首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
DNA-damage checkpoints maintain genomic integrity by mediating a cell-cycle delay in response to genotoxic stress or stalled replication forks. In response to damage, the checkpoint kinase ATR phosphorylates and activates its effector kinase Chk1 in a process that critically depends on Claspin . However, it is not known how exactly this kinase cascade is silenced. Here we demonstrate that the abundance of Claspin is regulated through proteasomal degradation. In response to DNA damage, Claspin is transiently stabilized, and its expression depends on Chk1 kinase activity. In addition, we show that Claspin is degraded upon mitotic entry, a process that depends on the beta-TrCP-SCF ubiquitin ligase and Polo-like kinase-1 (Plk1). We demonstrate that Claspin interacts with both beta-TrCP and Plk1 and that inactivation of these components or the beta-TrCP recognition motif in Claspin prevents its mitotic degradation. Interestingly, expression of a nondegradable Claspin mutant inhibits recovery from a DNA-damage-induced checkpoint arrest. Thus, we conclude that Claspin levels are tightly regulated, both during unperturbed cell cycles and after DNA damage. Moreover, our data demonstrate that the degradation of Claspin at the onset of mitosis is an essential step for the recovery of a cell from a DNA-damage-induced cell-cycle arrest.  相似文献   

2.
During replicative stress, Claspin mediates the phosphorylation and consequent activation of Chk1 by ATR. We found that during recovery from the DNA replication checkpoint response, Claspin is degraded in a betaTrCP-dependent manner. In vivo, Claspin is phosphorylated in a canonical DSGxxS degron sequence, which is typical of betaTrCP substrates. Phosphorylation of Claspin is mediated by Plk1 and is essential for binding to betaTrCP. In vitro ubiquitylation of Claspin requires betaTrCP, Plk1, and an intact DSGxxS degron. Significantly, expression of a stable Claspin mutant unable to bind betaTrCP prolongs the activation of Chk1, thereby attenuating the recovery from the DNA replication stress response and significantly delaying entry into mitosis. Thus, the SCFbetaTrCP-dependent degradation of Claspin is necessary for the efficient and timely termination of the DNA replication checkpoint. Importantly, in response to DNA damage in G2, Claspin proteolysis is inhibited to allow the prompt reestablishment of the checkpoint.  相似文献   

3.
4.
We show that Claspin, an adaptor protein required for Chk1 activation, becomes degraded at the onset of mitosis. Claspin degradation was triggered by its interaction with, and ubiquitylation by, the SCFbetaTrCP ubiquitin ligase. This interaction was phosphorylation dependent and required the activity of the Plk1 kinase and the integrity of a betaTrCP recognition motif (phosphodegron) in the N terminus of Claspin. Uncoupling of Claspin from betaTrCP by mutating the conserved serines in Claspin's phosphodegron or by knocking down betaTrCP stabilized Claspin in mitosis, impaired Chk1 dephosphorylation, and delayed G2/M transition during recovery from cell cycle arrest imposed by DNA damage or replication stress. Moreover, the inability to degrade Claspin allowed partial reactivation of Chk1 in cells exposed to DNA damage after passing the G2/M transition. Our data suggest that degradation of Claspin facilitates timely reversal of the checkpoint response and delineates the period permissive for Chk1 activation during cell cycle progression.  相似文献   

5.
ATR (ATM and Rad3-related) initiates a DNA damage signaling pathway in human cells upon DNA damage induced by UV and UV-mimetic agents and in response to inhibition of DNA replication. Genetic data with human cells and in vitro data with Xenopus egg extracts have led to the conclusion that the kinase activity of ATR toward the signal-transducing kinase Chk1 depends on the mediator protein Claspin. Here we have reconstituted a Claspin-mediated checkpoint system with purified human proteins. We find that the ATR-dependent phosphorylation of Chk1, but not p53, is strongly stimulated by Claspin. Similarly, DNA containing bulky base adducts stimulates ATR kinase activity, and Claspin acts synergistically with damaged DNA to increase phosphorylation of Chk1 by ATR. Mutations in putative phosphorylation sites in the Chk1-binding domain of Claspin abolish its ability to mediate ATR phosphorylation of Chk1. We also find that a fragment of Claspin containing the Chk1-binding domain together with a domain conserved in the yeast Mrc1 orthologs of Claspin is sufficient for its mediator activity. This in vitro system recapitulates essential components of the genetically defined ATR-signaling pathway.  相似文献   

6.
7.
Claspin is required for the phosphorylation and activation of the Chk1 protein kinase by ATR during DNA replication and in response to DNA damage. This checkpoint pathway plays a critical role in the resistance of cells to genotoxic stress. Here, we show that human Claspin is cleaved by caspase-7 during the initiation of apoptosis. In cells, induction of DNA damage by etoposide at first produced rapid phosphorylation of Chk1 at a site targeted by ATR. Subsequently, etoposide caused activation of caspase-7, cleavage of Claspin, and dephosphorylation of Chk1. In apoptotic cell extracts, Claspin was cleaved by caspase-7 at a single aspartate residue into a large N-terminal fragment and a smaller C-terminal fragment that contain different functional domains. The large N-terminal fragment was heavily phosphorylated in a human cell-free system in response to double-stranded DNA oligonucleotides, and this fragment retained Chk1 binding activity. In contrast, the smaller C-terminal fragment did not bind Chk1, but did associate with DNA and inhibited the DNA-dependent phosphorylation of Chk1 associated with its activation. These results indicate that cleavage of Claspin by caspase-7 inactivates the Chk1 signaling pathway. This mechanism may regulate the balance between cell cycle arrest and induction of apoptosis during the response to genotoxic stress.  相似文献   

8.
The Cdc14B-Cdh1-Plk1 axis controls the G2 DNA-damage-response checkpoint   总被引:2,自引:0,他引:2  
In response to DNA damage in G2, mammalian cells must avoid entry into mitosis and instead initiate DNA repair. Here, we show that, in response to genotoxic stress in G2, the phosphatase Cdc14B translocates from the nucleolus to the nucleoplasm and induces the activation of the ubiquitin ligase APC/C(Cdh1), with the consequent degradation of Plk1, a prominent mitotic kinase. This process induces the stabilization of Claspin, an activator of the DNA-damage checkpoint, and Wee1, an inhibitor of cell-cycle progression, and allows an efficient G2 checkpoint. As a by-product of APC/C(Cdh1) reactivation in DNA-damaged G2 cells, Claspin, which we show to be an APC/C(Cdh1) substrate in G1, is targeted for degradation. However, this process is counteracted by the deubiquitylating enzyme Usp28 to permit Claspin-mediated activation of Chk1 in response to DNA damage. These findings define a novel pathway that is crucial for the G2 DNA-damage-response checkpoint.  相似文献   

9.
Bennett LN  Clarke PR 《FEBS letters》2006,580(17):4176-4181
Claspin is involved in ATR-dependent activation of Chk1 during DNA replication and in response to DNA damage. We show that degradation of Claspin by the ubiquitin-proteosome pathway is regulated during the cell cycle. Claspin is stabilized in S-phase but is abruptly degraded in mitosis and is absent from early G(1) cells in which the phosphorylation of Chk1 by ATR is abrogated. In response to hydroxyurea, UV or aphidicolin, Claspin is phosphorylated in the Chk1-binding domain and its protein levels are increased in an ATR-dependent manner. Thus, the Chk1 pathway is regulated through both phosphorylation of Claspin and its controlled degradation.  相似文献   

10.
Human claspin is required for replication checkpoint control   总被引:2,自引:0,他引:2  
Claspin is a newly identified protein that regulates Chk1 activation in Xenopus. In the present study we investigated the role of human Claspin in the DNA damage/replication checkpoint in mammalian cells. We observed that human Claspin is a cell cycle regulated protein that peaks at S/G2 phase. Claspin localizes in the nuclei, but it only associates with Chk1 following replication stress or other types of DNA damage. In addition, Claspin is phosphorylated in response to replication stress, and this phosphorylation appears to be required for its association with Chk1. Moreover, Claspin interacts with the checkpoint proteins ATR and Rad9. Given that both the ATR and Rad9-Rad1-Hus1 complexes are involved in Chk1 activation, it is possible that Claspin works as an adaptor molecule bringing these molecules together. Using small interfering RNA technology, we have shown that down-regulation of Claspin expression inhibits Chk1 activation in response to replication stress. More importantly, down-regulation of Claspin augments the premature chromatin condensation induced by hydroxyurea, inhibits the UV-induced reduction of DNA synthesis, and decreases cell survival. Taken together, these data imply a potentially critical role for Claspin in replication checkpoint control in mammalian cells.  相似文献   

11.
DNA damage triggers multiple checkpoint pathways to arrest cell cycle progression. Polo-like kinase 1 (Plk1) is an important regulator of several events during mitosis. In addition to Plk1 functions in cell cycle, Plk1 is involved in DNA damage check-point in G2 phase. Normally, ataxia telangiectasia-mutated kinase (ATM) is a key enzyme involved in G2 phase cell cycle arrest following DNA damage, and inhibition of Plk1 by DNA damage during G2 occurs in a ATM/ATR-dependent manner. However, it is still unclear how Plk1 is regulated in response to DNA damage in mitosis in which Plk1 is already activated. Here, we show that treatment of mitotic cells with doxorubicin and gamma-irradiation inhibits Plk1 activity through dephosphorylation of Plk1, and cells were arrested in G2 phase. Treatments of the phosphatase inhibitors and siRNA experiments suggested that PP2A pathway might be involved in regulating mitotic Plk1 activity in mitotic DNA damage. Finally, we propose a novel pathway, which is connected between ATM/ATR/Chk and protein phosphatase-Plk1 in DNA damage response in mitosis.  相似文献   

12.
The ATR and Chk1 kinases are essential to maintain genomicintegrity. ATR, with Claspin and the Rad9-Rad1-Hus1 complex,activates Chk1 after DNA damage. Chk1-mediated phosphorylation ofthe Cdc25A phosphatase is required for the mammalian S-phasecheckpoint. Here, we show that during physiological S phase theregulation of the Chk1-Cdc25A pathway depends on ATR, Claspin,Rad9, and Hus1. Human cells with chemically or genetically ablatedATR showed inhibition of Chk1-dependent phosphorylation of Cdc25A,and they accumulated Cdc25A without external DNA damage.Furthermore, siRNA-mediated depletion of Claspin, Rad9 and Hus1also stabilized Cdc25A. ATR ablation also inhibited the activatoryphosphorylation of Chk1 on serine 345. Thus, the ATR-Chk1-Cdc25Apathway represents an integral part of physiological S-phaseprogression, and interference with this mechanism underminesviability of somatic mammalian cells. DNA damage further activatesand switches this pathway from its constitutively operating“surveillance mode” compatible with DNA replication into an“emergency” checkpoint response.  相似文献   

13.
TopBP1 and Claspin are adaptor proteins that facilitate phosphorylation of Chk1 by the ATR kinase in response to genotoxic stress. Despite their established requirement for Chk1 activation, the exact way in which TopBP1 and Claspin control Chk1 phosphorylation remains unclear. We show that TopBP1 tightly colocalizes with ATR in distinct nuclear subcompartments generated by DNA damage. Although depletion of TopBP1 by RNA interference (RNAi) strongly impaired phosphorylation of multiple ATR targets, including Chk1, Nbs1, Smc1, and H2AX, it did not interfere with ATR assembly at the sites of DNA damage. These findings challenge the current concept of ATR activation by recruitment to damaged DNA. In contrast, Claspin, like Chk1, remained distributed throughout the nucleus both before and after DNA damage. Consistently, the RNAi-mediated ablation of Claspin selectively abrogated ATR's ability to phosphorylate Chk1 but not other ATR targets. In addition, downregulation of Claspin mimicked Chk1 inactivation by inducing spontaneous DNA damage. Finally, we show that TopBP1 is required for the DNA damage-induced interaction between Claspin and Chk1. Together, these results suggest that while TopBP1 is a general regulator of ATR, Claspin operates downstream of TopBP1 to selectively regulate the Chk1-controlled branch of the genotoxic stress response.  相似文献   

14.
Claspin is an adaptor protein that facilitates the ataxia telangiectasia and Rad3-related (ATR)-mediated phosphorylation and activation of Chk1, a key effector kinase in the DNA damage response. Efficient termination of Chk1 signaling in mitosis and during checkpoint recovery requires SCFβTrCP-dependent destruction of Claspin. Here, we identify the deubiquitylating enzyme ubiquitin-specific protease 7 (USP7) as a novel regulator of Claspin stability. Claspin and USP7 interact in vivo, and USP7 is required to maintain steady-state levels of Claspin. Furthermore, USP7-mediated deubiquitylation markedly prolongs the half-life of Claspin, which in turn increases the magnitude and duration of Chk1 phosphorylation in response to genotoxic stress. Finally, we find that in addition to the M phase–specific, SCFβTrCP-mediated degradation, Claspin is destabilized by the anaphase-promoting complex (APC) and thus remains unstable in G1. Importantly, we demonstrate that USP7 specifically opposes the SCFβTrCP- but not APCCdh1-mediated degradation of Claspin. Thus, Claspin turnover is controlled by multiple ubiquitylation and deubiquitylation activities, which together provide a flexible means to regulate the ATR–Chk1 pathway.  相似文献   

15.
DNA damage during the cell division cycle can activate ATM/ATR and their downstream kinases that are involved in the checkpoint pathway, and cell growth is halted until damage is repaired. As a result of DNA damage induced in mitotic cells by doxorubicin treatment, cells accumulate in a G2-like phase, not in mitosis. Under these conditions, two mitosis-specific kinases, Cdk1 and Plk1, are inhibited by inhibitory phosphorylation and dephosphorylation, respectively. G2-specific phosphorylation of Cdc25 was increased during incubation after mitotic DNA damage. Inhibition of Plk1 through dephosphorylation was dependent on ATM/Chk1 activity. Depleted expression of ATM and Chk1 was achieved using small hairpin RNA (shRNA) plasmid constructs. In this condition, damaged mitotic cells did not accumulated in a G2-like stage, and entered into G1 phase without delay. Protein phosphatase 2A was responsible for dephosphorylation of mitotic Plk1 in response to DNA damage. In knockdown of PP2A catalytic subunits, Plk1 was not dephosphorylated, but rather degraded in response to DNA damage, and cells did not accumulate in G2-like phase. The effect of ATM/Chk1 inhibition was counteracted by overexpression of PP2A, indicated that PP2A may function as a downstream target of ATM/Chk1 at a mitotic DNA damage checkpoint, or may have a dominant effect on ATM/Chk1 function at this checkpoint. Finally, we have shown that negative regulation of Plk1 by dephosphorylation is important to cell accumulation in G2-like phase at the mitotic DNA damage checkpoint, and that this ATM/Chk1/PP2A pathway independent on p53 is a novel mechanism of cellular response to mitotic DNA damage.  相似文献   

16.
Chini CC  Chen J 《DNA Repair》2004,3(8-9):1033-1037
Regulation of the vertebrate checkpoint kinase Chk1 involves several protein complexes including the recently identified protein Claspin. Claspin associates with Chk1 upon replication stress and DNA damage and is required for Chk1 activation in both Xenopus and human systems. More importantly, Claspin is involved in regulation of cell cycle checkpoints. Here, we discuss the emerging roles of Claspin in the Chk1 pathway and its functions in checkpoint control.  相似文献   

17.
In vertebrates, the checkpoint-regulatory kinase Chk1 mediates cell-cycle arrest in response to a block in DNA replication or to DNA damaged by ultraviolet radiation. The activation of Chk1 depends on both Claspin and the upstream regulatory kinase ATR. Claspin is a large acidic protein that becomes phosphorylated and binds to Chk1 in the presence of checkpoint-inducing DNA templates in Xenopus egg extracts. Here we identify, by means of deletion analysis, a region of Claspin of 57 amino acids that is both necessary and sufficient for binding to Xenopus Chk1. This Chk1-binding domain contains two highly conserved repeats of approximately ten amino acids. A serine residue in each repeat (serine 864 and serine 895) undergoes phosphorylation during a checkpoint response. A mutant of Claspin containing non-phosphorylatable amino acids at positions 864 and 895 cannot bind to Chk1 and is unable to mediate its activation. Our results indicate that two phosphopeptide motifs in Claspin are essential for checkpoint signalling.  相似文献   

18.
Chk1 protein kinase plays a critical role in checkpoints that restrict progression through the cell cycle if DNA replication has not been completed or DNA damage has been sustained. ATR-dependent activation of Chk1 is mediated by Claspin. Phosphorylation of Claspin at two sites (Thr916 and Ser945 in humans) in response to DNA replication arrest or DNA damage recruits Chk1 to Claspin. Chk1 is subsequently phosphorylated by ATR and fully activated to control cell cycle progression. We show that ablation of Chk1 by siRNA in human cells or its genetic deletion in chicken DT40 cells does not prevent phosphorylation of Claspin at Thr916 (Ser911 in chicken). Chk1, however, does play other roles, possibly indirect, in the phosphorylation of Claspin and its induction. These results demonstrate that phosphorylation of Claspin within the Chk1-binding domain is catalysed by an ATR-dependent kinase distinct from Chk1.  相似文献   

19.
BACKGROUND: Checkpoint signaling pathways are of crucial importance for the maintenance of genomic integrity. Within these pathways, the effector kinase Chk1 plays a central role in mediating cell-cycle arrest in response to DNA damage, and it does so by phosphorylating key cell-cycle regulators. RESULTS: By investigating the subcellular distribution of Chk1 by cell fractionation, we observed that around 20% of it localizes to chromatin during all phases of the cell cycle. Furthermore, we found that in response to DNA damage, Chk1 rapidly dissociates from the chromatin. Significantly, we observed a tight correlation between DNA-damage-induced Chk1 phosphorylation and chromatin dissociation, suggesting that phosphorylated Chk1 does not stably associate with chromatin. Consistent with these events being triggered by active checkpoint signaling, inhibition of the DNA-damage-activated kinases ATR and ATM, or siRNA-mediated downregulation of the DNA-damage mediator proteins Claspin and TopBP1, impaired DNA-damage-induced dissociation of Chk1 from chromatin. Finally, we established that Chk1 phosphorylation occurs at localized sites of DNA damage and that constitutive immobilization of Chk1 on chromatin results in a defective DNA-damage-induced checkpoint arrest. CONCLUSIONS: Chromatin association and dissociation appears to be important for proper Chk1 regulation. We propose that in response to DNA damage, PIKK-dependent checkpoint signaling leads to phosphorylation of chromatin-bound Chk1, resulting in its rapid release from chromatin and facilitating the transmission of DNA-damage signals to downstream targets, thereby promoting efficient cell-cycle arrest.  相似文献   

20.
Claspin is a checkpoint protein involved in ATR (ataxia telangiectasia mutated- and Rad3-related)-dependent Chk1 activation in Xenopus and human cells. In Xenopus, Claspin interacts with Chk1 after DNA damage through a region containing two highly conserved repeats, which becomes phosphorylated during the checkpoint response. Because this region is also conserved in human Claspin, we investigated the regulation and function of these potential phosphorylation sites in human Claspin. We found that Claspin is phosphorylated in vivo at Thr-916 in response to replication stress and UV damage. Mutation of these phosphorylation sites on Claspin inhibited Claspin-Chk1 interaction in vivo, impaired Chk1 activation, and induced premature chromatin condensation in cells, indicating a defect in replication checkpoint. In addition, we found that Thr-916 on Claspin is phosphorylated by Chk1, suggesting that Chk1 regulates Claspin during checkpoint response. These results together indicate that phosphorylation of Claspin repeats in human Claspin is important for Claspin function and the regulation of Claspin-Chk1 interaction in human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号