins. Fourteen proteins were found to be differently regulated among erlotinib‐sensitive and ‐resistant NSCLC cell lines, with five proteins (tissue‐type plasminogen activator, epidermal growth factor receptor, urokinase‐type plasminogen activator, platelet‐derived growth factor D, and myeloid‐derived growth factor) showing the most prominent regulation. Tissue‐type plasminogen activator (t‐PA) was up to 10‐times upregulated in erlotinib‐resistant NSCLC cells compared with erlotinib‐sensitive cells. T‐PA is an established tumor marker for various cancer types and seems to be a promising prognostic marker to differentiate erlotinib‐sensitive from erlotinib‐resistant NSCLC cells. To gain further insights into t‐PA‐regulated pathways, a t‐PA variant was expressed in E. coli cells and its interactions with proteins secreted from erlotinib‐sensitive and ‐resistant NCSLC cells were studied by a combined affinity enrichment chemical cross‐linking/mass spectrometry (MS) approach. Fourteen proteins were identified as potential t‐PA interaction partners, deserving a closer inspection to unravel the mechanisms underlying erlotinib resistance in NSCLC cells.  相似文献   

19.
20.
《Epigenetics》2013,8(8):1138-1148
Lung cancer is a worldwide health problem and a leading cause of cancer-related deaths. Silencing of potential tumor suppressor genes (TSGs) by aberrant promoter methylation is an early event in the initiation and development of cancer. Thus, methylated cancer type-specific TSGs in DNA can serve as useful biomarkers for early cancer detection. We have now developed a “Multiplex Methylation Specific PCR” (MMSP) assay for analysis of the methylation status of multiple potential TSGs by a single PCR reaction. This method will be useful for early diagnosis and treatment outcome studies of non-small cell lung cancer (NSCLC). Genome-wide CpG methylation and expression microarrays were performed on lung cancer tissues and matched distant non-cancerous tissues from three NSCLC patients from China. Thirty-eight potential TSGs were selected and analyzed by methylation PCR on bisulfite treated DNA. On the basis of sensitivity and specificity, six marker genes, HOXA9, TBX5, PITX2, CALCA, RASSF1A, and DLEC1, were selected to establish the MMSP assay. This assay was then used to analyze lung cancer tissues and matched distant non-cancerous tissues from 70 patients with NSCLC, as well as 24 patients with benign pulmonary lesion as controls. The sensitivity of the assay was 99% (69/70). HOXA9 and TBX5 were the 2 most sensitive marker genes: 87% (61/70) and 84% (59/70), respectively. RASSF1A and DLEC1 showed the highest specificity at 99% (69/70). Using the criterion of identifying at least any two methylated marker genes, 61/70 cancer samples were positive, corresponding to a sensitivity of 87% and a specificity of 94%. Early stage I or II NSCLC could even be detected with a 100% specificity and 86% sensitivity. In conclusion, MMSP has the potential to be developed into a population-based screening tool and can be useful for early diagnosis of NSCLC. It might also be suitable for monitoring treatment outcome and recurrence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号