首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
3.
Chromosome region 3p12‐14 is an important tumour suppressor gene (TSG) locus for multiple cancers. ADAMTS9, a member of the metalloprotease large family, has been identified as a candidate 3p14.2 TSG inactivated by aberrant promoter CpG methylation in several carcinomas, but little known about its expression and function in breast cancer. In this report, ADAMTS9 expression and methylation was analysed in breast cancer cell lines and tissue samples. ADAMTS9 RNA was significantly down‐regulated in breast cancer cell lines (6/8). After treating the cells with demethylation agent Aza and TSA, ADAMTS9 expression was dramatically increased. Bisulphite genomic sequencing and methylation‐specific PCR detected promoter methylation, which was associated with decreased ADAMTS9 expression. Hypermethylation was also detected in 130/219 (59.4%) of primary tumours but only in 4.5% (2/44) of paired surgical margin tissues. Ectopic expression of ADAMTS9 in tumor cells induced significant growth suppression, cell cycle arrest at the G0/G1 phase, enhanced apoptosis and reduced cell migration and invasion. Conditioned culture medium from ADAMTS9‐transfected BT549 cells markedly disrupted tube formation ability of human umbilical vein endothelial cell (HUVEC) in Matrigel. Furthermore, ADAMTS9 inhibited AKT signaling and its downstream targets (MDM2, p53, p21, p27, E‐cadherin, VIM, SNAIL, VEGFA, NFκB‐p65 and MMP2). In addition, we demonstrated, for the first time, that ADAMTS9 inhibits AKT signaling, through suppressing its upstream activators EGFR and TGFβ1/TβR(I/II) in breast cancer cells. Our results suggest that ADAMTS9 is a TSG epigenetically inactivated in breast cancer, which functions through blocking EGFR‐ and TGFβ1/TβR(I/II)‐activated AKT signaling.  相似文献   

4.
5.
Xiang T  Li L  Yin X  Yuan C  Tan C  Su X  Xiong L  Putti TC  Oberst M  Kelly K  Ren G  Tao Q 《PloS one》2012,7(1):e29783

Background

Breast cancer (BrCa) is a complex disease driven by aberrant gene alterations and environmental factors. Recent studies reveal that abnormal epigenetic gene regulation also plays an important role in its pathogenesis. Ubiquitin carboxyl- terminal esterase L1 (UCHL1) is a tumor suppressor silenced by promoter methylation in multiple cancers, but its role and alterations in breast tumorigenesis remain unclear.

Methodology/Principal Findings

We found that UCHL1 was frequently downregulated or silenced in breast cancer cell lines and tumor tissues, but readily expressed in normal breast tissues and mammary epithelial cells. Promoter methylation of UCHL1 was detected in 9 of 10 breast cancer cell lines (90%) and 53 of 66 (80%) primary tumors, but rarely in normal breast tissues, which was statistically correlated with advanced clinical stage and progesterone receptor status. Pharmacologic demethylation reactivated UCHL1 expression along with concomitant promoter demethylation. Ectopic expression of UCHL1 significantly suppressed the colony formation and proliferation of breast tumor cells, through inducing G0/G1 cell cycle arrest and apoptosis. Subcellular localization study showed that UCHL1 increased cytoplasmic abundance of p53. We further found that UCHL1 induced p53 accumulation and reduced MDM2 protein level, and subsequently upregulated the expression of p21, as well as cleavage of caspase3 and PARP, but not in catalytic mutant UCHL1 C90S-expressed cells.

Conclusions/Significance

UCHL1 exerts its tumor suppressive functions by inducing G0/G1cell cycle arrest and apoptosis in breast tumorigenesis, requiring its deubiquitinase activity. Its frequent silencing by promoter CpG methylation may serve as a potential tumor marker for breast cancer.  相似文献   

6.
7.

Introduction

ECRG4/C2ORF40 is a potential tumor suppressor gene (TSG) recently identified in esophageal carcinoma. Its expression, gene copy number and prognostic value have never been explored in breast cancer.

Methods

Using DNA microarray and array-based comparative genomic hybridization (aCGH), we examined ECRG4 mRNA expression and copy number alterations in 353 invasive breast cancer samples and normal breast (NB) samples. A meta-analysis was done on a large public retrospective gene expression dataset (n = 1,387) in search of correlations between ECRG4 expression and histo-clinical features including survival.

Results

ECRG4 was underexpressed in 94.3% of cancers when compared to NB. aCGH data revealed ECRG4 loss in 18% of tumors, suggesting that DNA loss is not the main mechanism of underexpression. Meta-analysis showed that ECRG4 expression was significantly higher in tumors displaying earlier stage, smaller size, negative axillary lymph node status, lower grade, and normal-like subtype. Higher expression was also associated with disease-free survival (DFS; HR = 0.84 [0.76–0.92], p = 0.0002) and overall survival (OS; HR = 0.72 [0.63–0.83], p = 5.0E-06). In multivariate analysis including the other histo-clinical prognostic features, ECRG4 expression remained the only prognostic factor for DFS and OS.

Conclusions

Our data suggest that ECRG4 is a candidate TSG in breast cancer, the expression of which may help improve the prognostication. If functional analyses confirm this TSG role, restoring ECRG4 expression in the tumor may represent a promising therapeutic approach.  相似文献   

8.
Background information. The common phenotypes of cancer and stem cells suggest that cancers arise from stem cells. Oestrogen is one of the few most important determinants of breast cancer, as shown by several lines of convincing evidence. We have previously reported a human breast epithelial cell type (Type 1 HBEC) with stem cell characteristics and ERα (oestrogen receptor α) expression. A tumorigenic cell line, M13SV1R2, was developed from this cell type after SV40 (simian virus 40) large T‐antigen transfection and X‐ray irradiation. The cell line, however, was not responsive to oestrogen for cell growth or tumour development. In the present study, we tested the hypothesis that deprivation of growth factors and hormones may change the tumorigenicity and oestrogen response of this cell line. Results. The M13SV1R2 cells lost their tumorigenicity after culturing in a growth factor/hormone‐deprived medium for >10 passages (referred to as R2d cells) concomitant with the expression of two tumour suppressor genes, namely those coding for maspin and α6 integrin. However, these cells acquired oestrogen responsiveness in cell growth and tumour development. By immunocytochemistry, Western blotting and flow cytometry analysis, oestrogen treatment of R2d cells was found to induce many important effects related to breast carcinogenesis, namely: (i) the emergence of a subpopulation of cells expressing CD44+/high/CD24?/low breast tumour stem cell markers; (ii) the induction of EMT (epithelial‐to‐mesenchymal transition); (iii) the acquisition of metastatic ability; and (iv) the expression of COX‐2 (cyclo‐oxygenase‐2) through a CD44‐mediated mechanism. Conclusion. An oestrogen‐responsive cell line with ERα and CD44+/CD24?/low expression can be derived from breast epithelial stem cells. The tumorigenicity and oestrogen response of these cells could depend on the cell culture conditions. The findings of this study have implications in regard to the origins of (1) ERα‐positive breast cancers, (2) CD44+/CD24?/low breast tumour stem cells and (3) the metastatic ability of breast cancer.  相似文献   

9.
Chromosome 3 specific NotI microarrays containing 180 NotI linking clones associated with 188 genes were hybridized to NotI representation probes prepared using matched tumor/normal samples from major epithelial cancers: breast (47 pairs), lung (40 pairs) cervical (43 pairs), kidney (34 pairs of clear cell renal cell carcinoma), colon (24 pairs), ovarian (25 pairs) and prostate (18 pairs). In all tested primary tumors (compared to normal controls) methylation and/or deletions was found. For the first time we showed that the gene LRRC3B was frequently methylated and/or deleted in breast carcinoma - 32% of samples, cervical - 35%, lung - 40%, renal - 35%, ovarian - 28%, colon - 33% and prostate cancer - 44%. To check these results bisulfite sequencing using cloned PCR products with representative two breast, one cervical, two renal, two ovarian and two colon cancer samples was performed. In all cases methylation was confirmed. Expression analysis using RT-qPCR showed that LRRC3B is strongly down-regulated at the latest stages of RCC and ovarian cancers. In addition we showed that LRRC3B exhibit strong cell growth inhibiting activity (more than 95%) in colony formation experiments in vitro in KRC/Y renal cell carcinoma line. All these data suggest that LRRC3B gene could be involved in the process of carcinogenesis as a tumor suppressor gene.  相似文献   

10.
11.
12.
KLOTHO was originally identified as an aging-suppressor gene that causes a human aging-like phenotype when tested in KLOTHO-deficient-mice. Recent evidence suggests that KLOTHO functions as a tumor suppressor by inhibiting Wnt signaling. KLOTHO gene silencing, including DNA methylation, has been observed in some human cancers. Aberrant activation of Wnt signaling plays a significant role in aging, and its silencing may be related to prostate cancer and other types of cancers. Thus, we investigated whether the expression of the anti-aging gene KLOTHO was associated with epigenetic changes in prostate cancer cell lines. KLOTHO mRNA was detected in the 22Rv1 cell line while it was not detected in DU145 and PC-3 cell lines. The restoration of KLOTHO mRNA in the DU145 and PC-3 cell lines was induced with a DNA methyltransferase inhibitor. Methylation-specific PCR was performed to determine the specific CpG sites in the KLOTHO promoter responsible for expression. In addition, the level of methylation was assessed in each CpG by performing bisulfite sequencing and quantitative pyrosequencing analysis. The results suggested a remarkable inverse relationship between KLOTHO expression and promoter methylation in prostate cancer cell lines.  相似文献   

13.
《Chronobiology international》2013,30(7):1323-1339
Cell cycle progression is tightly regulated. The expressions of cell cycle regulators, the products of which either promote or inhibit cell proliferation, oscillate during each cell cycle. Cellular proliferation and the expression of cell cycle regulators are also controlled by the circadian clock. Disruption of the circadian clock may thereby lead to deregulated cell proliferation. Mammalian Per2 is a core clock gene, the product of which suppresses cancer cell proliferation and tumor growth in vivo and in vitro. Because Per1, another key clock gene, is mutated in human breast cancers, and because its clock functions are similar and complementary to those of Per2, we have studied its role in modulating breast cancer cell proliferation and tumor growth. We find that breast cancer growth rate is gated by the circadian clock with two daily peaks and troughs, and that they are coupled to the daily expression patterns of clock-controlled genes that regulate cell proliferation. Down-regulation of the expression of tumor Per1 increases cancer cell growth in vitro and tumor growth in vivo by enhancing the circadian amplitude of the two daily tumor growth peaks. The data of the study suggest Per1 has tumor-suppressor function that diminishes cancer proliferation and tumor growth, but only at specific times of day. (Author correspondence: ).  相似文献   

14.
15.
16.
17.
In our previous study, we demonstrated that the BRCC2 (breast cancer cell 2) gene is a proapoptotic molecule that interacts with Bcl-XL. BRCC2 downregulation is associated with poor disease-free and overall survival in breast cancer. In this study, we aimed to investigate the role of BRCC2 in tumor suppression in breast cancer. In clinical breast cancer samples, we found that BRCC2 expression was significantly downregulated in cancer lesions compared with paired normal breast tissues. By silencing or overexpressing BRCC2 in breast cancer cells, we found that BRCC2 could inhibit cell growth and metastasis in vitro. An in vivo assay showed that BRCC2 not only dramatically inhibited breast cancer cell xenograft formation and growth but also inhibited breast cancer cell metastasis in a lung metastasis model. Moreover, we demonstrated that BRCC2 inhibited breast cancer metastasis via regulation of the Akt pathway. Thus, our study provided evidence that BRCC2 functions as a novel tumor suppressor in breast cancer and may be a potential therapeutic target for breast cancer management.  相似文献   

18.
19.
20.
Germline alterations of the BRCA1 tumor suppressor gene have been implicated at least in half of familial breast cancers. Nevertheless, in sporadic breast cancer no mutation of this gene has been characterized to date. In sporadic breast tumors, other BRCA1 gene loss of function mechanisms, such as down-regulation of gene expression, have been suggested. In an effort to better understand the relationship between BRCA1 expression and malignant transformation, we have adapted the new real-time quantitative PCR method based on a 5' nuclease assay and the use of doubly labeled fluorescent TaqMan probes to quantify BRCA1 mRNA. We have compared expression of BRCA1 mRNA with or without exon 11 in the normal breast epithelial cell line MCF10a and in three cancer cell lines (MCF-7, MDA-MB231 and HBL100) by comparing two methods of quantification: the comparative C(T) and the standard curve. We found that the full length BRCA1 mRNA, which encodes the functional nuclear protein, was down-regulated in tumor cells when compared with MCF10a cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号