首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
High-resolution X-ray crystallographic studies of bacteriorhodopsin have tremendously advanced our understanding of this light-driven ion pump during the last 2 years, and emphasized the crucial role of discrete internal water molecules in the pump cycle. In the extracellular region an extensive three-dimensional hydrogen-bonded network of protein residues and seven water molecules leads from the buried retinal Schiff base via water 402 and the initial proton acceptor Asp85 to the membrane surface. Near Lys216 where the retinal binds, transmembrane helix G contains a pi-bulge that causes a non-proline kink. The bulge is stabilized by hydrogen bonding of the main chain carbonyl groups of Ala215 and Lys216 with two buried water molecules located in the otherwise very hydrophobic region between the Schiff base and the proton donor Asp96 in the cytoplasmic region. The M intermediate trapped in the D96N mutant corresponds to a late M state in the transport cycle, after protonation of Asp85 and release of a proton to the extracellular membrane surface, but before reprotonation of the deprotonated retinal Schiff base. The M intermediate from the E204Q mutant corresponds to an earlier M, as in this mutant the Schiff base deprotonates without proton release. The structures of these two M states reveal progressive displacements of the retinal, main chain and side chains induced by photoisomerization of the retinal to 13-cis,15-anti, and an extensive rearrangement of the three-dimensional network of hydrogen-bonded residues and bound water that accounts for the changed pK(a)s of the Schiff base, Asp85, the proton release group and Asp96. The structure for the M state from E204Q suggests, moreover, that relaxation of the steric conflicts of the distorted 13-cis,15-anti retinal plays a critical role in the reprotonation of the Schiff base by Asp96. Two additional waters now connect Asp96 to the carbonyl of residue 216, in what appears to be the beginning of a hydrogen-bonded chain that would later extend to the retinal Schiff base. Based on the ground state and M intermediate structures, models of the molecular events in the early part of the photocycle are presented, including a novel model which proposes that bacteriorhodopsin pumps hydroxide (OH(-)) ions from the extracellular to the cytoplasmic side.  相似文献   

2.
In the recently proposed local-access model for proton transfers in the bacteriorhodopsin transport cycle (Brown et al. 1998. Biochemistry. 37:3982-3993), connection between the retinal Schiff base and Asp85 (in the extracellular direction) and Asp96 (in the cytoplasmic direction)is maintained as long as the retinal is in its photoisomerized state. The directionality of the proton translocation is determined by influences in the protein that make Asp85 a proton acceptor and, subsequently, Asp96 a proton donor. The idea of concurrent local access of the Schiff base in the two directions is now put to a test in the photocycle of the D115N/D96N mutant. The kinetics had suggested that there is a single sequence of intermediates, L<-->M1<-->M2<-->N, and the M2-->M1 reaction depends on whether a proton is released to the extracellular surface. This is now confirmed. We find that at pH 5, where proton release does not occur, but not at higher pH, the photostationary state created by illumination with yellow light contains not only the M1 and M2 states, but also the L and the N intermediates. Because the L and M1 states decay rapidly, they can be present only if they are in equilibrium with later intermediates of the photocycle. Perturbation of this mixture with a blue flash caused depletion of the M intermediate, followed by its partial recovery at the expense of the L state. The change in the amplitude of the C=O stretch band at 1759 cm-1 demonstrated protonation of Asp85 in this process. Thus, during the reequilibration the Schiff base lost its proton to Asp85. Because the N state, also present in the mixture, arises by protonation of the Schiff base from the cytoplasmic surface, these results fulfill the expectation that under the conditions tested the extracellular access of the Schiff base would not be lost at the time when there is access in the cytoplasmic direction. Instead, the connectivity of the Schiff base flickers rapidly (with the time constant of the M1<-->M2 equilibration) between the two directions during the entire L-to-N segment of the photocycle.  相似文献   

3.
The atomic structure of bacteriorhodopsin and the outlines of its proton transport mechanism are now available. Photoisomerization of the retinal in the chromophore creates a steric and electrostatic conflict at the retinal binding site. The free energy gain sets off a sequence of reactions in which directed proton transfers take place between the protonated retinal Schiff base, Asp-85, and Asp-96. These internal steps, and other proton transfers at and near the two aqueous interfaces, add up to the translocation of a proton from the cytoplasmic to the extracellular side of the membrane. Bound water plays a crucial role in proton conduction in both extracellular and cytoplasmic regions, but the means by which the protons move from site to site differ. Proton release to the extracellular surface is through interaction of a hydrogen-bonded chain of identified aspartic acid, arginine, water, and glutamic acid residues with Asp-85, while proton uptake from the cytoplasmic surface utilizes a single aspartic acid, Asp-96, whose protonation state appears to be regulated by the protein conformation dependent hydration of this region. The directionality of the translocation is ensured by the accessibility of the Schiff base to the extracellular and cytoplasmic directions after the retinal is photoisomerized, as well as the changing proton affinities of the acceptor Asp-85 and donor Asp-96.  相似文献   

4.
An M intermediate of wild-type bacteriorhodopsin and an N intermediate of the V49A mutant were accumulated in photostationary states at pH 5.6 and 295 K, and their crystal structures determined to 1.52A and 1.62A resolution, respectively. They appear to be M(1) and N' in the sequence, M(1)<-->M(2)<-->M'(2)<-->N<-->N'-->O-->BR, where M(1), M(2), and M'(2) contain an unprotonated retinal Schiff base before and after a reorientation switch and after proton release to the extracellular surface, while N and N' contain a reprotonated Schiff base, before and after reprotonation of Asp96 from the cytoplasmic surface. In M(1), we detect a cluster of three hydrogen-bonded water molecules at Asp96, not present in the BR state. In M(2), whose structure we reported earlier, one of these water molecules intercalates between Asp96 and Thr46. In N', the cluster is transformed into a single-file hydrogen-bonded chain of four water molecules that connects Asp96 to the Schiff base. We find a network of three water molecules near residue 219 in the crystal structure of the non-illuminated F219L mutant, where the residue replacement creates a cavity. This suggests that the hydration of the cytoplasmic region we observe in N' might have occurred spontaneously, beginning at an existing water molecule as nucleus, in the cavities from residue rearrangements in the photocycle.  相似文献   

5.
We produced the L intermediate of the photocycle in a bacteriorhodopsin crystal in photo-stationary state at 170 K with red laser illumination at 60% occupancy, and determined its structure to 1.62 A resolution. With this model, high-resolution structural information is available for the initial bacteriorhodopsin, as well as the first five states in the transport cycle. These states involve photo-isomerization of the retinal and its initial configurational changes, deprotonation of the retinal Schiff base and the coupled release of a proton to the extracellular membrane surface, and the switch event that allows reprotonation of the Schiff base from the cytoplasmic side. The six structural models describe the transformations of the retinal and its interaction with water 402, Asp85, and Asp212 in atomic detail, as well as the displacements of functional residues farther from the Schiff base. The changes provide rationales for how relaxation of the distorted retinal causes movements of water and protein atoms that result in vectorial proton transfers to and from the Schiff base.  相似文献   

6.
Th?e atomic structure of the light-driven ion pump bacteriorhodopsin and the surrounding lipid matrix was determined by X-ray diffraction of crystals grown in cubic lipid phase. In the extracellular region, an extensive three-dimensional hydrogen-bonded network of protein residues and seven water molecules leads from the buried retinal Schiff base and the proton acceptor Asp85 to the membrane surface. Near Lys216 where the retinal binds, transmembrane helix G contains a pi-bulge that causes a non-proline? kink. The bulge is stabilized by hydrogen-bonding of the main-chain carbonyl groups of Ala215 and Lys216 with two buried water molecules located between the Schiff base and the proton donor Asp96 in the cytoplasmic region. The results indicate extensive involvement of bound water molecules in both the structure and the function of this seven-helical membrane protein. A bilayer of 18 tightly bound lipid chains forms an annulus around the protein in the crystal. Contacts between the trimers in the membrane plane are mediated almost exclusively by lipids.  相似文献   

7.
BACKGROUND: Bacteriorhodopsin (bR) from Halobacterium salinarum is a proton pump that converts the energy of light into a proton gradient that drives ATP synthesis. The protein comprises seven transmembrane helices and in vivo is organized into purple patches, in which bR and lipids form a crystalline two-dimensional array. Upon absorption of a photon, retinal, which is covalently bound to Lys216 via a Schiff base, is isomerized to a 13-cis,15-anti configuration. This initiates a sequence of events - the photocycle - during which a proton is transferred from the Schiff base to Asp85, followed by proton release into the extracellular medium and reprotonation from the cytoplasmic side. RESULTS: The structure of bR in the ground state was solved to 1.9 A resolution from non-twinned crystals grown in a lipidic cubic phase. The structure reveals eight well-ordered water molecules in the extracellular half of the putative proton translocation pathway. The water molecules form a continuous hydrogen-bond network from the Schiff-base nitrogen (Lys216) to Glu194 and Glu204 and includes residues Asp85, Asp212 and Arg82. This network is involved both in proton translocation occurring during the photocycle, as well as in stabilizing the structure of the ground state. Nine lipid phytanyl moieties could be modeled into the electron-density maps. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of single crystals demonstrated the presence of four different charged lipid species. CONCLUSIONS: The structure of protein, lipid and water molecules in the crystals represents the functional entity of bR in the purple membrane of the bacteria at atomic resolution. Proton translocation from the Schiff base to the extracellular medium is mediated by a hydrogen-bond network that involves charged residues and water molecules.  相似文献   

8.
Crystal structures are reported for the D85S and D85S/F219L mutants of the light-driven proton/hydroxyl-pump bacteriorhodopsin. These mutants crystallize in the orthorhombic C222(1) spacegroup, and provide the first demonstration that monoolein-based cubic lipid phase crystallization can support the growth of well-diffracting crystals in non-hexagonal spacegroups. Both structures exhibit similar and substantial differences relative to wild-type bacteriorhodopsin, suggesting that they represent inherent features resulting from neutralization of the Schiff base counterion Asp85. We argue that these structures provide a model for the last photocycle intermediate (O) of bacteriorhodopsin, in which Asp85 is protonated, the proton release group is deprotonated, and the retinal has reisomerized to all-trans. Unlike for the M and N photointermediates, where structural changes occur mainly on the cytoplasmic side, here the large-scale changes are confined to the extracellular side. As in the M intermediate, the side-chain of Arg82 is in a downward configuration, and in addition, a pi-cloud hydrogen bond forms between Trp189 NE1 and Trp138. On the cytoplasmic side, there is increased hydration near the surface, suggesting how Asp96 might communicate with the bulk during the rise of the O intermediate.  相似文献   

9.
Recent 3-D structures of several intermediates in the photocycle of bacteriorhodopsin (bR) provide a detailed structural picture of this molecular proton pump in action. In this review, we describe the sequence of conformational changes of bR following the photoisomerization of its all-trans retinal chromophore, which is covalently bound via a protonated Schiff base to Lys216 in helix G, to a 13-cis configuration. The initial changes are localized near the protein's active site and a key water molecule is disordered. This water molecule serves as a keystone for the ground state of bR since, within the framework of the complex counter ion, it is important both for stabilizing the structure of the extracellular half of the protein, and for maintaining the high pK(a) of the Schiff base (the primary proton donor) and the low pK(a) of Asp85 (the primary proton acceptor). Subsequent structural rearrangements propagate out from the active site towards the extracellular half of the protein, with a local flex of helix C exaggerating an early movement of Asp85 towards the Schiff base, thereby facilitating proton transfer between these two groups. Other coupled rearrangements indicate the mechanism of proton release to the extracellular medium. On the cytoplasmic half of the protein, a local unwinding of helix G near the backbone of Lys216 provides sites for water molecules to order and define a pathway for the reprotonation of the Schiff base from Asp96 later in the photocycle. A steric clash of the photoisomerized retinal with Trp182 in helix F drives an outward tilt of the cytoplasmic half of this helix, opening the proton transport channel and enabling a proton to be taken up from the cytoplasm. Although bR is the first integral membrane protein to have its catalytic mechanism structurally characterized in detail, several key results were anticipated in advance of the structural model and the general framework for vectorial proton transport has, by and large, been preserved.  相似文献   

10.
Recent 3-D structures of several intermediates in the photocycle of bacteriorhodopsin (bR) provide a detailed structural picture of this molecular proton pump in action. In this review, we describe the sequence of conformational changes of bR following the photoisomerization of its all-trans retinal chromophore, which is covalently bound via a protonated Schiff base to Lys216 in helix G, to a 13-cis configuration. The initial changes are localized near the protein's active site and a key water molecule is disordered. This water molecule serves as a keystone for the ground state of bR since, within the framework of the complex counter ion, it is important both for stabilizing the structure of the extracellular half of the protein, and for maintaining the high pKa of the Schiff base (the primary proton donor) and the low pKa of Asp85 (the primary proton acceptor). Subsequent structural rearrangements propagate out from the active site towards the extracellular half of the protein, with a local flex of helix C exaggerating an early movement of Asp85 towards the Schiff base, thereby facilitating proton transfer between these two groups. Other coupled rearrangements indicate the mechanism of proton release to the extracellular medium. On the cytoplasmic half of the protein, a local unwinding of helix G near the backbone of Lys216 provides sites for water molecules to order and define a pathway for the reprotonation of the Schiff base from Asp96 later in the photocycle. A steric clash of the photoisomerized retinal with Trp182 in helix F drives an outward tilt of the cytoplasmic half of this helix, opening the proton transport channel and enabling a proton to be taken up from the cytoplasm. Although bR is the first integral membrane protein to have its catalytic mechanism structurally characterized in detail, several key results were anticipated in advance of the structural model and the general framework for vectorial proton transport has, by and large, been preserved.  相似文献   

11.
Recent advances in the determination of the X-ray crystallographic structures of bacteriorhodopsin, and some of its photointermediates, reveal the nature of the linkage between the relaxation of electrostatic and steric conflicts at the retinal and events elsewhere in the protein. The transport cycle can be now understood in terms of specific and well-described displacements of hydrogen-bonded water, and main-chain and side-chain atoms, that lower the pK(a)s of the proton release group in the extracellular region and Asp-96 in the cytoplasmic region. Thus, local electrostatic conflict of the photoisomerized retinal with Asp-85 and Asp-212 causes deprotonation of the Schiff base, and results in a cascade of events culminating in proton release to the extracellular surface. Local steric conflict of the 13-methyl group with Trp-182 causes, in turn, a cascade of movements in the cytoplasmic region, and results in reprotonation of the Schiff base. Although numerous questions concerning the mechanism of each of these proton (or perhaps hydroxyl ion) transfers remain, the structural results provide a detailed molecular explanation for how the directionality of the ion transfers is determined by the configurational relaxation of the retinal.  相似文献   

12.
The L to M reaction of the bacteriorhodopsin photocycle includes the crucial proton transfer from the retinal Schiff base to Asp85. In spite of the importance of the L state in deciding central issues of the transport mechanism in this pump, the serious disagreements among the three published crystallographic structures of L have remained unresolved. Here, we report on the X-ray diffraction structure of the L state, to 1.53-1.73 A resolutions, from replicate data sets collected from six independent crystals. Unlike earlier studies, the partial occupancy refinement uses diffraction intensities from the same crystals before and after the illumination to produce the trapped L state. The high reproducibility of inter-atomic distances, and bond angles and torsions of the retinal, lends credibility to the structural model. The photoisomerized 13-cis retinal in L is twisted at the C(13)=C(14) and C(15)=NZ double-bonds, and the Schiff base does not lose its connection to Wat402 and, therefore, to the proton acceptor Asp85. The protonation of Asp85 by the Schiff base in the L-->M reaction is likely to occur, therefore, via Wat402. It is evident from the structure of the L state that various conformational changes involving hydrogen-bonding residues and bound water molecules begin to propagate from the retinal to the protein at this stage already, and in both extracellular and cytoplasmic directions. Their rationales in the transport can be deduced from the way their amplitudes increase in the intermediates that follow L in the reaction cycle, and from the proton transfer reactions with which they are associated.  相似文献   

13.
In a light-driven proton-pump protein, bacteriorhodopsin (BR), protonated Schiff base of the retinal chromophore and Asp85 form ion-pair state, which is stabilized by a bridged water molecule. After light absorption, all-trans to 13-cis photoisomerization takes place, followed by the primary proton transfer from the Schiff base to Asp85 that triggers sequential proton transfer reactions for the pump. Fourier transform infrared (FTIR) spectroscopy first observed O-H stretching vibrations of water during the photocycle of BR, and accurate spectral acquisition has extended the water stretching frequencies into the entire stretching frequency region in D(2)O. This enabled to capture the water molecules hydrating with negative charges, and we have identified the water O-D stretch at 2171 cm(-1) as the bridged water interacting with Asp85. We found that retinal isomerization weakens the hydrogen bond in the K intermediate, but not in the later intermediates such as L, M, and N. On the basis of the observation particularly on the M intermediate, we proposed a model for the mechanism of proton transfer from the Schiff base to Asp85. In the "hydration switch model", hydration of a water molecule is switched in the M intermediate from Asp85 to Asp212. This will have raised the pK(a) of the proton acceptor, and the proton transfer is from the Schiff base to Asp85.  相似文献   

14.
J Heberle  D Oesterhelt    N A Dencher 《The EMBO journal》1993,12(10):3721-3727
Surface bound pH indicators were applied to study the proton transfer reactions in the mutant Asp85-->Glu of bacteriorhodopsin in the native membrane. The amino acid replacement induces a drastic acceleration of the overall rise of the M intermediate. Instead of following this acceleration, proton ejection to the extracellular membrane surface is not only two orders of magnitude slower than M formation, it is also delayed as compared with the wild-type. This demonstrates that Asp85 not only accepts the proton released by the Schiff's base but also regulates very efficiently proton transfer within the proton release chain. Furthermore, Asp85 might be the primary but is not the only proton acceptor/donor group in the release pathway. The Asp85-->Glu substitution also affects the proton reuptake reaction at the cytoplasmic side, although Asp85 is located in the proton release pathway. Proton uptake is slower in the mutant than in the wild-type and occurs during the lifetime of the O intermediate. This demonstrates a feed-back mechanism between Asp85 and the proton uptake pathway in bacteriorhodopsin.  相似文献   

15.
According to previous X-ray diffraction studies, the D85N mutant of bacteriorhodopsin (bR) with unprotonated Schiff base assumes a protein conformation similar to that in the M photointermediate. We recorded (13)C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled D85N and D85N/D96N mutants at ambient temperature to examine how conformation and dynamics of the protein backbone are altered when the Schiff base is protonated (at pH 7) and unprotonated (at pH 10). Most notably, we found that the peak intensities of three to four [3-(13)C]Ala-labeled residues from the transmembrane alpha-helices, including Ala 39, 51, and 53 (helix B) and 215 (helix G), were suppressed in D85N and D85N/D96N both from CP-MAS (cross polarization-magic angle spinning) and DD-MAS (dipolar decoupled-magic angle spinning) spectra, irrespective of the pH. This is due to conformational change and subsequent acquisition of intermediate time-range motions, with correlation times in the order of 10(-)(5) or 10(-)(4) s, which interferes with proton decoupling frequency or frequency of magic angle spinning, respectively, essential for an attempted peak-narrowing to achieve high-resolution NMR signals. Greater changes were achieved, however, at pH 10, which indicate large-amplitude motions of transmembrane helices upon deprotonation of Schiff base and the formation of the M-like state in the absence of illumination. The spectra detected more rapid motions in the extracellular and/or cytoplasmic loops, with correlation times increasing from 10(-)(4) to 10(-)(5) s. Conformational changes in the transmembrane helices were located at helices B, G, and D as viewed from the above-mentioned spectral changes, as well as at 1-(13)C-labeled Val 49 (helix B), 69 (B-C loop), and [3-(13)C]Ala-labeled Ala 126 (D-helix) signals, in addition to the cytoplasmic and extracellular loops. Further, we found that in the M-like state the charged state of Asp 96 at the cytoplasmic side substantially modulated the conformation and dynamics of the extracellular region through long-distance interaction.  相似文献   

16.
One of the steps in the proton pumping cycle of bacteriorhodopsin (BR) is the release of a proton from the proton-release group (PRG) on the extracellular side of the Schiff base. This proton release takes place shortly after deprotonation of the Schiff base (L-to-M transition) and results in an increase in the pKa of Asp85, which is a crucial mechanistic step for one-way proton transfer for the entire photocycle. Deprotonation of the PRG can also be brought about without photoactivation, by raising the pH of the enzyme (pKa of PRG; approximately 9). Thus, comparison of the FTIR difference spectrum for formation of the M intermediate (M minus initial unphotolyzed BR state) at pH 7 to the corresponding spectrum generated at pH 10 may reveal structural changes specifically associated with deprotonation of the PRG. Vibrational bands of BR that change upon M formation are distributed across a broad region between 2120 and 1685 cm(-1). This broad band is made up of two parts. The band above 1780 cm(-1), which is insensitive to C15-deuteration of the retinal, may be due to a proton delocalized in the PRG. The band between 1725 and 1685 cm(-1), on the lower frequency side of the broad band, is sensitive to C15-deuteration. This band may arise from transition dipole coupling of the vibrations of backbone carbonyl groups in helix G with the side chain of Tyr57 and with the C15H of the Schiff base. In M, these broad bands are abolished, and the 3657 cm(-1) band, which is due to the disruption of the hydrogen bonding of a water molecule, probably with Arg82, appears. Loss of the interaction of the backbone carbonyl groups in helix G with Tyr57 and the Schiff base, and separation of Tyr57 from Arg82, may be causes of these spectral changes, leading to the stabilization of the protonated Asp85 in M.  相似文献   

17.
Changes in the FTIR difference spectra upon photoconversion of the M intermediate to its photoproduct(s) M' were studied in wild-type bacteriorhodopsin and several mutants at low temperatures. The studies aimed at examining whether internally bound water molecules interact with the chromophore and the key residues Asp85 and Asp96 in M, and whether these water molecules participate in the reprotonation of the Schiff base. We have found that three water molecules are perturbed by the isomerization of the chromophore in the M --> M' transition at 80 K. The perturbation of one water molecule, detected as a bilobe at 3567(+)/3550(-) cm(-)(1), relaxed in parallel with the relaxation of an Asp85 perturbation upon increasing temperature from 80 to 100 and 133 K (before the reprotonation of the Schiff base). Two water bands of M at 3588 and 3570 cm(-)(1) shift to 3640 cm(-)(1) upon photoconversion at 173 K. These bands were attributed to water molecules which are located in the vicinity of the Schiff base and Asp85 (Wat85). In the M to M' transition at 80 and 100 K, where the Schiff base remained unprotonated, the Wat85 pair stayed in similar states to those in M. The reprotonation of the Schiff base at 133 K occurred without the restoration of the Wat85 band around 3640 cm(-)(1). This band was restored at higher temperatures. Two water molecules in the region surrounded by Thr46, Asp96, and Phe219 (Wat219) were perturbed in the M to M' transition at 80 K and relaxed in parallel with the relaxation of the perturbation of Asp96 upon increasing the temperature. Mutant studies show that upon photoisomerization of the chromophore at 80 K one of the Wat219 water molecules moves closer to Val49 (located near the lysine side chain attached to retinal, and close to the Schiff base). These data along with our previous results indicate that the water molecules in the cytoplasmic domain participate in the connection of Asp96 with the Schiff base and undergo displacement during photoconversions, presumably shuttling between the Schiff base and a site close to Asp96 in the L to M to N transitions.  相似文献   

18.
We illuminated bacteriorhodopsin crystals at 210K to produce, in a photostationary state with 60% occupancy, the earliest M intermediate (M1) of the photocycle. The crystal structure of this state was then determined from X-ray diffraction to 1.43 A resolution. When the refined model is placed after the recently determined structure for the K intermediate but before the reported structures for two later M states, a sequence of structural changes becomes evident in which movements of protein atoms and bound water are coordinated with relaxation of the initially strained photoisomerized 13-cis,15-anti retinal. In the K state only retinal atoms are displaced, but in M1 water 402 moves also, nearly 1A away from the unprotonated retinal Schiff base nitrogen. This breaks the hydrogen bond that bridges them, and initiates rearrangements of the hydrogen-bonded network of the extracellular region that develop more fully in the intermediates that follow. In the M1 to M2 transition, relaxation of the C14-C15 and C15=NZ torsion angles to near 180 degrees reorients the retinylidene nitrogen atom from the extracellular to the cytoplasmic direction, water 402 becomes undetectable, and the side-chain of Arg82 is displaced strongly toward Glu194 and Glu204. Finally, in the M2 to M2' transition, correlated with release of a proton to the extracellular surface, the retinal assumes a virtually fully relaxed bent shape, and the 13-methyl group thrusts against the indole ring of Trp182 which tilts in the cytoplasmic direction. Comparison of the structures of M1 and M2 reveals the principal switch in the photocycle: the change of the angle of the C15=NZ-CE plane breaks the connection of the unprotonated Schiff base to the extracellular side and establishes its connection to the cytoplasmic side.  相似文献   

19.
FTIR spectroscopy is advantageous for detecting changes in polar chemical bonds that participate in bacteriorhodopsin function. Changes in H-bonding of Asp85, Asp96, the Schiff base, and internal water molecules around these residues upon the formation of the L, M, and N photo-intermediates of bacteriorhodopsin were investigated by difference FTIR spectroscopy. The locations and the interactions of these water molecules with the amino acid residues were further revealed by use of mutant pigments. The internal water molecules in the cytoplasmic domain probably work as mobile polar groups in an otherwise apolar environment and act to stabilize the L intermediate, and carrying a proton between the Schiff base and the proton acceptor or donor. Similar internal water molecules were shown to be present in bovine rhodopsin.  相似文献   

20.
The redox potentials of the oriented films of the wild-type, the E194Q-, E204Q- and D96N-mutated bacteriorhodopsins (bR), prepared by adsorbing purple membrane (PM) sheets or its mutant on a Pt electrode, have been examined. The redox potentials (V) of the wild-type bR were -470 mV for the 13-cis configuration of the retinal Shiff base in bR and -757 mV for the all-trans configuration in H(2)O, and -433 mV for the 13-cis configuration and -742 mV for the all-trans configuration in D(2)O. The solvent isotope effect (DeltaV=V(D(2)O)-V(H(2)O)), which shifts the redox potential to a higher value, originates from the cooperative rearrangements of the extensively hydrogen-bonded water molecules around the protonated C=N part in the retinal Schiff base. The redox potential of bR was much higher for the 13-cis configuration than that for the all-trans configuration. The redox potentials for the E194Q mutant in the extracellular region were -507 mV for the 13-cis configuration and -788 mV for the all-trans configuration; and for the E204Q mutant they were -491 mV for the 13-cis configuration and -769 mV for the all-trans configuration. Replacement of the Glu(194) or Glu(204) residues by Gln weakened the electron withdrawing interaction to the protonated C=N bond in the retinal Schiff base. The E204 residue is less linked with the hydrogen-bonded network of the proton release pathway compared with E194. The redox potentials of the D96N mutant in the cytoplasmic region were -471 mV for the 13-cis configuration and -760 mV for the all-trans configuration which were virtually the same as those of the wild-type bR, indicating that the D to N point mutation of the 96 residue had no influence on the interaction between the D96 residue and the C=N part in the Schiff base under the light-adapted condition. The results suggest that the redox potential of bR is closely correlated to the hydrogen-bonded network spanning from the retinal Schiff base to the extracellular surface of bR in the proton transfer pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号