首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 840 毫秒
1.
2.
3.
4.
Steroid hormones are known to mediate rapid non-genomic effects occurring within minutes, besides the classical genomic actions mediated by the nuclear translocation of the cytoplasmic glucocorticoid receptor (GR). The glucocorticoid hormone (GC) has significant role in the regulation of T-cell activation; however, the cross-talk between the GC and T-cell receptor (TcR) signal transducing pathways are still to be elucidated. We examined the rapid effects of GC exposure on in vitro cultured human T-cells. Our results showed that Dexamethasone (DX), a GC analogue, when applied at high dose (10 microM), induced rapid (within 5 min) tyrosine-phosphorylation events in Jurkat cells. Short DX pre-treatment strongly inhibited the tyrosine-phosphorylation stimulated by CD3 cross-linking. Furthermore, we also investigated the phosphorylation status of ZAP-70, an important member of tyrosine kinase mediated signalling pathway of TcR-elicited T-cell activation. Here, we demonstrate that high dose DX induced a rapid ZAP-70 tyrosine-phosphorylation in Jurkat T-cells. DX-induced ZAP-70 phosphorylation could be inhibited by RU486 (GR antagonist), suggesting that this process was GR mediated. DX-induced ZAP-70 phosphorylation did not occur in the absence of active p56-lck as examined in the p56-lck kinase-deficient Jurkat cell line JCaM1.6. Our results show that DX, at a high dose, can rapidly influence the initial tyrosine-phosphorylation events of the CD3 signalling pathway in Jurkat cells, thereby modifying TcR-derived signals. Lck and ZAP-70 represent an important molecular link between the TcR and GC signalling pathways.  相似文献   

5.
6.
Glucocorticoids (GC) induce apoptosis in malignant lymphoblasts, but the mechanism of this process as well as that of the clinically important GC resistance is unknown. We investigated GC resistance in Jurkat T-ALL cells in which ectopic GC receptor (GR) restores GC sensitivity, suggesting deficient GR expression. Jurkat cells expressed one wild-type and one mutated (R477H) GR allele. GR(R477H) ligand-binding-dependent nuclear import, as revealed by live-cell microscopy of YFP-tagged GR, was unaffected. Transactivation and transrepression were markedly impaired; however, GR(R477H) did not act in a dominant-negative manner, that is, did not prevent cell death, when introduced into a GC-sensitive cell line by retroviral gene transfer. Contrary to another GR heterozygous, but GC-sensitive, T-ALL model (CCRF-CEM), Jurkats expressed lower basal GR levels and did not auto-induce their GR, as revealed by 'real-time' RT-PCR and immunoblotting. Absent GR auto-induction could not be restored by transgenic GR and, hence, was not caused by reduced basal GR levels. Thus, inactivation of one GR gene results in haploinsufficiency if associated with lack of GR auto-induction.  相似文献   

7.
The ability of glucocorticoids (GC) to efficiently kill lymphoid cells has led to their inclusion in essentially all chemotherapy protocols for lymphoid malignancies. This review summarizes recent findings related to the molecular basis of GC-induced apoptosis and GC resistance, and discusses their potential clinical implications. Accumulating evidence suggests that GC may induce cell death via different pathways resulting in apoptotic or necrotic morphologies, depending on the availability/responsiveness of the apoptotic machinery. The former might result from regulation of typical apoptosis genes such as members of the Bcl-2 family, the latter from detrimental GC effects on essential cellular functions possibly perpetuated by GC receptor (GR) autoinduction. Although other possibilities exist, GC resistance might frequently result from defective GR expression, perhaps the most efficient means to target multiple antileukemic GC effects. Numerous novel drug combinations are currently being tested to prevent resistance and improve GC efficacy in the therapy of lymphoid malignancies.  相似文献   

8.
Glucocorticoids (GC) control cell cycle progression and induce apoptosis in cells of the lymphoid lineage. Physiologically, these phenomena have been implicated in regulating immune functions and repertoire generation. Clinically, they form the basis of inclusion of GC in essentially all chemotherapy protocols for lymphoid malignancies. In spite of their significance, the molecular mechanisms underlying the anti-leukemic GC effects and the clinically important phenomenon of GC resistance are still unknown. This review summarizes recent findings related to GC-induced apoptosis, cell cycle arrest, and GC resistance with particular emphasis on acute lymphoblastic leukemia (ALL). We hypothesize that under conditions of physiological Bcl-2 expression, GC might induce classical programmed cell death by directly perturbing the Bcl-2 rheostat. In the presence of anti-apoptotic Bcl-2 proteins, cell death might result from accumulating catabolic and/or other detrimental GC effects driven by, and critically dependent on, GC receptor (GR) autoinduction. Although still controversial, there is increasing evidence for release of apoptogenic factors through pores in the outer mitochondrial membrane, rather than deltapsiloss-dependent membrane rupture, with maintenance of mitochondrial function at least in the early phase of the death response. GC-induced cell cycle arrest in ALL cells appears to be independent of apoptosis induction and vice versa, and critically depends on repression of both cyclin-D3 and c-myc followed by increased expression of the cyclin-dependent kinase inhibitor, p27Kip1. Since development of GC-resistant clones requires both cell cycle progression and survival, GC resistance might frequently result from structural or regulatory defects in GR expression, perhaps the most efficient means to target both pathways concurrently.  相似文献   

9.
High-dose glucocorticoid (GC) therapy is widely used to treat multiple sclerosis (MS), but the underlying mechanisms remain debatable. In this study, we investigated the impact of GC administration on experimental autoimmune encephalomyelitis using different GC receptor (GR)-deficient mutants. Heterozygous GR knockout mice were less sensitive to dexamethasone therapy, indicating that the expression level of the receptor determines therapeutic efficacy. Mice reconstituted with homozygous GR knockout fetal liver cells showed an earlier onset of the disease and were largely refractory to GC treatment, indicating that the GR in hematopoietic cells is essential for the beneficial effects of endogenous GCs and dexamethasone. Using cell-type specific GR-deficient mice, we could demonstrate that GCs mainly act on T cells, while modulation of macrophage function was largely dispensable in this context. The therapeutic effects were achieved through induction of apoptosis and down-regulation of cell adhesion molecules in peripheral T(H)17 and bystander T cells, while similar effects were not observed within the spinal cord. In addition, dexamethasone inhibited T cell migration into the CNS, confirming that peripheral but not CNS-residing T lymphocytes are the essential targets of GCs. Collectively, our findings reveal a highly selective mechanism of GC action in experimental autoimmune encephalomyelitis and presumably multiple sclerosis.  相似文献   

10.
Plasma membrane (PM) steroid recognition sites are thought to be responsible only for rapid, non-genomic responses without any link to the nuclear receptor-mediated genomic effects of steroids. We focused on a PM "glucocorticoid-importer" (GC-importer) that imports GC into rat liver cells. This site interacts also with particular gestagens (progesterone, P; medroxyprogesterone, MP; ethynodiol, Ethy) and estrogens (ethinylestradiol, EE(2); mestranol), which do not bind to the nuclear GC receptor (GR). To elucidate the role of the GC-importer, we transfected a rat wild-type hepatocyte (CC-1) and a hepatoma cell line, unable to import GC (MH 3924), with a GC<-->GR-responsive luciferase (luc)-reporter gene. Selected steroids were tested for their ability to induce or inhibit luc expression. Corticosterone (B) and dexamethasone (Dex), but also the GC-antagonists cortexolone (Cortex), P and MP, induced luc. Even the PM-impermeable BSA-derivatives of B, Dex and Cortex did so to almost the same extent as the free steroids. MH 3924 cells respond stronger than CC-1 to luc inducing steroids. Luc expression was inhibited by RU 38 486, but also by EE(2) and Ethy. The thiol reactive mesylate-derivatives of B, Dex and Cortex induced to a considerably lesser extent than the free or BSA-steroids. The thiol reagent mersalyl blocks cellular entry of GC and inhibits luc induction in CC-1 cells. Incubation with EE(2) and B of PM-vesicles, isolated from liver cells, resulted in a decrease of the density of two 75 and 52kDa G-proteins reflecting a diminished exchange of GDP by GTP. CONCLUSION: the PM-residing GC-importer, now renamed "Steroid Hormone Recognition and Effector Complex" (SHREC) is an interdependent part of the complete GC signal propagation in which G-proteins are involved. Free SH-groups of SHREC are a prerequisite for genomic GC activity. Specific interactions between SHREC and GC-agonist/-antagonist trigger steroid-dependent signaling. However, import of the ligand into the cell terminates it. Thus, the PM-related non-genomic steroid responses are clearly linked to the GR-related genomic effects.  相似文献   

11.
Glucocorticoids (GC) induce apoptosis in a variety of cells, but their exact mode of action is controversial. Although initiation relies on the GC receptor (GR) and de novo gene expression, the effector phase differs among cell types. Proteasomal degradation as well as caspase-3, - 8, and -9 activity are essential for GC-induced apoptosis in murine thymocytes, but the same enzymes are dispensable in splenic T cells. Live imaging by confocal microscopy revealed that lysosomal cathepsin B, an unrecognized component of this pathway to date, becomes rapidly activated in thymocytes after GC exposure. This is followed by leakage of cathepsin B into the cytosol, nuclear condensation, and processing of caspase-8 and -3. According to our model, activation of caspase-3 by caspase-9 in thymocytes occurs both directly as well as indirectly via a lysosomal amplification loop. Interestingly, acute T lymphoblastic leukemia cells depend on caspase activity to undergo GC-induced cell death similar to thymocytes. Collectively, the apoptotic program induced by GCs comprises cell type-specific as well as common features.  相似文献   

12.
13.
Abstract

The first approach to assessing male fertility is to study a spermiogram, where special attention is given to sperm count, motility and morphology, while less attention is given to other cells in the ejaculate. Normal spermatogenesis requires a balance between cell death and proliferation; therefore, the number of germ cells (GC) in the ejaculate is less than the number of sperm. We propose a new index for altered spermatogenesis, i.e., the rate GC/sperm. We investigated a patient with oligozoospermia and a GC/sperm ratio greater than one, which indicated that spermatogenesis had been damaged. Complementary cytological tests were employed to characterized GC status: Papanicolaou stain, transmission electronic microscopy (TEM), vitality test, AgNOR and TUNEL assay. We also correlated cell morphology with ultrastructure studies that showed apoptosis. Nuclear apoptosis is characterized by vacuolization, misshapen nuclei, and “half moon,” dispersed, uncondensed, disrupted and smudged chromatin. Cytoplasmic apoptosis is characterized by vacuolization, cytoplasmic protrusions, lamellar bodies, and swollen endoplasmic reticulum and mitochondria. To date, only testicular biopsy has been used to diagnose complete or incomplete testicular arrest. Our investigation is the first to determine a cytological feature in semen samples that could be used as a biological marker for abnormal spermatogenesis and for predicting the transition from oligospermia to azoospermia.  相似文献   

14.
15.
16.
Glucocorticoid (GC) hormones cause pronounced T cell apoptosis, particularly in immature thymic T cells. This is possibly due to tissue-specific regulation of the glucocorticoid receptor (GR) gene. In mice the GR gene is transcribed from five separate promoters designated: 1A, 1B, 1C, 1D, and 1E. Nearly all cells express GR from promoters 1B-1E, but the activity of the 1A promoter has only been reported in the whole thymus or lymphocyte cell lines. To directly assess the role of GR promoter use in sensitivity to glucocorticoid-induced cell death, we have compared the activity of the GR 1A promoter with GC sensitivity in different mouse lymphocyte populations. We report that GR 1A promoter activity is restricted to thymocyte and peripheral lymphocyte populations and the cortex of the brain. The relative level of expression of the 1A promoter to the 1B-1E promoters within a lymphocyte population was found to directly correlate with susceptibility to GC-induced cell death, with the extremely GC-sensitive CD4+CD8+ thymocytes having the highest levels of GR 1A promoter activity, and the relatively GC-resistant alphabetaTCR+CD24(int/low) thymocytes and peripheral T cells having the lowest levels. DNA sequencing of the mouse GR 1A promoter revealed a putative glucocorticoid-response element. Furthermore, GR 1A promoter use and GR protein levels were increased by GC treatment in thymocytes, but not in splenocytes. These data suggest that tissue-specific differences in GR promoter use determine T cell sensitivity to glucocorticoid-induced cell death.  相似文献   

17.
Smad4, originally isolated from the human chromosome 18q21, is a key factor in transducing the signals of the TGF-β superfamily of growth hormones and plays a pivotal role in mediating antimitogenic and proapoptotic effects of TGF-β, but the mechanisms by which Smad4 induces apoptosis are elusive. Here we report that Smad4 directly translocates to the mitochondria of apoptotic cells. Smad4 gene silencing by siRNA inhibits TGF-β-induced apoptosis in Hep3B cells and UV-induced apoptosis in PANC-1 cells. Cell fractionation assays demonstrated that a fraction of Smad4 translocates to mitochondria after long time TGF-β treatment or UV exposure, during which the cells were under apoptosis. Smad4 mitochondria translocation during apoptosis was also confirmed by fluorescence observation of Smad4 colocalization with MitoTracker Red. We searched for mitochondria proteins that have physical interactions with Smad4 using yeast two-hybrid screening approach. DNA sequence analysis identified 34 positive clones, five of which encoded subunits in mitochondria complex IV, i.e., one clone encoded cytochrome c oxidase COXII, three clones encoded COXIII and one clone encoded COXVb. Strong interaction between Smad4 with COXII, an important apoptosis regulator, was verified in yeast by β-gal activity assays and in mammalian cells by immunoprecipitation assays. Further, mitochondrial portion of cells was isolated and the interaction between COXII and Smad4 in mitochondria upon TGF-β treatment or UV exposure was confirmed. Importantly, targeting Smad4 to mitochondria using import leader fusions enhanced TGF-β-induced apoptosis. Collectively, the results suggest that Smad4 promote apoptosis of the cells through its mitochondrial translocation and association with mitochondria protein COXII.  相似文献   

18.
19.
"Negative selection" and "death by neglect" are governed by apoptotic processes occurring in the thymus that shape the repertoire of maturing T cells. We have previously developed an in vitro model that recapitulates "death by neglect": Co-cultivation of double positive (DP) thymocytes or thymic lymphoma cells (PD1.6) with thymic epithelial cells (TEC) caused TcR-independent apoptosis of the former. We further demonstrated that this apoptosis could be attenuated by aminoglutethimide, an inhibitor of steroid synthesis, suggesting a role of TEC-derived glucocorticoids (GC) in this death process. We have now substantiated the role of the GC-glucocorticoid receptor (GR) axis by using a GC-resistant subline (PD1.6Dex(-)) obtained from the GC-sensitive PD1.6 cells by repeated exposures to increasing doses of dexamethasone (Dex). The PD1.6Dex(-) cells barely express GR and are much less sensitive to TEC-induced apoptosis. Re-expression of GR in PD1.6Dex(-) cells restored their sensitivity to both Dex and TEC, highlighting the central role of GR in these apoptotic processes. Likewise, repeated exposures of PD1.6 cells to TEC led to the selection of TEC-resistant cells (PD1.6TEC(-)) that are insensitive to corticosterone and less sensitive to Dex, though their GR level was only moderately reduced. This is in line with the low levels of corticosterone secreted by TEC. Altogether, our data show that TEC eliminates DP thymic lymphoma cells in a GR-dependent manner and modulates the GC sensitivity of the surviving cells.  相似文献   

20.
High dose glucocorticoid (GC) treatment induces osteoporosis partly via increasing osteoblast apoptosis. However, the mechanism of GC-induced apoptosis has not been fully elucidated. Osteoblast-derived tissue inhibitor of metalloproteinase-1 (TIMP-1) was recently reported to be involved in bone metabolism. Our previous study demonstrated that TIMP-1 suppressed apoptosis of the mouse bone marrow stromal cell line MBA-1 (pre-osteoblast) induced by serum deprivation. Therefore, we tested the effect of the GC dexamethasone (Dex) on TIMP-1 production in murine osteoblastic MC3T3-E1 cells and further determined whether this action is associated with Dex-induced osteoblast apoptosis. Dex decreased TIMP-1 production in MC3T3-E1 cells, and this effect was blocked by the glucocorticoid receptor (GR) antagonists, RU486 and RU40555. Recombinant TIMP-1 protein reduced caspase-3 activation and apoptosis induced by Dex in MC3T3-E1 cells. In addition, the pro-apoptotic effect of the Dex was augmented by suppression of TIMP-1 with siRNA. Furthermore, mutant TIMP-1, which has no inhibitory effects on MMPs, yet protects MC3T3-E1 cells against Dex-induced apoptosis. Our study demonstrates that Dex suppresses TIMP-1 production in osteoblasts through GR, and this effect is associated with its induction of osteoblast apoptosis. The anti-apoptotic action of TIMP-1 is independent of its inhibitory effects on MMPs activities. The decrease in TIMP-1 production caused by Dex may contribute to the mechanisms of Dex-induced bone loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号