首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Modulation of MEK has been demonstrated to affect hydroxyurea (HU) induced-DNA damage response (DDR), implying the involvement of ERK1 and ERK2 in the process. To directly examine how the ERK kinases function in HU-initiated DDR, we knocked-down either ERK1 or ERK2 in MCF7 cells. This resulted in reduction of HU-induced phosphorylation of CHK1 S345 (serine 345), p53 S15, and H2AX S139. While HU potently induced CDC2 Y15 (tyrosine 15) phosphorylation, an event causing CDC2 inactivation, inhibition of ERK kinases using U0126 (a MEK inhibitor), MEK1K97M (a dominant negative MEK1), and knockdown of either ERK1 or ERK2 significantly attenuated HU-induced CDC2 Y15 phosphorylation. As CDC2 kinase activity is required for mitosis, our observations reveal that ERK1 and ERK2 kinases play important roles in preventing mitotic entry in response to HU. Consistent with ATR being the apical kinase to initiate HU-induced DDR, knockdown of ERK1 or ERK2 significantly inhibited HU-induced ATR recruitment to the stalled replication forks (ATR foci), an event required for ATR activation. Mechanistically, knockdown of ERK1 or ERK2 resulted in relocation of ATR from the nucleoplasm to the nucleolus in response to HU, therefore making ATR unavailable to the sites of DNA damage. Taken together, we demonstrate that ERK kinases sit upstream of ATR to facilitate its activation.  相似文献   

2.
Stalled replication forks easily collapse and such structures can induce DNA strand breaks or toxic recombination products. Therefore, factors involved in stabilization of replication should be important for genome integrity. In our previous study, loss of both ATM and ATR homologues was shown to cause growth defects and chromosome instability in Neurospora crassa. To elucidate the relationships between these defects and replication instability, we focused on one of the viable replication factors, mrc1. We identified an mrc1 homologue from the N. crassa genome database. The mrc1 disruptant was sensitive to the replication inhibitor hydroxyurea (HU) and delayed restart of the cell cycle from HU treatment. Importantly, HU treatment induced histone H2A phosphorylation in the mrc1 mutant but not in the wild type. Furthermore, the HU-induced H2A phosphorylation was completely dependent on the ATM homologue mus-21, and dysfunction of mus-21 increased HU sensitivity of the mrc1 mutant. These results indicate that Neurospora mrc1 is important for stabilization of replication forks and that loss of mrc1 causes activation of the DNA damage checkpoint. Unexpectedly, loss of mrc1 did not affect cell growth, but the deletion of mrc1 reduced hyphal growth speed and conidia viability in the mus-9 and mus-21 mutants. The mrc1 mus-9 and mrc1 mus-21 double mutants also showed accumulation of micronuclei, which is a typical marker of chromosome instability. These results imply that activation of the checkpoint pathway can protect cells from instability of DNA replication caused by loss of mrc1.  相似文献   

3.
Nijmegen breakage syndrome (NBS) is characterised by microcephaly, developmental delay, characteristic facial features, immunodeficiency and radiosensitivity. Nbs1, the protein defective in NBS, functions in ataxia telangiectasia mutated protein (ATM)-dependent signalling likely facilitating ATM phosphorylation events. While NBS shares overlapping characteristics with ataxia telangiectasia, it also has features overlapping with ATR-Seckel (ATR: ataxia-telangiectasia and Rad3-related protein) syndrome, a subclass of Seckel syndrome mutated in ATR. We show that Nbs1 also facilitates ATR-dependent phosphorylation. NBS cell lines show a similar defect in ATR phosphorylation of Chk1, c-jun and p-53 in response to UV irradiation- and hydroxyurea (HU)-induced replication stalling. They are also impaired in ubiquitination of FANCD2 after HU treatment, which is ATR dependent. Following HU-induced replication arrest, NBS and ATR-Seckel cells show similarly impaired G2/M checkpoint arrest and an impaired ability to restart DNA synthesis at stalled replication forks. Moreover, NBS cells fail to retain ATR in the nucleus following HU treatment and extraction. Our findings suggest that Nbs1 functions in both ATR- and ATM-dependent signalling. We propose that the NBS clinical features represent the result of these combined defects.  相似文献   

4.
It was reported that valproic acid (VPA, a histone deacetylase inhibitor) can sensitize cancer cells to hydroxyurea (HU, a ribonucleotide reductase inhibitor) for chemotherapy, although the mechanism of VPA-induced HU sensitization is unclear. In this study, we systematically characterized VPA-induced HU sensitization of breast cancer cells. Multiple breast cancer cell models were employed to investigate whether the safe concentration of 0.5 mM VPA and 2 mM HU can result in DNA double-strand breaks (DSBs) and impact cell survival. Furthermore, the underlying mechanism was explored through cell biology assays, including clonogenic survival, homologous recombination (HR) activity, immunoblot and immunofluorescence. We found that VPA and HU cooperatively suppressed cancer cell survival. VPA resulted in the accumulation of more DNA double-strand breaks (DSBs) in response to HU-induced replication arrest and was able to block HU-stimulated homologous recombination (HR) through inhibiting the activity of two key HR repair proteins by hyperphosphorylation of replication protein A2 (RPA2-p) and recombinase Rad51. However, apoptosis was not detected under this condition. In addition, the results from the survival fraction in the cells expressing defective RPA2-p showed that VPA disrupted the HU-induced RPA2-p-Rad51-mediated HR pathway. Importantly, these findings were further supported by analyzing primary-culture cells from the tissue of chemical carcinogen (DMBA)-induced breast cancer in rats. Thus, our data demonstrated that VPA and HU synergistically suppressed tumor cells via disturbing RPA2-p-mediated DNA repair pathway, which provides a new way for combining chemotherapeutic drugs to sensitize breast cancer cells.  相似文献   

5.
The related PIK-like kinases Ataxia-Telangiectasia Mutated (ATM) and ATM- and Rad3-related (ATR) play major roles in the regulation of cellular responses to DNA damage or replication stress. The pro-apoptotic role of ATM and p53 in response to ionizing radiation (IR) has been widely investigated. Much less is known about the control of apoptosis following DNA replication stress. Recent work indicates that Chk1, the downstream phosphorylation target of ATR, protects cells from apoptosis induced by DNA replication inhibitors as well as IR. The aim of the work reported here was to determine the roles of ATM- and ATR-protein kinase cascades in the control of apoptosis following replication stress and the relationship between Chk1-suppressed apoptotic pathways responding to replication stress or IR. ATM and ATR/Chk1 signalling pathways were manipulated using siRNA-mediated depletions or specific inhibitors in two tumour cell lines or fibroblasts derived from patients with inherited mutations. We show that depletion of ATM or its downstream phosphorylation targets, NBS1 and BID, has relatively little effect on apoptosis induced by DNA replication inhibitors, while ATR or Chk1 depletion strongly enhances cell death induced by such agents in all cells tested. Furthermore, early events occurring after the disruption of DNA replication (accumulation of RPA foci and RPA34 hyperphosphorylation) in ATR- or Chk1-depleted cells committed to apoptosis are not detected in ATM-depleted cells. Unlike the Chk1-suppressed pathway responding to IR, the replication stress-triggered apoptotic pathway did not require ATM and is characterized by activation of caspase 3 in both p53-proficient and -deficient cells. Taken together, our results show that the ATR-Chk1 signalling pathway plays a major role in the regulation of death in response to DNA replication stress and that the Chk1-suppressed pathway protecting cells from replication stress is clearly distinguishable from that protecting cells from IR.  相似文献   

6.
The related PIK-like kinases Ataxia-Telangiectasia Mutated (ATM) and ATM- and Rad3-related (ATR) play major roles in the regulation of cellular responses to DNA damage or replication stress. The pro-apoptotic role of ATM and p53 in response to ionizing radiation (IR) has been widely investigated. Much less is known about the control of apoptosis following DNA replication stress. Recent work indicates that Chk1, the downstream phosphorylation target of ATR, protects cells from apoptosis induced by DNA replication inhibitors as well as IR. The aim of the work reported here was to determine the roles of ATM- and ATR-protein kinase cascades in the control of apoptosis following replication stress and the relationship between Chk1-suppressed apoptotic pathways responding to replication stress or IR. ATM and ATR/Chk1 signalling pathways were manipulated using siRNA-mediated depletions or specific inhibitors in two tumour cell lines or fibroblasts derived from patients with inherited mutations. We show that depletion of ATM or its downstream phosphorylation targets, NBS1 and BID, has relatively little effect on apoptosis induced by DNA replication inhibitors, while ATR or Chk1 depletion strongly enhances cell death induced by such agents in all cells tested. Furthermore, early events occurring after the disruption of DNA replication (accumulation of RPA foci and RPA34 hyperphosphorylation) in ATR- or Chk1-depleted cells committed to apoptosis are not detected in ATM-depleted cells. Unlike the Chk1-suppressed pathway responding to IR, the replication stress-triggered apoptotic pathway did not require ATM and is characterized by activation of caspase 3 in both p53-proficient and -deficient cells. Taken together, our results show that the ATR-Chk1 signalling pathway plays a major role in the regulation of death in response to DNA replication stress and that the Chk1-suppressed pathway protecting cells from replication stress is clearly distinguishable from that protecting cells from IR.  相似文献   

7.
DNA replication checkpoint is activated in response to replication stresses. It maintains the integrity of stalled replication forks and prevents premature segregation of largely unreplicated chromosomes. In budding yeast, Mec1 and Rad53 kinases (homologous to mammalian ATM/ATR and Chk2 kinases, respectively) are the main effectors of this checkpoint control. Using a yeast based screen, we have identified acompound (named here ENA) which inhibits DNA replication and activatesMec1/Rad53 checkpoint. A brief exposure to this compound stops fork progression at or near replication origin and renders the forks incompetent to resume replication despite the presence of a functional checkpoint. ENA also inhibits DNA synthesis in mammalian cells leading to the activation of ATM/ATR pathway and the induction of apoptosis in a p53 independent manner. Interestingly, ENA acts as an effective antiproliferative agent against a subset of cancer cell lines and as an anti-tumor agent against human xenografts in mice. Thus, ENA is a potent cell cycle inhibitor with conceivable therapeutic potential.  相似文献   

8.
9.
10.
11.
Modification of the N-terminal tail of histones is required for various nuclear processes. Here, we show that fission yeast Clr6-HDAC (histone deacetylase) regulates the checkpoint kinase Cds1 when DNA replication encounters a stressful condition. We found that the global level of acetylation of histone H4 was constant throughout the normal cell cycle, but was reduced significantly when the cell recovered from the HU-induced cell cycle arrest (or slow DNA replication). We identified the Clr6-HDAC as a component responsible for the reduction in the level of the H4 acetylation. Although DNA replication was completed, the HU-induced cell cycle arrest could not be released even after removal of HU in the clr6-1 mutant. Under this experimental condition, Cds1 kinase was maintained active and remained bound tightly to chromatin. We also demonstrated that Cds1 was active even after treatment with caffeine, an inhibitor for ATM/ATR that is an activator of Cds1. These results indicate that inactivation of Cds1 requires functional Clr6-HDAC independently of the conventional DNA replication checkpoint. When DNA replication is impeded, Clr6-HDAC activity may monitor damage on chromatin structure/environment, which is required for inactivation of Cds1.  相似文献   

12.
Liu JS  Kuo SR  Melendy T 《Mutation research》2003,532(1-2):215-226
To better understand the different cellular responses to replication fork pausing versus blockage, early DNA damage response markers were compared after treatment of cultured mammalian cells with agents that either inhibit DNA polymerase activity (hydroxyurea (HU) or aphidicolin) or selectively induce S-phase DNA damage responses (the DNA alkylating agents, methyl methanesulfonate (MMS) and adozelesin). These agents were compared for their relative abilities to induce phosphorylation of Chk1, H2AX, and replication protein A (RPA), and intra-nuclear focalization of gamma-H2AX and RPA. Treatment by aphidicolin and HU resulted in phosphorylation of Chk1, while HU, but not aphidicolin, induced focalization of gamma-H2AX and RPA. Surprisingly, pre-treatment with aphidicolin to stop replication fork progression, did not abrogate HU-induced gamma-H2AX and RPA focalization. This suggests that HU may act on the replication fork machinery directly, such that fork progression is not required to trigger these responses. The DNA-damaging fork-blocking agents, adozelesin and MMS, both induced phosphorylation and focalization of H2AX and RPA. Unlike adozelesin and HU, the pattern of MMS-induced RPA focalization did not match the BUdR incorporation pattern and was not blocked by aphidicolin, suggesting that MMS-induced damage is not replication fork-dependent. In support of this, MMS was the only reagent used that did not induce phosphorylation of Chk1. These results indicate that induction of DNA damage checkpoint responses due to adozelesin is both replication fork and fork progression dependent, induction by HU is replication fork dependent but progression independent, while induction by MMS is independent of both replication forks and fork progression.  相似文献   

13.
Homologous recombination is an important mechanism in DNA replication to ensure faithful DNA synthesis and genomic stability. In this study, we investigated the role of XRCC2, a member of the RAD51 paralog family, in cellular recovery from replication arrest via homologous recombination. The protein expression of XRCC2, as well as its binding partner RAD51D, is dramatically increased in S- and G2-phases, suggesting that these proteins function during and after DNA synthesis. XRCC2 mutant irs1 cells exhibit hypersensitivity to hydroxyurea (HU) and are defective in the induction of RAD51 foci after HU treatment. In addition, the HU-induced chromatin association of RAD51 is deficient in irs1 mutant. Interestingly, irs1 cells are only slightly sensitive to thymidine and able to form intact RAD51 foci in S-phase cells arrested with thymidine. Irs1 cells showed increased level of chromatin-bound RAD51 as well as the wild type cells after thymidine treatment. Both HU and thymidine induce gamma-H2AX foci in arrested S-phase nuclei. These results suggest that XRCC2 is involved in repair of HU-induced damage, but not thymidine-induced damage, at the stalled replication forks. Our data suggest that there are at least two sub-pathways in homologous recombination, XRCC2-dependent and -independent, for repair of stalled replication forks and assembly of RAD51 foci following replication arrest in S-phase.  相似文献   

14.
The timely assembly of prereplicative complexes at replication origins is tightly controlled to ensure that genomic DNA is replicated once per cell cycle. The loss of geminin, a DNA replication inhibitor, causes rereplication that activates a G2/M checkpoint in human cancer cells. Fanconi anemia (FA) is an autosomal recessive and X-linked disorder associated with cancer susceptibility. Here we show that rereplication activates the FA pathway both for the activation of a G2/M checkpoint and for repair processes, like recruitment of RAD51. Both ATR and BRCA1 are required to activate the FA pathway. The G2/M checkpoint-mediated arrest of the cell cycle is critical for the prevention of both apoptosis and the accumulation of cells with rereplicated DNA, because the loss of ATR, BRCA1, or FANCA promotes apoptosis and suppresses the accumulation. The accumulation of cells with rereplicated DNA is restored by the artificial induction of a G2-phase arrest even when ATR, BRCA1, or FANCA is absent. Therefore, the ATR- and BRCA1-mediated FA pathway is required for the activation of a G2/M checkpoint and for DNA damage repair in response to the endogenous signal of rereplication. In its absence, the cells rapidly lose viability when faced with rereplication.  相似文献   

15.
Hydroxyurea (HU) increases extrachromosomal DNA elimination in tumor cell lines. The c-myc oncogene is one of the many relevant amplified genes contained within the extrachromosomal DNA compartment. Spontaneous loss of amplified copies of c-myc induces terminal differentiation and apoptosis in the human HL-60 leukemia cell lines. In the present study, we evaluate HU's ability to induce apoptosis by eliminating extrachromosomally located c-myc oncogene in human tumor cell lines. The consequences of eliminating extrachromosomal DNA by HU were explored in two different cell lines using the TdT assay and acridine orange/ethidium bromide labeling. COLO 320 clone 3 and COLO 320 clone 21 cell lines contain the same number of amplified copies of c-myc oncogene, but located respectively on extrachromosomal DNA, and intrachromosomally in homogeneously staining regions. HU induced apoptosis in the COLO 320 clone 3 cell line by a time and concentration dependent mechanism but could not induce apoptosis in the COLO 320 clone 21 cell line. These results suggested that HU-induced apoptosis in COLO 320 cell lines depends on elimination of extrachromosomal amplified copies of the c-myc oncogene. The ability of HU to eliminate extrachromosomally amplified copies of the c-myc oncogene and to induce apoptosis should be considered when targeting malignancies with amplification of the c-myc oncogene in an extrachromosomal site.  相似文献   

16.
Simian virus 40 (SV40) large T antigen (LT) is a multifunctional protein that is important for viral replication and oncogenic transformation. Previously, infection of monkey or human cells with SV40 was shown to lead to the induction of DNA damage response signaling, which is required for efficient viral replication. However, it was not clear if LT is sufficient to induce the damage response and, if so, what the genetic requirements and functional consequences might be. Here, we show that the expression of LT alone, without a replication origin, can induce key DNA damage response markers including the accumulation of γ-H2AX and 53BP1 in nuclear foci. Other DNA damage-signaling components downstream of ATM/ATR kinases were induced, including chk1 and chk2. LT also bound the Claspin mediator protein, which normally facilitates the ATR activation of chk1 and monitors cellular replication origins. Stimulation of the damage response by LT depends mainly on binding to Bub1 rather than to the retinoblastoma protein. LT has long been known to stabilize p53 despite functionally inactivating it. We show that the activation of a DNA damage response by LT via Bub1 appears to play a major role in p53 stabilization by promoting the phosphorylation of p53 at Ser15. Accompanying the DNA damage response, LT induces tetraploidy, which is also dependent on Bub1 binding. Taken together, our data suggest that LT, via Bub1 binding, breaches genome integrity mechanisms, leading to DNA damage responses, p53 stabilization, and tetraploidy.  相似文献   

17.
18.
19.
Mutations of the retinoblastoma tumor suppressor, pRb, or its cyclin-cyclin-dependent kinase (CDK) regulatory kinases or CDK inhibitors, allows unrestrained E2F activity, leading to unregulated cell cycle progression. However, overexpression of E2F-1 also sensitizes cells to apoptosis, suggesting that targeting this pathway may be of therapeutic benefit. Enforced expression of E2F-1 in interleukin-3-dependent myeloid cells led to preferential sensitivity to the topoisomerase II inhibitor, etoposide, which was independent of p53 accumulation. Pretreatment of the E2F-1-expressing cells with ICRF-193, a second topoisomerase II inhibitor that does not cause DNA damage, protected these cells against etoposide-induced apoptosis. However, ICRF-193 cooperated with other DNA-damaging agents to induce apoptosis. Enforced expression of E2F-1 led to accumulation of p53 protein. An E2F-1 mutant that is defective in inducing cell cycle progression also induced p53, suggesting that p53 was responding directly to E2F, and not to secondary events caused by inappropriate cell cycle progression (i.e., DNA damage). Thus, topoisomerase II inhibition and DNA damage cooperate to selectively induce apoptosis in cells that have mutations in the pRb pathway.  相似文献   

20.
Eukaryotic cells control the initiation of DNA replication so that origins that have fired once in S phase do not fire a second time within the same cell cycle. Failure to exert this control leads to genetic instability. Here we investigate how rereplication is prevented in normal mammalian cells and how these mechanisms might be overcome during tumor progression. Overexpression of the replication initiation factors Cdt1 and Cdc6 along with cyclin A-cdk2 promotes rereplication in human cancer cells with inactive p53 but not in cells with functional p53. A subset of origins distributed throughout the genome refire within 2-4 hr of the first cycle of replication. Induction of rereplication activates p53 through the ATM/ATR/Chk2 DNA damage checkpoint pathways. p53 inhibits rereplication through the induction of the cdk2 inhibitor p21. Therefore, a p53-dependent checkpoint pathway is activated to suppress rereplication and promote genetic stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号