首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Epigenetic modifications are heritable variations in gene expression not encoded by the DNA sequence. According to reports, a large number of studies have been performed to characterize epigenetic modification during normal development and also in cancer. Epigenetics can be regarded more widely to contain all of the changes in expression of genes that make by adjusted interactions between the regulatory portions of DNA or messenger RNAs that lead to indirect variation in the DNA sequence. In the last decade, epigenetic modification importance in colorectal cancer (CRC) pathogenesis was demonstrated powerfully. Although developments in CRC therapy have been made in the last years, much work is required as it remains the second leading cause of cancer death. Nowadays, epigenetic programs and genetic change have pivotal roles in the CRC incidence as well as progression. While our knowledge about epigenetic mechanism in CRC is not comprehensive, selective histone modifications and resultant chromatin conformation together with DNA methylation most likely regulate CRC pathogenesis that involved genes expression. Undoubtedly, the advanced understanding of epigenetic-based gene expression regulation in the CRC is essential to make epigenetic drugs for CRC therapy. The major aim of this review is to deliver a summary of valuable results that represent evidence of principle for epigenetic-based therapeutic approaches employment in CRC with a focus on the advantages of epigenetic-based therapy in the inhibition of the CRC metastasis and proliferation.  相似文献   

2.
ABSTRACT: Cervical cancer (CC) is one of the most malignant tumors and the second or third most common type of cancer in women worldwide. The association between human papillomavirus (HPV) and CC is widely known and accepted (99.7% of cases). At present, the pathogenesis mechanisms of CC are not entirely clear. It has been shown that inactivation of tumor suppressor genes and activation of oncogenes play a significant role in carcinogenesis, caused by the genetic and epigenetic alterations. In the past, it was generally thought that genetic mutation was a key event of tumor pathogenesis, especially somatic mutation of tumor suppressor genes. With deeper understanding of tumors in recent years, increasing evidence has shown that epigenetic silencing of those genes, as a result of aberrant hypermethylation of CpG islands in promoters and histone modification, is essential to carcinogenesis and metastasis. The term epigenetics refers to heritable changes in gene expression caused by regulation mechanisms, other than changes in DNA sequence. Specific epigenetic processes include DNA methylation, chromotin remodeling, histone modification, and microRNA regulations. These alterations, in combination or individually, make it possible to establish the methylation profiles, histone modification maps, and expression profiles characteristic of this pathology, which become useful tools for screening, early detection, or prognostic markers in cervical cancer. This paper reviews recent epigenetics research progress in the CC study, and tries to depict the relationships between CC and DNA methylation, histone modification, as well as microRNA regulations.  相似文献   

3.
Histone modifications as a platform for cancer therapy   总被引:8,自引:0,他引:8  
Tumorigenesis and metastasis are a progression of events resulting from alterations in the processing of the genetic information. These alterations result from stable genetic changes (mutations) involving tumor suppressor genes and oncogenes (e.g., ras, BRAF) and potentially reversible epigenetic changes, which are modifications in gene function without a change in the DNA sequence. Mutations of genes coding for proteins that directly or indirectly influence epigenetic processes will alter the cell's gene expression program. Epigenetic mechanisms often altered in cancer cells are DNA methylation and histone modifications (acetylation, methylation, phosphorylation). This article will review the potential of these reversible epigenetic processes as targets for cancer therapies.  相似文献   

4.
Carcinogenesis involves the inactivation or inhibition of genes that function as tumor suppressors. Deletions, mutations, or epigenetic silencing of tumor suppressor genes can lead to altered growth, differentiation, and apoptosis. DNA methylation and histone modifications are important epigenetic mechanisms of gene regulation and play essential roles both independently and cooperatively in tumor initiation and progression. Realization that many tumor suppressor genes are silenced by epigenetic mechanisms has stimulated discovery of novel tumor suppressor genes. One of the most useful of these approaches is an epigenetic reactivation screening strategy that combines treatment of cancer cells in vitro with DNA methyltransferase and/or histone deacetylase (HDAC) inhibitors, followed by global gene expression analysis using microarrays, to identify upregulated genes. This approach is most effective when complemented by microarray analyses to identify genes repressed in primary tumors. Recently, using cancer cell lines treated with a DNA methylation inhibitor and/or a HDAC inhibitor in conjunction with cDNA microarray analysis, candidate tumor suppressor genes, which are subject to epigenetic silencing, have been identified in endometrial, colorectal, esophageal, and pancreatic cancers. An increasing number of studies have utilized epigenetic reactivation screening to discover novel tumor suppressor genes in cancer. The results of some of the most recent studies are highlighted in this review.  相似文献   

5.
6.
The metastatic cascade which leads to the death of cancer patients results from a multi‐step process of tumour progression caused by genetic and epigenetic alterations in key regulatory molecules. It is, therefore, crucial to improve our understanding of the regulation of genes controlling the metastatic process to identify predictive biomarkers and to develop more effective therapies to treat advanced disease. The study of epigenetic mechanisms of gene regulation offers a novel approach for innovative diagnosis and treatment of cancer patients. Recent discoveries provide compelling evidence that the methylation landscape (changes in both DNA methylation and histone post‐translational modifications) is profoundly altered in cancer cells and contributes to the altered expression of genes regulating tumour phenotypes. However, the impact of methylation events specifically on the advanced metastatic process is poorly understood compared with the initial oncogenic events. Moreover, the characterisation of a large number of histone‐modifying enzymes has revealed their active roles in cancer progression, via the regulation of specific target genes controlling different metastatic phenotypes. Here, we discuss two main methylating events (DNA methylation and histone‐tail methylation) involved in oncogenesis and metastasis formation. The potential reversibility of these molecular events makes them promising biomarkers of metastatic potential and potential therapeutic targets.  相似文献   

7.
表观遗传通过DNA甲基化、组蛋白修饰、染色质重塑、以及microRNA等调控方式来实现对基因表达、DNA复制和基因组稳定性的控制。DNA甲基化是目前研究的最为广泛的表观遗传修饰方式之一,可调控真核生物的基因表达。DNA甲基化在哺乳动物发育、肿瘤发生发展及人类其他疾病中均发挥着至关重要的作用。DNA甲基化状态的改变已被视为人类肿瘤细胞的生物标志之一。EMs虽是一种良性妇科疾病,但伴有细胞增殖、侵袭性及远处种植转移等肿瘤的特点。最新研究发现,DNA甲基化可能与子宫内膜异位症(EMs)的发生存在密切的关系并认为EMs从根本上是一种表观遗传学疾病。由于表观遗传修饰都是可逆的过程,这就为EMs的治疗提供了一种新的途径。本文就DNA甲基化在EMs中的发生发展中的作用及其调控的分子机制,以及在诊断治疗中作用的最新研究进展做一综述。  相似文献   

8.
徐安利  张素芹  陈琪  杨瑛  侯建青 《生物磁学》2014,(23):4574-4577
表观遗传通过DNA甲基化、组蛋白修饰、染色质重塑、以及microRNA等调控方式来实现对基因表达、DNA复制和基因组稳定性的控制。DNA甲基化是目前研究的最为广泛的表观遗传修饰方式之一,可调控真核生物的基因表达。DNA甲基化在哺乳动物发育、肿瘤发生发展及人类其他疾病中均发挥着至关重要的作用。DNA甲基化状态的改变已被视为人类肿瘤细胞的生物标志之一。EMs虽是一种良性妇科疾病,但伴有细胞增殖、侵袭性及远处种植转移等肿瘤的特点。最新研究发现,DNA甲基化可能与子宫内膜异位症(EMs)的发生存在密切的关系并认为EMs从根本上是一种表观遗传学疾病。由于表观遗传修饰都是可逆的过程,这就为EMs的治疗提供了一种新的途径。本文就DNA甲基化在EMs中的发生发展中的作用及其调控的分子机制,以及在诊断治疗中作用的最新研究进展做一综述。  相似文献   

9.
Hepatocellular carcinoma is the main type of primary liver cancer, and also one of the most malignant tumors. At present, the pathogenesis mechanisms of liver cancer are not entirely clear. It has been shown that inactivation of tumor suppressor genes and activation of oncogenes play a significant role in carcinogenesis, caused by the genetic and epigenetic aberrance. In the past, people generally thought that genetic mutation is a key event of tumor pathogenesis, and somatic mutation of tumor suppressor genes is in particular closely associated with oncogenesis. With deeper understanding of tumors in recent years, increasing evidence has shown that epigenetic silencing of those genes, as a result of aberrant hypermethylation of CpG islands in promoters and histone modification, is essential to carcinogenesis and metastasis. The term epigenetics refers to heritable changes in gene expression caused by regulation mechanisms, other than changes in the underlying DNA sequence. Specific epigenetic processes include DNA methylation, genome imprinting, chromotin remodeling, histone modification and microRNA regulations. This paper reviews recent epigenetics research progress in the hepatocellular carcinoma study, and tries to depict the relationships between hepatocellular carcinomagenesis and DNA methylation as well as microRNA regulation. Supported by National Basic Research Program of China (Grant No. 2006CD910402) and Science and Technology Commission of Shanghai Municipality (Grant No. 05DZ22201 and 08JC1416400).  相似文献   

10.
JN Treas  T Tyagi  KP Singh 《PloS one》2012,7(8):e43880
Chronic exposures to arsenic and estrogen are known risk factors for prostate cancer. Though the evidence suggests that exposure to arsenic or estrogens can disrupt normal DNA methylation patterns and histone modifications, the mechanisms by which these chemicals induce epigenetic changes are not fully understood. Moreover, the epigenetic effects of co-exposure to these two chemicals are not known. Therefore, the objective of this study was to evaluate the effects of chronic exposure to arsenic and estrogen, both alone and in combination, on the expression of epigenetic regulatory genes, their consequences on DNA methylation, and histone modifications. Human prostate epithelial cells, RWPE-1, chronically exposed to arsenic and estrogen alone and in combination were used for analysis of epigenetic regulatory genes expression, global DNA methylation changes, and histone modifications at protein level. The result of this study revealed that exposure to arsenic, estrogen, and their combination alters the expression of epigenetic regulatory genes and changes global DNA methylation and histone modification patterns in RWPE-1 cells. These changes were significantly greater in arsenic and estrogen combination treated group than individually treated group. The findings of this study will help explain the epigenetic mechanism of arsenic- and/or estrogen-induced prostate carcinogenesis.  相似文献   

11.
肿瘤表观基因组学研究进展   总被引:1,自引:1,他引:0  
多年来遗传学改变一直是肿瘤研究的焦点,近来人们越来越认识到异常表观遗传修饰在肿瘤形成中所起的重要作用。表观遗传修饰包括DNA甲基化、组蛋白修饰等,其变异会导致基因转录异常。表观基因组学是在基因组水平上对表观遗传学改变的研究。文章主要介绍目前已知的肿瘤表观基因组学相关内容,阐述表观遗传修饰与肿瘤的紧密关系及异常表观遗传修饰作为生物标记在肿瘤诊断、预后及治疗方面的最新研究进展。  相似文献   

12.
13.
DNA Methylation and Demethylation as Targets for Anticancer Therapy   总被引:10,自引:0,他引:10  
Cancer growth and metastasis require the coordinate change in gene expression of different sets of genes. While genetic alterations can account for some of these changes, it is becoming evident that many of the changes in gene expression observed are caused by epigenetic modifications. The epigenome consists of the chromatin and its modifications, the "histone code" as well as the pattern of distribution of covalent modifications of cytosines residing in the dinucleotide sequence CG by methylation. Although hypermethylation of tumor suppressor genes has attracted a significant amount of attention and inhibitors of DNA methylation were shown to activate methylated tumor suppressor genes and inhibit tumor growth, demethylation of critical genes plays a critical role in cancer as well. This review discusses the emerging role of demethylation in activation of pro-metastatic genes and the potential therapeutic implications of the demethylation machinery in metastasis.  相似文献   

14.
One of the most fundamental questions in the control of gene expression is how epigenetic patterns of DNA methylation and histone modifications are established. Our recent studies demonstrate that histone deacetylase HDA6 integrates DNA methylation and histone modifications in gene silencing by interacting with DNA methyltransferase MET1 and histone demethylase FLD, suggesting that regulatory crosstalk between histone modifications and DNA methylation could be mediated by the interaction of various epigenetic modification proteins.  相似文献   

15.
In the last three decades huge efforts have been made to characterize genetic defects responsible for cancer development and progression, leading to the comprehensive identification of distinct cellular pathways affected by the alteration of specific genes. Despite the undoubtable role of genetic mechanisms in triggering neoplastic cell transformation, epigenetic modifications (i.e., heritable changes of gene expression that do not derive from alterations of the nucleotide sequence of DNA) are rapidly emerging as frequent alterations that often occur in the early phases of tumorigenesis and that play an important role in tumor development and progression. Epigenetic alterations, such as modifications in DNA methylation patterns and post-translational modifications of histone tails, behave extremely different from genetic modifications, being readily revertable by "epigenetic drugs" such as inhibitors of DNA methyl transferases and inhibitors of histone deacetylases. Since epigenetic alterations in cancer cells affect virtually all cellular pathways that have been associated to tumorigenesis, it is not surprising that epigenetic drugs display pleiotropic activities, being able to concomitantly restore the defective expression of genes involved in cell cycle control, apoptosis, cell signaling, tumor cell invasion and metastasis, angiogenesis and immune recognition. Prompted by this emerging clinical relevance of epigenetic drugs, this review will focus on the large amount of available data, deriving both from in vitro experimentations and in vivo pre-clinical and clinical studies, which clearly indicate epigenetic drugs as effective modifiers of cancer phenotype and as positive regulators of tumor cell biology with a relevant therapeutic potential in cancer patients.  相似文献   

16.
人恶性黑色素瘤(malignant melanoma)是近年来高发病率和高死亡率的肿瘤之一.目前尚缺乏有效的治疗方法.而表观遗传如DNA甲基化(DNA methylation)、组蛋白修饰(histonemodification)、染色质重塑(chromatin remodeling)及RNA干扰(RNA interference,RNAi)等改变在人黑色素瘤的发生、发展和转移中有重要作用.阐明黑色素瘤发生发展的表观遗传学机制已引起了学者的普遍关注.本文综述了人类黑色素瘤发生发展中所特异的表观遗传改变:CpG岛的异常甲基化修饰、组蛋白甲基化和乙酰化修饰、染色质重塑以及microRNA在黑色素瘤发生和转移中的作用,并对应用表观遗传修饰治疗人类黑色素瘤进行了探讨.  相似文献   

17.
温耀兰  张轶清 《生物磁学》2014,(20):3997-4000
长期以来人们一直认为基因突变或基因缺失参与肿瘤的形成。近年来众多研究表明,表观遗传修饰对肿瘤的发展也具有非常重要的意义,它的主要表现形式有DNA甲基化、组蛋白修饰、微小RNA调节、染色质重组等。DNA异常甲基化可通过影响染色质结构、癌基因及抑癌基因表达而参与肿瘤的形成。了解目前宫颈癌中DNA甲基化的研究进展不仅有助于宫颈癌的早期诊断,对其分子靶向治疗及预后评估亦显示出良好的应用前景。  相似文献   

18.
DNA methylation and histone modifications are vital in maintaining genomic stability and modulating cellular functions in mammalian cells. These two epigenetic modifications are the most common gene regulatory systems known to spatially control gene expression. Transgene silencing by these two mechanisms is a major challenge to achieving effective gene therapy for many genetic conditions. The implications of transgene silencing caused by epigenetic modifications have been extensively studied and reported in numerous gene delivery studies. This review highlights instances of transgene silencing by DNA methylation and histone modification with specific focus on the role of these two epigenetic effects on the repression of transgene expression in mammalian cells from integrative and non-integrative based gene delivery systems in the context of gene therapy. It also discusses the prospects of achieving an effective and sustained transgene expression for future gene therapy applications.  相似文献   

19.
DNA methylation and histone modification are evolutionarily conserved epigenetic modifications that are crucial for the expression regulation of abiotic stress-responsive genes in plants. Dynamic changes in gene expression levels can result from changes in DNA methylation and histone modifications. In the last two decades, how epigenetic machinery regulates abiotic stress responses in plants has been extensively studied. Here, based on recent publications, we review how DNA methylation and histone modifications impact gene expression regulation in response to abiotic stresses such as drought, abscisic acid, high salt, extreme temperature, nutrient deficiency or toxicity, and ultraviolet B exposure. We also review the roles of epigenetic mechanisms in the formation of transgenerational stress memory. We posit that a better understanding of the epigenetic underpinnings of abiotic stress responses in plants may facilitate the design of more stress-resistant or -resilient crops, which is essential for coping with global warming and extreme environments.  相似文献   

20.
长期以来人们一直认为基因突变或基因缺失参与肿瘤的形成。近年来众多研究表明,表观遗传修饰对肿瘤的发展也具有非常重要的意义,它的主要表现形式有DNA甲基化、组蛋白修饰、微小RNA调节、染色质重组等。DNA异常甲基化可通过影响染色质结构、癌基因及抑癌基因表达而参与肿瘤的形成。了解目前宫颈癌中DNA甲基化的研究进展不仅有助于宫颈癌的早期诊断,对其分子靶向治疗及预后评估亦显示出良好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号