首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of cyclin-dependent kinase 2 is required for G(1)-S-phase progression of the eukaryotic cell cycle. In this study, we examine the activation of CDK2-cyclin E by constructing a CDK2 that is constitutively targeted to the nucleus. Activation of CDK2 requires the removal of two inhibitory phosphates (Thr-14 and Tyr-15) and the addition of one activating phosphate (Thr-160) by a nuclear localized CDK-activating kinase, which is thought to be constitutively active. Surprisingly, nuclear localized CDK2-NLS and CDK2-NLS(A14,F15), which lacks the inhibitory phosphorylation sites, require serum to become active, despite complexing with expressed cyclin E. We show that inhibition of mitogen-mediated ERK activation by treatment with U0126, a selective MEK inhibitor, or expression of dominant-negative ERK markedly reduces the phosphorylation of Thr-160 and enzymatic activity of both CDK2-NLS constructs. Consistent with a role for ERK in Thr-160 phosphorylation, expression of constitutively active Raf-1 induces Thr-160 phosphorylation of CDK2-NLS in serum-arrested cells, an effect that is blocked by treatment with U0126. Taken together, these data show a new role for ERK in G1 cell cycle progression: In addition to its role in stimulating cyclin D1 expression and nuclear translocation of CDK2, ERK regulates Thr-160 phosphorylation of CDK2-cyclin E.  相似文献   

2.
In this study, we present evidence that PI 3-kinase is required for alpha-thrombin-stimulated DNA synthesis in Chinese hamster embryonic fibroblasts (IIC9 cells). Previous results from our laboratory demonstrate that the mitogen-activated protein kinase (extracellular signal-regulated kinase (ERK)) pathway controls transit through G(1) phase of the cell cycle by regulating the induction of cyclin D1 mRNA levels and cyclin dependent kinase 4 (CDK4)-cyclin D1 activity. In IIC9 cells, PI 3-kinase activation also is an important controller of the expression of cyclin D1 protein and CDK4-cyclin D1 activity. Pretreatment of IIC9 cells with the selective PI 3-kinase inhibitor, LY294002 blocks the alpha-thrombin-stimulated increase in cyclin D1 protein and CDK4 activity. However, LY294002 does not affect alpha-thrombin-induced cyclin D1 steady state message levels, indicating that PI 3-kinase acts independent of the ERK pathway. Interestingly, expression of a dominant-negative Ras significantly decreased both alpha-thrombin-stimulated ERK and PI 3-kinase activities. These data clearly demonstrate that the alpha-thrombin-induced Ras activation coordinately regulates ERK and PI 3-kinase activities, both of which are required for expression of cyclin D1 protein and progression through G(1).  相似文献   

3.
Activation of cyclin-dependent kinase 2 (CDK2)-cyclin E in the late G(1) phase of the cell cycle is important for transit into S phase. In Chinese hamster embryonic fibroblasts (IIC9) phosphatidylinositol 3-kinase and ERK regulate alpha-thrombin-induced G(1) transit by their effects on cyclin D1 protein accumulation (Phillips-Mason, P. J., Raben, D. M., and Baldassare, J. J. (2000) J. Biol. Chem. 275, 18046-18053). Here, we show that ERK also affects CDK2-cyclin E activation by regulating the subcellular localization of CDK2. Ectopic expression of cyclin E rescues the inhibition of alpha-thrombin-induced activation of CDK2-cyclin E and transit into S phase brought about by treatment of IIC9 cells with LY29004, a selective inhibitor of mitogen stimulation of phosphatidylinositol 3-kinase activity. However, cyclin E expression is ineffectual in rescuing these effects when ERK activation is blocked by treatment with PD98059, a selective inhibitor of MEK activation of ERK. Investigation into the mechanistic reasons for this difference found the following. 1) Although treatment with LY29004 inhibits alpha-thrombin-stimulated nuclear localization, ectopic expression of cyclin E rescues CDK2 translocation. 2) In contrast to treatment with LY29004, ectopic expression of cyclin E fails to restore alpha-thrombin-stimulated nuclear CDK2 translocation in IIC9 cells treated with PD98059. 3) CDK2-cyclin E complexes are not affected by treatment with either inhibitor. These data indicate that, in addition to its effects on cyclin D1 expression, ERK activity is an important controller of the translocation of CDK2 into the nucleus where it is activated.  相似文献   

4.
Neurogenesis plays an important role in adult hippocampal function, and this process can be modulated by intracellular calcium. The activation of transient receptor potential vanilloid 4 (TRPV4) induces an increase in intracellular calcium concentration, but whether neurogenesis can be modulated by TRPV4 activation remains unclear. Here, we report that intracerebroventricular injection of the TRPV4 agonist GSK1016790A for 5 days enhanced the proliferation of stem cells in the hippocampal dentate gyrus (DG) of adult mice without affecting neurite growth, differentiation, or survival of newborn cells. GSK1016790A induced increases in the hippocampal protein levels of cyclin-dependent kinase (CDK) 6, CDK2, cyclin E1, and cyclin A2 but did not affect CDK4 and cyclin D1 expression. The phosphorylation of retinoblastoma protein (Rb) in hippocampi was enhanced in GSK1016790A-injected mice compared with control mice. Moreover, hippocampal protein levels of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation were enhanced by GSK1016790A. Finally, GSK1016790A-enhanced proliferation was markedly blocked by a MAPK/ERK kinase or p38 MAPK antagonist (U0126 or SB203580, respectively). The increased protein levels of CDK2 and CDK6, as well as those of cyclin E1 and cyclin A2, in GSK1016790A-injected mice were substantially reduced by co-injection of U0126 or SB203580. We conclude that TRPV4 activation results in the proliferation of stem cells in the adult hippocampal DG, which is likely mediated through ERK1/2 and p38 MAPK signaling to increase the expression of CDKs (CDK6 and CDK2) and cyclins (cyclin E1 and A2), phosphorylate Rb consequently, and accelerate the cell cycle ultimately.  相似文献   

5.
Little is known about the posttranslational control of the cyclin-dependent protein kinase (CDK) inhibitor p21. We describe here a transient phosphorylation of p21 in the G2/M phase. G2/M-phosphorylated p21 is short-lived relative to hypophosphorylated p21. p21 becomes nuclear during S phase, prior to its phosphorylation by CDK2. S126-phosphorylated cyclin B1 binds to T57-phosphorylated p21. Cdc2 kinase activation is delayed in p21-deficient cells due to delayed association between Cdc2 and cyclin B1. Cyclin B1-Cdc2 kinase activity and G2/M progression in p21-/- cells are restored after reexpression of wild-type but not T57A mutant p21. The cyclin B1 S126A mutant exhibits reduced Cdc2 binding and has low kinase activity. Phosphorylated p21 binds to cyclin B1 when Cdc2 is phosphorylated on Y15 and associates poorly with the complex. Dephosphorylation on Y15 and phosphorylation on T161 promotes Cdc2 binding to the p21-cyclin B1 complex, which becomes activated as a kinase. Thus, hyperphosphorylated p21 activates the Cdc2 kinase in the G2/M transition.  相似文献   

6.
The activation of CDK2-cyclin E in late G1 phase has been shown to play a critical role in retinoblastoma protein (pRb) inactivation and G1-S phase progression of the cell cycle. The phosphatidylinositol 3-OH-kinase inhibitor LY294002 has been shown to block cyclin D1 accumulation, CDK4 activity and, thus, G1 progression in alpha-thrombin-stimulated IIC9 cells (Chinese hamster embryonic fibroblasts). Our previous results show that expression of cyclin E rescues S phase progression in alpha-thrombin-stimulated IIC9 cells treated with LY294002, arguing that cyclin E renders CDK4 activity dispensable for G1 progression. In this work we investigate the ability of alpha-thrombin-induced CDK2-cyclin E activity to inactivate pRb in the absence of prior CDK4-cyclin D1 activity. We report that in the absence of CDK4-cyclin D1 activity, CDK2-cyclin E phosphorylates pRb in vivo on at least one residue and abolishes pRb binding to E2F response elements. We also find that expression of cyclin E rescues E2F activation and cyclin A expression in cyclin D kinase-inhibited, alpha-thrombin-stimulated cells. Furthermore, the rescue of E2F activity, cyclin A expression, and DNA synthesis by expression of E can be blocked by the expression of either CDK2(D145N) or RbDeltaCDK, a constitutively active mutant of pRb. However, restoring four known cyclin E-CDK2 phosphorylation sites to RbDeltaCDK renders it susceptible to inactivation in late G1, as assayed by E2F activation, cyclin A expression, and S phase progression. These data indicate that CDK2-cyclin E, without prior CDK4-cyclin D activity, can phosphorylate and inactivate pRb, activate E2F, and induce DNA synthesis.  相似文献   

7.
Our previous studies demonstrated that the proinflammatory peptide, macrophage migration inhibitory factor (MIF), functions as an autocrine mediator of both growth factor- and integrin-dependent sustained ERK MAPK activation, cyclin D1 expression, and cell cycle progression. We now report that MIF promotes the activation of the canonical ERK MAPK cascade and cyclin D1 expression by stimulating the activity of the Rho GTPase and downstream signaling to stress fiber formation. Rho-dependent stress fiber accumulation promotes the sustained activation of ERK and subsequent cyclin D1 expression during G(1)-S phase cell cycle progression. This pathway is reported to be dependent upon myosin light chain (MLC) kinase, integrin clustering, and subsequent activation of focal adhesion kinase, leading to sustained MAPK activity. Our studies reveal that recombinant MIF induces cyclin D1 expression in a Rho-, Rho kinase-, MLC kinase-, and ERK-dependent manner in asynchronous NIH 3T3 fibroblasts. Moreover, MIF(-/-) murine embryonic fibroblasts display aberrant cyclin D1 expression that is linked to defective Rho activity, stress fiber formation, and MLC phosphorylation. These results suggest that MIF is an integral autocrine mediator of Rho GTPase-dependent signaling events and provide mechanistic insight into how MIF regulates proliferative, migratory, and oncogenic processes.  相似文献   

8.
Stimulation of primary human T lymphocytes results in up-regulation of cyclin T1 expression, which correlates with phosphorylation of the C-terminal domain of RNA polymerase II (RNAP II). Up-regulation of cyclin T1 and concomitant stabilization of cyclin-dependent kinase 9 (CDK9) may facilitate productive replication of HIV in activated T cells. We report that treatment of PBLs with two mitogens, PHA and PMA, results in accumulation of cyclin T1 via distinct mechanisms. PHA induces accumulation of cyclin T1 mRNA and protein, which results from cyclin T1 mRNA stabilization, without significant change in cyclin T1 promoter activity. Cyclin T1 mRNA stabilization requires the activation of both calcineurin and JNK because inhibition of either precludes cyclin T1 accumulation. In contrast, PMA induces cyclin T1 protein up-regulation by stabilizing cyclin T1 protein, apparently independently of the proteasome and without accumulation of cyclin T1 mRNA. This process is dependent on Ca2+-independent protein kinase C activity but does not require ERK1/2 activation. We also found that PHA and anti-CD3 Abs induce the expression of both the cyclin/CDK complexes involved in RNAP II C-terminal domain phosphorylation and the G1-S cyclins controlling cell cycle progression. In contrast, PMA alone is a poor inducer of the expression of G1-S cyclins but often as potent as PHA in inducing RNAP II cyclin/CDK complexes. These findings suggest coordination in the expression and activation of RNAP II kinases by pathways that independently stimulate gene expression but are insufficient to induce S phase entry in primary T cells.  相似文献   

9.
Elevation of cellular cyclic AMP (cAMP) levels inhibits cell cycle reentry in a variety of cell types. While cAMP can prevent the activation of Raf-1 and extracellular signal-regulated kinases 1 and 2 (ERK1/2) by growth factors, we now show that activation of ERK1/2 by DeltaRaf-1:ER is insensitive to cAMP. Despite this, DeltaRaf-1:ER-stimulated DNA synthesis is still inhibited by cAMP, indicating a cAMP-sensitive step downstream of ERK1/2. Although cyclin D1 expression has been proposed as an alternative target for cAMP, we found that cAMP could inhibit DeltaRaf-1:ER-induced cyclin D1 expression only in Rat-1 cells, not in CCl39 or NIH 3T3 cells. DeltaRaf-1:ER-stimulated activation of CDK2 was strongly inhibited by cAMP in all three cell lines, but cAMP had no effect on the induction of p21(CIP1). cAMP blocked the fetal bovine serum (FBS)-induced degradation of p27(KIP1); however, loss of p27(KIP1) in response to DeltaRaf-1:ER was less sensitive in CCl39 and Rat-1 cells and was completely independent of cAMP in NIH 3T3 cells. The most consistent effect of cAMP was to block both FBS- and DeltaRaf-1:ER-induced expression of Cdc25A and cyclin A, two important activators of CDK2. When CDK2 activity was bypassed by activation of the ER-E2F1 fusion protein, cAMP no longer inhibited expression of Cdc25A or cyclin A but still inhibited DNA synthesis. These studies reveal multiple points of cAMP sensitivity during cell cycle reentry. Inhibition of Raf-1 and ERK1/2 activation may operate early in G(1), but when this early block is bypassed by DeltaRaf-1:ER, cells still fail to enter S phase due to inhibition of CDK2 or targets downstream of E2F1.  相似文献   

10.
《FEBS letters》2014,588(24):4708-4719
Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levels and impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo.  相似文献   

11.
p33cdk2 is a serine-threonine protein kinase that associates with cyclins A, D, and E and has been implicated in the control of the G1/S transition in mammalian cells. Recent evidence indicates that cyclin-dependent kinase 2 (Cdk2), like its homolog Cdc2, requires cyclin binding and phosphorylation (of threonine-160) for activation in vivo. However, the extent to which mechanistic details of the activation process are conserved between Cdc2 and Cdk2 is unknown. We have developed bacterial expression and purification systems for Cdk2 and cyclin A that allow mechanistic studies of the activation process to be performed in the absence of cell extracts. Recombinant Cdk2 is essentially inactive as a histone H1 kinase (< 4 x 10(-5) pmol phosphate transferred.min-1 x microgram-1 Cdk2). However, in the presence of equimolar cyclin A, the specific activity is approximately 16 pmol.mon-1 x microgram-1, 4 x 10(5)-fold higher than Cdk2 alone. Mutation of T160 in Cdk2 to either alanine or glutamic acid had little impact on the specific activity of the Cdk2/cyclin A complex: the activity of Cdk2T160E was indistinguishable from Cdk2, whereas that of Cdk2T160A was reduced by five-fold. To determine if the Cdk2/cyclin A complex could be activated further by phosphorylation of T160, complexes were treated with Cdc2 activating kinase (CAK), purified approximately 12,000-fold from Xenopus eggs. This treatment resulted in an 80-fold increase in specific activity. This specific activity is comparable with that of the Cdc2/cyclin B complex after complete activation by CAK (approximately 1600 pmol.mon-1 x microgram-1). Neither Cdk2T160A/cyclin A nor Cdk2T160E/cyclin A complexes were activated further by treatment with CAK. In striking contrast with cyclin A, cyclin B did not directly activate Cdk2. However, both Cdk2/cyclin A and Cdk2/cyclin B complexes display similar activity after activation by CAK. For the Cdk2/cyclin A complex, both cyclin binding and phosphorylation contribute significantly to activation, although the energetic contribution of cyclin A binding is greater than that of T160 phosphorylation by approximately 5 kcal/mol. The potential significance of direct activation of Cdk2 by cyclins with respect to regulation of cell cycle progression is discussed.  相似文献   

12.
To ensure proper timing of the G1-S transition in the cell cycle, the cyclin E-Cdk2 complex, which is responsible for the initiation of DNA replication, is restrained by the p21(Cip1)/p27(Kip1)/p57(Kip2) family of CDK (cyclin-dependent kinase) inhibitors in humans and by the related p27(Xic1) protein in Xenopus. Activation of cyclin E-Cdk2 is linked to the ubiquitination of human p27(Kip1) or Xenopus p27(Xic1) by SCF (for Skp1-Cullin-F-box protein) ubiquitin ligases. For human p27(Kip1), ubiquitination requires direct phosphorylation by cyclin E-Cdk2. We show here that Xic1 ubiquitination does not require phosphorylation by cyclin E-Cdk2, but it does require nuclear accumulation of the Xic1-cyclin E-Cdk2 complex and recruitment of this complex to chromatin by the origin-recognition complex together with Cdc6 replication preinitiation factors; it also requires an activation step necessitating cyclin E-Cdk2-kinase and SCF ubiquitin-ligase activity, and additional factors associated with mini-chromosome maintenance proteins, including the inactivation of geminin. Components of the SCF ubiquitin-ligase complex, including Skp1 and Cul1, are also recruited to chromatin through cyclin E-Cdk2 and the preinitiation complex. Thus, activation of the cyclin E-Cdk2 kinase and ubiquitin-dependent destruction of its inhibitor are spatially constrained to the site of a properly assembled preinitiation complex.  相似文献   

13.
The initiation of DNA replication in eukaryotes requires the loading of the origin recognition complex (ORC), Cdc6, and minichromosome maintenance (MCM) proteins onto chromatin to form the preinitiation complex. In Xenopus egg extract, the proteins Orc1, Orc2, Cdc6, and Mcm4 are underphosphorylated in interphase and hyperphosphorylated in metaphase extract. We find that chromatin binding of ORC, Cdc6, and MCM proteins does not require cyclin-dependent kinase activities. High cyclin A-dependent kinase activity inhibits the binding and promotes the release of Xenopus ORC, Cdc6, and MCM from sperm chromatin, but has no effect on chromatin binding of control proteins. Cyclin A together with ORC, Cdc6 and MCM proteins is bound to sperm chromatin in DNA replicating pseudonuclei. In contrast, high cyclin E/cdk2 was not detected on chromatin, but was found soluble in the nucleoplasm. High cyclin E kinase activity allows the binding of Xenopus ORC and Cdc6, but not MCM, to sperm chromatin, even though the kinase does not phosphorylate MCM directly. We conclude that chromatin-bound cyclin A kinase controls DNA replication by protein phosphorylation and chromatin release of Cdc6 and MCM, whereas soluble cyclin E kinase prevents rereplication during the cell cycle by the inhibition of premature MCM chromatin association.  相似文献   

14.
The cyclin-dependent kinase-activating kinase (CAK) catalyzes the phosphorylation of the cyclin-dependent protein kinases (CDKs) on a threonine residue (Thr160 in human CDK2). The reaction is an obligatory step in the activation of the CDKs. In higher eukaryotes, the CAK complex has been characterized in two forms. The first consists of three subunits, namely CDK7, cyclin H, and an assembly factor called MAT1, while the second consists of phospho-CDK7 and cyclin H. Phosphorylation of CDK7 is essential for cyclin association and kinase activity in the absence of the assembly factor MAT1. The Xenopus laevis CDK7 phosphorylation sites are located on the activation segment of the kinase at residues Ser170 and at Thr176 (the latter residue corresponding to Thr160 in human CDK2). We report the expression and purification of X. laevis CDK7/cyclin H binary complex in insect cells through coinfection with the recombinant viruses, AcCDK7 and Accyclin H. Quantities suitable for crystallization trials have been obtained. The purified CDK7/cyclin H binary complex phosphorylated CDK2 and CDK2/cyclin A but did not phosphorylate histone H1 or peptide substrates based on the activation segments of CDK7 and CDK2. Analysis by mass spectrometry showed that coexpression of CDK7 with cyclin H in baculoviral-infected insect cells results in phosphorylation of residues Ser170 and Thr176 in CDK7. It is assumed that phosphorylation is promoted by kinase(s) in the insect cells that results in the correct, physiologically significant posttranslational modification. We discuss the occurrence of in vivo phosphorylation of proteins expressed in baculoviral-infected insect cells.  相似文献   

15.
Induction of G(2)/M phase transition in mitotic and meiotic cell cycles requires activation by phosphorylation of the protein phosphatase Cdc25. Although Cdc2/cyclin B and polo-like kinase (PLK) can phosphorylate and activate Cdc25 in vitro, phosphorylation by these two kinases is insufficient to account for Cdc25 activation during M phase induction. Here we demonstrate that p42 MAP kinase (MAPK), the Xenopus ortholog of ERK2, is a major Cdc25 phosphorylating kinase in extracts of M phase-arrested Xenopus eggs. In Xenopus oocytes, p42 MAPK interacts with hypophosphorylated Cdc25 before meiotic induction. During meiotic induction, p42 MAPK phosphorylates Cdc25 at T48, T138, and S205, increasing Cdc25's phosphatase activity. In a mammalian cell line, ERK1/2 interacts with Cdc25C in interphase and phosphorylates Cdc25C at T48 in mitosis. Inhibition of ERK activation partially inhibits T48 phosphorylation, Cdc25C activation, and mitotic induction. These findings demonstrate that ERK-MAP kinases are directly involved in activating Cdc25 during the G(2)/M transition.  相似文献   

16.
This study examined how L-leucine affected DNA synthesis and cell cycle regulatory protein expression in cultured primary chicken hepatocytes. L-Leucine promoted DNA synthesis in a dose- and time-dependent manner, with concomitant increases in cyclin D1 and cyclin E expression. Phospholipase C (PLC) and protein kinase C (PKC) mediated the L-leucine-induced increases in [3H]-thymidine incorporation and cyclin D1/CDK4 and cyclin E/CDK2 expression, as U73122 (a PLC inhibitor) or bisindolylmaleimide I (a PKC blocker) inhibited these effects. L-Leucine also increased PKC phosphorylation and intracellular Ca2+ levels. L-Leucine-mediated increases in [3H]-thymidine incorporation and cyclin/CDK expression were sensitive to LY 294002 (PI3K inhibitor), Akt inhibitor, PD 98059 (MEK inhibitor). It was also observed that L-leucine-induced increases of cyclin/CDK expression were inhibited by PI3K siRNA and ERK siRNA; L-leucine increased extracellular signal-regulated kinases 1/2 (ERK1/2) and Akt phosphorylation levels. Bisindolylmaleimide I attenuated L-leucine-induced phosphorylation of ERK1/2 but did not influence Akt phosphorylation, and PI3K siRNA and LY 294002 inhibited L-leucine-induced ERK1/2 phosphorylation, suggesting some cross-talk between the PKC and ERK1/2 or PI3K/Akt and ERK1/2 pathways. L-Leucine also increased the levels of phosphorylated molecular target of rapamycin (mTOR) and two of its targets, ribosomal protein S6 kinase (p70S6K), and 4E binding protein 1 (4E-BP1); furthermore, rapamycin (an mTOR inhibitor) blocked all of the mitogenic effects of L-leucine. In addition, Akt inhibitor blocked L-leucine-induced mTOR phosphorylation. In conclusion, L-leucine stimulated DNA synthesis and promoted cell cycle progression in primary cultured chicken hepatocytes through PKC, ERK1/2, PI3K/Akt, and mTOR.  相似文献   

17.
18.
How cyclic AMP (cAMP) could positively or negatively regulate G1 phase progression in different cell types or in cancer cells versus normal differentiated counterparts has remained an intriguing question for decades. At variance with the cAMP-dependent mitogenesis of normal thyroid epithelial cells, we show here that cAMP and cAMP-dependent protein kinase activation inhibit S-phase entry in four thyroid carcinoma cell lines that harbor a permanent activation of the Raf/ERK pathway by different oncogenes. Only in Ret/PTC1-positive TPC-1 cells did cAMP markedly inhibit the Raf/ERK cascade, leading to mTOR pathway inhibition, repression of cyclin D1 and p21 and p27 accumulation. p27 knockdown did not prevent the DNA synthesis inhibition. In the other cells, cAMP little affected these signaling cascades and levels of cyclins D or CDK inhibitors. However, cAMP differentially inhibited the pRb-kinase activity and T172-phosphorylation of CDK4 complexed to cyclin D1 or cyclin D3, whereas CDK-activating kinase activity remained unaffected. At variance with current conceptions, our studies in thyroid carcinoma cell lines and previously in normal thyrocytes identify the activating phosphorylation of CDK4 as a common target of opposite cell cycle regulations by cAMP, irrespective of its impact on classical mitogenic signaling cascades and expression of CDK4 regulatory partners.  相似文献   

19.
We have previously shown that SV40 small t antigen (st) cooperates with deregulated cyclin E to activate CDK2 and bypass quiescence in normal human fibroblasts (NHF). Here we show that st expression in serum-starved and density-arrested NHF specifically induces up-regulation and loading of CDC6 onto chromatin. Coexpression of cyclin E results in further accumulation of CDC6 onto chromatin concomitantly with phosphorylation of CDK2 on Thr-160 and CDC6 on Ser-54. Investigation of the mechanism leading to CDC6 accumulation and chromatin loading indicates that st is a potent inducer of cdc6 mRNA expression and increases CDC6 protein stability. We also show that CDC6 expression in quiescent NHF efficiently promotes cyclin E loading onto chromatin, but it is not sufficient to activate CDK2. Moreover, we show that CDC6 expression is linked to phosphorylation of the activating T loop of CDK2 in serum-starved NHF stimulated with mitogens or ectopically expressing cyclin E and st. Our data suggest a model where the combination of st and deregulated cyclin E result in cooperative and coordinated activation of both an essential origin licensing factor, CDC6, and an activity required for origin firing, CDK2, resulting in progression from quiescence to S phase.Upon mitogenic stimulation mammalian G1 CDKs4 trigger passage through the restriction point and the transition into DNA replication. In particular, cyclin E/CDK2 is activated in mid to late G1 and phosphorylates a variety of substrates that play critical roles in these processes. CDK2 cooperates with D-type cyclin/CDKs to inactivate E2F/pocket protein repressor complexes inducing the expression of DNA synthesis factors and other cell cycle regulators (reviewed in Refs. 1 and 2). CDK2 also phosphorylates DNA replication factors facilitating prereplication complex assembly and origin firing and plays additional roles in centrosome duplication and histone synthesis (reviewed in Ref. 1). In particular, it has been proposed that CDK2 phosphorylates the essential origin licensing factor CDC6 promoting its stabilization prior to inactivation of the APCCdh1 ubiquitin ligase (3). This is thought to ensure that CDC6 accumulation precedes accumulation of other APC substrates that inhibit origin licensing. Moreover, CDK2-independent cyclin E functions have also been reported to be important for prereplication complex assembly in cells in transit from G0 into G1 (4, 5). In keeping with its role as positive regulator of major G1 transitions, deregulation of the cyclin E via gene amplification or defective protein turnover is commonly seen in primary tumors and is associated with poor prognosis (68). In normal fibroblasts, ectopic expression of cyclin E has been associated with shortening of the G1 phase of the cell cycle (9, 10), and with induction of DNA damage (reviewed in Ref. 8). Cyclin E deregulation in certain human tumor cell lines and immortalized rat fibroblasts is associated with mitogen-independent cell cycle entry and progression through the cell cycle (11). However, when cyclin E is ectopically expressed in quiescent normal human fibroblasts (NHF), cells remain in G0 (12).We have recently reported that coexpression of SV40 small t antigen (st) in quiescent NHF with deregulated cyclin E expression is sufficient to trigger mitogen-independent cell cycle progression, proliferation beyond cell confluence, and foci formation. The bypass of quiescence induced by the expression of st and cyclin E is dependent on CDK2 activation (12). Thus, contrary to what is seen in normal murine cells (13), CDK2 activity appears essential for cell cycle progression when it is oncogenically driven by cyclin E and st expression (12). Because st is known to target pathways uniquely required for the transformation of human cells (14, 15), tumor cells with altered pathways that mimic st/cyclin E expression could predictably be sensitive to selective inhibition of CDK2 activity.Given the critical role of CDK2 activity in cyclin E and st cooperation in inducing cell proliferation and transformation of NHF, we sought to determine the factors and mechanisms by which st modulates CDK2 activation. In this report we have identified the CDC6 replication licensing factor as a cellular target of st. We also uncover CDC6 as a participant in the events leading to chromatin association of cyclin E and CDK2 and in phosphorylation of CDK2 on its activating T loop both in response to mitogenic stimulation, as well as expression of cyclin E and st in NHF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号