首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Lestini R  Michel B 《The EMBO journal》2007,26(16):3804-3814
Blocked replication forks often need to be processed by recombination proteins prior to replication restart. In Escherichia coli, the UvrD repair helicase was recently shown to act at inactivated replication forks, where it counteracts a deleterious action of RecA. Using two mutants affected for different subunits of the polymerase III holoenzyme (Pol IIIh), we show here that the anti-RecA action of UvrD at blocked forks reflects two different activities of this enzyme. A defective UvrD mutant is able to antagonize RecA in cells affected for the Pol IIIh catalytic subunit DnaE. In this mutant, RecA action at blocked forks specifically requires the protein RarA (MgsA). We propose that UvrD prevents RecA binding, possibly by counteracting RarA. In contrast, at forks affected for the Pol IIIh clamp (DnaN), RarA is not required for RecA binding and the ATPase function of UvrD is essential to counteract RecA, supporting the idea that UvrD removes RecA from DNA. UvrD action on RecA is conserved in evolution as it can be performed in E. coli by the UvrD homologue from Bacillus subtilis, PcrA.  相似文献   

2.
Blocking replication forks in the Escherichia coli chromosome by ectopic Ter sites renders the RecBCD pathway of homologous recombination and SOS induction essential for viability. In this work, we show that the E. coli helicase II (UvrD) is also essential for the growth of cells where replication forks are arrested at ectopic Ter sites. We propose that UvrD is required for Tus removal from Ter sites. The viability of a SOS non-inducible Ter-blocked strain is fully restored by the expression of the two SOS-induced proteins UvrD and RecA at high level, indicating that these are the only two SOS-induced proteins required for replication across Ter/Tus complexes. Several observations suggest that UvrD acts in concert with homologous recombination and we propose that UvrD is associated with recombination-initiated replication forks and that it removes Tus when a PriA-dependent, restarted replication fork goes across the Ter/Tus complex. Finally, expression of the UvrD homologue from Bacilus subtilis PcrA restores the growth of uvrD-deficient Ter-blocked cells, indicating that the capacity to dislodge Tus is conserved in this distant bacterial species.  相似文献   

3.
We have studied the fate of blocked replication forks with the use of the Escherichia coli priA mutant, in which spontaneously arrested replication forks persist owing to the lack of the major replication restart pathway. Such blocked forks undergo a specific reaction named replication fork reversal, in which newly synthesized strands anneal to form a DNA double-strand end adjacent to a four-way junction. Indeed, (i) priA recB mutant chromosomes are linearized by a reaction that requires the presence of the Holliday junction resolvase RuvABC, and (ii) RuvABC-dependent linearization is prevented by the presence of RecBC. Replication fork reversal in a priA mutant occurs independently of the recombination proteins RecA and RecR. recBC inactivation does not affect priA mutant viability but prevents priA chronic SOS induction. We propose that, in the absence of PriA, RecBC action at reversed forks does not allow replication restart, which leads to the accumulation of SOS-inducing RecA filaments. Our results suggest that types of replication blockage that cause replication fork reversal occur spontaneously.  相似文献   

4.
DNA double-strand breaks caused by replication arrest.   总被引:34,自引:1,他引:33       下载免费PDF全文
B Michel  S D Ehrlich    M Uzest 《The EMBO journal》1997,16(2):430-438
We report here that DNA double-strand breaks (DSBs) form in Escherichia coli upon arrest of replication forks due to a defect in, or the inhibition of, replicative DNA helicases. The formation of DSBs was assessed by the appearance of linear DNA detected by pulse-field gel electrophoresis. Processing of DSBs by recombination repair or linear DNA degradation was abolished by mutations in recBCD genes. Two E. coli replicative helicases were tested, Rep, which is essential in recBC mutants, and DnaB. The proportion of linear DNA increased up to 50% upon shift of rep recBTS recCTS cells to restrictive temperature. No increase in linear DNA was observed in the absence of replicating chromosomes, indicating that the formation of DSBs in rep strains requires replication. Inhibition of the DnaB helicase either by a strong replication terminator or by a dnaBTS mutation led to the formation of linear DNA, showing that blocked replication forks are prone to DSB formation. In wild-type E. coli, linear DNA was detected in the absence of RecBC or of both RecA and RecD. This reveals the existence of a significant amount of spontaneous DSBs. We propose that some of them may also result from the impairment of replication fork progression.  相似文献   

5.
6.
The inactivation of a replication protein causes the disassembly of the replication machinery and creates a need for replication reactivation. In several replication mutants, restart occurs after the fork has been isomerized into a four-armed junction, a reaction called replication fork reversal. The repair helicase UvrD is essential for replication fork reversal upon inactivation of the polymerase (DnaE) or the beta-clamp (DnaN) subunits of the Escherichia coli polymerase III, and for the viability of dnaEts and dnaNts mutants at semi-permissive temperature. We show here that the inactivation of recA, recFOR, recJ or recQ recombination genes suppresses the requirement for UvrD for replication fork reversal and suppresses the lethality conferred by uvrD inactivation to Pol IIIts mutants at semi-permissive temperature. We propose that RecA binds inappropriately to blocked replication forks in the dnaEts and dnaNts mutants in a RecQ- RecJ- RecFOR-dependent way and that UvrD acts by removing RecA or a RecA-made structure, allowing replication fork reversal. This work thus reveals the existence of a futile reaction of RecA binding to blocked replication forks, that requires the action of UvrD for fork-clearing and proper replication restart.  相似文献   

7.
A DNA replication system was developed that could generate rolling-circle DNA molecules in vitro in amounts that permitted kinetic analyses of the movement of the replication forks. Two artificial primer-template DNA substrates were used to study DNA synthesis catalyzed by the DNA polymerase III holoenzyme in the presence of either the preprimosomal proteins (the primosomal proteins minus the DNA G primase) and the Escherichia coli single-stranded DNA binding protein or the DNA B helicase alone. Helicase activities have recently been demonstrated to be associated with the primosome, a mobile multiprotein priming apparatus that requires seven E. coli proteins (replication factor Y (protein n'), proteins n and n', and the products of the dnaB, dnaC, dnaG, and dnaT genes) for assembly, and with the DNA B protein. Consistent with a rolling-circle mechanism in which a helicase activity permitted extensive (-) strand DNA synthesis on a (+) single-stranded, circular DNA template, the major DNA products formed were multigenome-length, single-stranded, linear molecules. The replication forks assembled with either the preprimosome or the DNA B helicase moved at the same rate (approximately 730 nucleotides/s) at 30 degrees C and possessed apparent processivities in the range of 50,000-150,000 nucleotides. The single-stranded DNA binding protein was not required to maintain this high rate of movement in the case of leading strand DNA synthesis catalyzed by the DNA polymerase III holoenzyme and the DNA B helicase.  相似文献   

8.
Inactivated replication forks may be reversed by the annealing of leading- and lagging-strand ends, resulting in the formation of a Holliday junction (HJ) adjacent to a DNA double-strand end. In Escherichia coli mutants deficient for double-strand end processing, resolution of the HJ by RuvABC leads to fork breakage, a reaction that we can directly quantify. Here we used the HJ-specific resolvase RusA to test a putative role of the RuvAB helicase in replication fork reversal (RFR). We show that the RuvAB complex is required for the formation of a RusA substrate in the polymerase III mutants dnaEts and holD, affected for the Pol III catalytic subunit and clamp loader, and in the helicase mutant rep. This finding reveals that the recombination enzyme RuvAB targets forks in vivo and we propose that it directly converts forks into HJs. In contrast, RFR occurs in the absence of RuvAB in the dnaNts mutant, affected for the processivity clamp of Pol III, and in the priA mutant, defective for replication restart. This suggests alternative pathways of RFR.  相似文献   

9.
DNA synthesis at a fork in the presence of DNA helicases   总被引:6,自引:0,他引:6  
In a mixture of Escherichia coli DNA polymerase III holoenzyme, single-strand-binding protein, artificially forked lambda bacteriophage DNA with primer annealed to the leading side of the fork, dNTPs and ATP, DNA synthesis is enhanced by helicase II, less so by helicases, I, III or rep protein of E. coli or T4 phage helicase. The effect of helicase II depends on ATP, it is enhanced by helicase III, and it is not observed using DNA polymerase I or T4 DNA polymerase. In the absence of dNTPs helicase II is less active than helicase I or T4 helicase in unwinding the forked DNA. We believe that helicase II both shifts the forks and stimulates DNA polymerase III. The results support the conclusion derived from previous studies that helicase II is part of the DNA-synthesizing system of E. coli.  相似文献   

10.
The SOS response is readily triggered by replication fork stalling caused by DNA damage or a dysfunctional replicative apparatus in Escherichia coli cells. E. coli dinB encodes DinB DNA polymerase and its expression is upregulated during the SOS response. DinB catalyzes translesion DNA synthesis in place of a replicative DNA polymerase III that is stalled at a DNA lesion. We showed previously that DNA replication was suppressed without exogenous DNA damage in cells overproducing DinB. In this report, we confirm that this was due to a dose-dependent inhibition of ongoing replication forks by DinB. Interestingly, the DinB-overproducing cells did not significantly induce the SOS response even though DNA replication was perturbed. RecA protein is activated by forming a nucleoprotein filament with single-stranded DNA, which leads to the onset of the SOS response. In the DinB-overproducing cells, RecA was not activated to induce the SOS response. However, the SOS response was observed after heat-inducible activation in strain recA441 (encoding a temperature-sensitive RecA) and after replication blockage in strain dnaE486 (encoding a temperature-sensitive catalytic subunit of the replicative DNA polymerase III) at a non-permissive temperature when DinB was overproduced in these cells. Furthermore, since catalytically inactive DinB could avoid the SOS response to a DinB-promoted fork block, it is unlikely that overproduced DinB takes control of primer extension and thus limits single-stranded DNA. These observations suggest that DinB possesses a feature that suppresses DNA replication but does not abolish the cell's capacity to induce the SOS response. We conclude that DinB impedes replication fork progression in a way that does not activate RecA, in contrast to obstructive DNA lesions and dysfunctional replication machinery.  相似文献   

11.
Many studies have demonstrated the need for processing of blocked replication forks to underpin genome duplication. UvrD helicase in Escherichia coli has been implicated in the processing of damaged replication forks, or the recombination intermediates formed from damaged forks. Here we show that UvrD can unwind forked DNA structures, in part due to the ability of UvrD to initiate unwinding from discontinuities within the phosphodiester backbone of DNA. UvrD does therefore have the capacity to target DNA intermediates of replication and recombination. Such an activity resulted in unwinding of what would be the parental duplex DNA ahead of either a stalled replication fork or a D-loop formed by recombination. However, UvrD had a substrate preference for fork structures having a nascent lagging strand at the branch point but no leading strand. Furthermore, at such structures the polarity of UvrD altered so that unwinding of the lagging strand predominated. This reaction is reminiscent of the PriC-Rep pathway of replication restart, suggesting that UvrD and Rep may have at least partially redundant functions.  相似文献   

12.
Escherichia coli DNA polymerase III (Pol III) is one of the best studied replicative DNA polymerases. Here we report the properties of an E. coli mutant that lacks one of the subunits of the Pol III clamp loader complex, Psi (psi), as a result of the complete inactivation of the holD gene. We show that, in this mutant, chronic induction of the SOS response in a RecFOR-dependent way leads to lethality at high temperature. The SOS-induced proteins that are lethal in the holD mutant are the specialized DNA polymerases Pol II and Pol IV, combined with the division inhibitor SfiA. Prevention of SOS induction or inactivation of Pol II, Pol IV and SfiA encoding genes allows growth of the holD mutant, although at a reduced rate compared to a wild-type cell. In contrast, the SOS-induced Pol V DNA polymerase does not participate to the lethality of the holD mutant. We conclude that: (i) Psi is essential for efficient replication of the E. coli chromosome; (ii) SOS-induction of specialized DNA polymerases can be lethal in cells in which the replicative polymerase is defective, and (iii) specialized DNA polymerases differ in respect to their access to inactivated replication forks.  相似文献   

13.
Replication fork reversal (RFR) is a reaction that takes place in Escherichia coli at replication forks arrested by the inactivation of a replication protein. Fork reversal involves the annealing of the leading and lagging strand ends; it results in the formation of a Holliday junction adjacent to DNA double-strand end, both of which are processed by recombination enzymes. In several replication mutants, replication fork reversal is catalysed by the RuvAB complex, originally characterized for its role in the last steps of homologous recombination, branch migration and resolution of Holliday junctions. We present here the isolation and characterization of ruvA and ruvB single mutants that are impaired for RFR at forks arrested by the inactivation of polymerase III, while they remain capable of homologous recombination. The positions of the mutations in the proteins and the genetic properties of the mutants suggest that the mutations affect DNA binding, RuvA-RuvB interaction and/or RuvB-helicase activity. These results show that a partial RuvA or RuvB defect affects primarily RFR, implying that RFR is a more demanding reaction than Holliday junction resolution.  相似文献   

14.
Sequence of the dnaB gene of Salmonella typhimurium.   总被引:4,自引:1,他引:3       下载免费PDF全文
A Wong  L Kean    R Maurer 《Journal of bacteriology》1988,170(6):2668-2675
  相似文献   

15.
Metabolism of Okazaki fragments during simian virus 40 DNA replication.   总被引:3,自引:0,他引:3  
Essentially all of the Okazaki fragments on replicating Simian virus 40 (SV40)DNA could be grouped into one of three classes. Class I Okazaki fragments (about 20%) were separated from longer nascent DNA chains by a single phosphodiester bond interruption (nick) and were quantitatively identified by treating purified replicating DNA with Escherichia coli DNA ligase and then measuring the fraction of Okazaki fragments joined to longer nascent DNA chains. Similarly, class II Okazaki fragments (about 30%) were separated by a region of single-stranded DNA template (gap) that could be filled and sealed by T4 DNA polymerase plus E. coli DNA ligase, and class III fragments (about 50%) were separated by RNA primers that could be removed with E. coli DNA olymerase I, allowing the fragments to be joined with E. coli DNA ligase. These results were obtained with replicating SV40 DNA that had been briefly labeled with radioactive precursors in either intact cells or isolated nuclei. When isolated nuclei were further incubated in the presence of cytosol, all of the Okazaki fragments were converted into longer DNA strands as expected for intermediates in DNA synthesis. However, when washed nuclei were incubated in the abscence of cytosol, both class I and class II Okazaki fragments accumulated despite the excision of RNA primers: class III Okazaki fragments and RNA-DNA covalent linkages both disappeared at similar rates. These data demonstrate the existence of RNA primers in whole cells as well as in isolated nuclei, and identify a unique gap-filling step that is not simply an extension of the DNA chain elongation process concomitant with the excision of RNA primers. One or more factos found in cytosol, in addition to DNA polymerase alpha, are specifically involved in the gap-filling and ligation steps. The sizes of mature Okazaki fragments (class I) and Okazaki fragments whose synthesis was completed by T4 DNA polymerase were measured by gel electrophoresis and found to be broadly distributed between 40 and 290 nucleotides with an average length of 135 nucleotides. Since 80% and 90% of the Okazaments does not occur at uniformly spaced intervals along the DNA template. During the excision of RNA primers, nascent DNA chains with a single ribonucleotide covalently attached to the 5' terminus were identified as transient intermediates. These intermediates accumulated during excision of RNA primers in the presence of adenine 9-beta-D-arabinoside 5'-triphosphate, and those Okazaki fragments blocked by RNA primers (class III) were found to have originated the farthest from the 5' ends of long nascent DNA strands. Thus, RNA primers appear to be excised in two steps with the second step, removal of the final ribonucleotide, being stimulated by concomitant DNA synthesis. These and other data were used to construct a comprehensive metabolic pathway for the initiation, elongation, and maturation of Okazaki fragments at mammalian DNA replication forks.  相似文献   

16.
This report outlines the protein requirements and subunit organization of the DNA replication apparatus of Streptococcus pyogenes, a Gram-positive organism. Five proteins coordinate their actions to achieve rapid and processive DNA synthesis. These proteins are: the PolC DNA polymerase, tau, delta, delta', and beta. S. pyogenes dnaX encodes only the full-length tau, unlike the Escherichia coli system in which dnaX encodes two proteins, tau and gamma. The S. pyogenes tau binds PolC, but the interaction is not as firm as the corresponding interaction in E. coli, underlying the inability to purify a PolC holoenzyme from Gram-positive cells. The tau also binds the delta and delta' subunits to form a taudeltadelta' "clamp loader." PolC can assemble with taudeltadelta' to form a PolC.taudeltadelta' complex. After PolC.taudeltadelta' clamps beta to a primed site, it extends DNA 700 nucleotides/second in a highly processive fashion. Gram-positive cells contain a second DNA polymerase, encoded by dnaE, that has homology to the E. coli alpha subunit of E. coli DNA polymerase III. We show here that the S. pyogenes DnaE polymerase also functions with the beta clamp.  相似文献   

17.
We have studied homologous recombination in a derivative of phage lambda containing two 1.4-kb repeats in inverted orientation. Inversion of the intervening 2.5-kb segment occurred efficiently by the Escherichia coli RecBC pathway but markedly less efficiently by the lambda Red pathway or the E. coli RecE or RecF pathways. Inversion by the RecBCD pathway was stimulated by Chi sites located to the right of the invertible segment; this stimulation decreased exponentially by a factor of about 2 for each 2.2 kb between the invertible segment and the Chi site. In addition to RecA protein and RecBCD enzyme, inversion by the RecBC pathway required single-stranded DNA binding protein, DNA gyrase, DNA polymerase I and DNA ligase. Inversion appeared to occur either intra- or intermolecularly. These results are discussed in the framework of a current molecular model for the RecBC pathway of homologous recombination.  相似文献   

18.
This study outlines the events downstream of origin unwinding by DnaA, leading to assembly of two replication forks at the E. coli origin, oriC. We show that two hexamers of DnaB assemble onto the opposing strands of the resulting bubble, expanding it further, yet helicase action is not required. Primase cannot act until the helicases move 65 nucleotides or more. Once primers are formed, two molecules of the large DNA polymerase III holoenzyme machinery assemble into the bubble, forming two replication forks. Primer locations are heterogeneous; some are even outside oriC. This observation generalizes to many systems, prokaryotic and eukaryotic. Heterogeneous initiation sites are likely explained by primase functioning with a moving helicase target.  相似文献   

19.
Certain replication mutations lead in Escherichia coli to a specific reaction named replication fork reversal: at blocked forks, annealing of the nascent strands and pairing of the template strands form a four-way junction. RuvABC-catalysed resolution of this Holliday junction causes chromosome double-strand breaks (DSBs) in a recBC context and therefore creates a requirement for the recombination proteins RecBC for viability. In the present work, two mutants were tested for replication fork reversal: a dnaEts mutant and a dnaNts mutant, affected in the alpha (polymerase) and beta (processivity clamp) subunits of DNA polymerase III holoenzyme respectively. In the dnaEts recB strain, RuvABC-dependent DSBs caused by the dnaEts mutation occurred at 37 degrees C or 42 degrees C, indicating the occurrence of replication fork reversal upon partial or complete inactivation of the DNA polymerase alpha subunit. DSB formation was independent of RecA, RecQ and the helicase function of PriA. In the dnaNts recB mutant, RuvABC-dependent DSB caused by the dnaNts mutation occurred only at semi-permissive temperature, 37 degrees C, indicating the occurrence of replication fork reversal in conditions in which the remaining activity of the beta clamp is sufficient for viability. In contrast, the dnaNts mutation did not cause chromosome breakage at 42 degrees C, a temperature at which DnaN is totally inactive and the dnaNts mutant is inviable. We propose that a residual activity of the DNA polymerase III beta clamp is required for replication fork reversal in the dnaNts mutant.  相似文献   

20.
The replication checkpoint coordinates the cell cycle with DNA replication and recombination, preventing genome instability and cancer. The budding yeast Rad53 checkpoint kinase stabilizes stalled forks and replisome-fork complexes, thus preventing the accumulation of ss-DNA regions and reversed forks at collapsed forks. We searched for factors involved in the processing of stalled forks in HU-treated rad53 cells. Using the neutral-neutral two-dimensional electrophoresis technique (2D gel) and psoralen crosslinking combined with electron microscopy (EM), we found that the Exo1 exonuclease is recruited to stalled forks and, in rad53 mutants, counteracts reversed fork accumulation by generating ss-DNA intermediates. Hence, Exo1-mediated fork processing resembles the action of E. coli RecJ nuclease at damaged forks. Fork stability and replication restart are influenced by both DNA polymerase-fork association and Exo1-mediated processing. We suggest that Exo1 counteracts fork reversal by resecting newly synthesized chains and resolving the sister chromatid junctions that cause regression of collapsed forks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号