首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aerobiology can play a key role in protecting the rice crop since many fungi can cause serious damage to agricultural areas. In this way, the ideal time to implement different security measures can be identified. To determine the presence of potentially pathogenic fungi in the air of the rice agroecosystem, a weekly monitoring of viable fungi was carried out using a volumetric sampler. Collected fungi were quantified, isolated, and identified based on their morphological characteristics. The results obtained demonstrated that the annual average concentration of filamentous fungi in the atmosphere of rice agroecosystem studied was 1,225 cfu m−3 levels ranging between 115 cfu m−3 (April) and 2,865 cfu m−3 (August). Pyricularia grisea was detected in the air for 5 months, since the second week of June until the first week of October, and highest average concentration (25 cfu m−3) was observed in August. Of the meteorological factors evaluated, temperature and relative air humidity influence the concentration of propagules of P. grisea in the air. Besides, other fungi were detected such as Curvularia, Bipolaris, Alternaria, and Cercospora, all with relevance to rice cultivation. This is the first characterization of aeromycological biodiversity in the studied region.  相似文献   

2.
Indoor and outdoor airborne fungal propagule concentrations in Mexico City   总被引:7,自引:0,他引:7  
Thirty homes of asthmatic adults located in Mexico City were examined to determine the predominant culturable fungi and the changes in their airborne concentrations. Fungi were cultured and identified microscopically from air samples collected in naturally ventilated homes, during both wet (July–August) and cool dry (November–December) seasons, and from settled dust from the same homes. Airborne dust from indoor yielded 99–4950 cfu m−3, and settled dust 102–106 cfu g−1 on DG18 agar. The indoor geometric mean concentration of airborne fungi during the cool dry season was 460 cfu m−3 while in the wet season it was 141 cfu m−3. Similarly, numbers of airborne fungal propagules out of doors decreased 60% between the dry and wet season. In general, the total fungal concentrations in indoor air were less than 103 cfu m−3 and a large proportion of them was collected in Stage-2 of the Andersen sampler. Moreover, the ratio between indoor and outdoor concentrations was <3:1. Five of the 30 sampled homes yielded >500 cfu m−3 of one genus, with up to 1493Cladosporium cfu m−3 or 2549Penicillium cfu m−3. Also, these two genera were predominant in both airborne and settled dust, and their concentrations were greater indoors than out, indicating a possible indoor source of fungal propagules. The predominant species wereCladosporium herbarum, Penicillium aurantiogriseum andP. chrysogenum. These results suggest that exposure to large concentrations of fungi occurs indoors and is associated with both seasons of the year and with particular home characteristics.  相似文献   

3.
The diversity and the abundance of the culturable airborne fungi have been studied by a volumetric method in the city of Athens, for a period of 4 years. A total of 6,600 plates were exposed during 562 calendar days, and 70,583 colonies of fungi have been recovered and studied in detail. One hundred and forty-eight species in fifty-four genera of filamentous fungi were identified. A total of three hundred and twenty strains were isolated and maintained as reference material. The annual mean concentration of the total fungi was 538, 640, 694 and 638 CFU/m3, and the concentration range, 25–2,435, 117–2,822, 122–2,201 and 116–2,590 CFU/m3 for each year, respectively. There is no statistically significant year-to-year variation in the distribution patterns and in the annual mean concentrations of the total fungi. The diversity and the abundance of the total fungi and of the dominant genera Cladosporium, Aspergillus and Alternaria were increased, whereas those of Penicillium decreased during the warm months of each year. The majority of the species are newly reported as airborne from Greece. Also, 19 genera and 93 species are totally new records for this country. The species Acrodontium virellum, Aspergillus aculeatus, A. tubingensis, Circinella minor, C. umbellata, Cladosporium breviramosum, C. malorum, Drechslera tetramera, Paecilomyces crustaceus, Petriella guttulata, Rutola graminis and Sporotrichum pruinosum are reported as airborne for the first time worldwide.  相似文献   

4.
Thailand border market is where the local Thais, Cambodians, Laotians, and Burmeses exchange their goods and culture at the border checkpoints. It is considered to be the source of aerial disease transmission especially for foreigners because it is always very crowded with people from all walks of life. Unhealthy air quality makes this area high risk of spread of airborne diseases. This study assessed airborne concentrations of bacteria and fungi in a border market to improve exposure estimates and develop efficient control strategies to reduce health risk. The density and distribution of airborne bacteria and fungi were investigated in the Chong Chom border market in Surin Province, Thailand. Eighteen air sampling sites were taken from outdoors and various work environments including indoor footpaths, wooden handicraft shops, electronic shops, the secondhand clothing shops, and fruit market areas. Exposed Petri plate method and liquid impinger sampler were used for sampling at the breathing zone, 1.5 m above the floor level, during weekend and holiday. Meteorological factors such as relative humidity, temperature, and light intensity were collected by portable data logger. The relative humidity was 67–73%, and temperature 29–33°C, and light varied between 18 and 270 Lux m−2. Gram-positive and Gram-negative bacteria were found at a mean value of 104 CFU m−3, and airborne fungi of 103 CFU m−3 were recorded. The highest concentration of culturable airborne microorganisms was found along the indoor footpath (9.62 × 104 CFU m−3 and 750.00 CFU/plate/h for impingement and sedimentation methods, respectively), the fruit market area (7.86 × 104 CFU m−3 and 592.42 CFU/plate/h for impingement and sedimentation methods, respectively), and the secondhand clothing shop (4.59 × 103 CFU m−3 and 335.42 CFU/plate/h for impingement and sedimentation methods, respectively) for Gram-positive bacteria, Gram-negative bacteria, and fungi, respectively. The lowest concentration of Gram-positive bacteria, Gram-negative bacteria, and fungi was found only at the outdoor area at 1.53 × 104 CFU m−3, 0.93 × 104 CFU m−3 and 0.80 × 103 CFU m−3 by means of impingement method and 136.67 CFU/plate/h, 69.25 CFU/plate/h, and 62.00 CFU/plate/h by means of sedimentation methods for Gram-positive bacteria, Gram-negative bacteria, and fungi, respectively. The most frequently present airborne bacteria were identified as Bacillus, Corynebacteria, Diplococcus, Micrococcus, Acinetobacter, Alcaligenes, Enterobacter, and spore former rods. Acremonium, Aspergillus, Cladosporium, Penicillium, and Sporotrichum were the most frequently found aerosol fungi genera. The distribution of airborne microorganisms correlated with relative humidity and light factors based on principal component analysis. In conclusion, the border market is a potential source of aerial disease transmission and a various hazards of bioaerosols for workers, consumers, sellers, and tourists. The bioaerosol concentration exceeded the standard of occupational exposure limit. Many major indicators of allergenic and toxigenic airborne bacteria and fungi, Acinetobacter, Enterobacter, Pseudomonas, Cladosporium, Alternaria, Aspergillus, and Penicillium, were found in the various market environments.  相似文献   

5.
In this study an attempt was made to evaluate the qualitative and quantitative fungal burden (load) in five different working environments of South Assam (India) and the possible risks of indoor fungi to employees and stored products. Fungal concentrations in different working environments were studied using a Burkard personal petriplate sampler. The survey was done in five different working environments for one year. A total of 76 fungal types were recorded in the indoor air of South Assam during the survey period. The maximum fungal concentration (5,437.6 ± 145.3 CFU m−3 air) was recorded in the indoor air of medical wards, followed by the paper-processing industry (3,871.7 ± 93.4 CFU m−3 air). However the lowest concentration was observed in the indoor air of a bakery (1,796.8 ± 54.4 CFU m−3 air). The most dominant fungal genera were Aspergillus (34.2%) followed by Penicillium (17.8%), Geotrichum (7.0%) and the most dominant fungal species were Aspergillus fumigatus (2,650.4 CFU m−3 air) followed by Aspergillus flavus (1,388.2 CFU m−3 air), Geotrichum candidum (1,280.3 CFU m−3 air), Aspergillus niger (783.3 CFU m−3 air), and Penicillium aurantiovirens (774.0 CFU m−3 air). The fungal species viz., Aspergillus fumigatus, Penicillium aurantiovirens, Aspergillus flavus, Aspergillus niger, Geotrichum candidum, and Penicillium thomii, which were recorded well above threshold levels, may lead to adverse health hazards to indoor workers. Setting occupational exposure limits for indoor fungal spores as reference values is obligatory for prevention and control of adverse effects of indoor fungal exposure.  相似文献   

6.
In 12 selected flats in Sosnowiec, Upper Silesia, the concentrations of particulate aerosol, bioaerosol and bacterial endotoxin were examined. Concentrations of particulate aerosol, bacteria, fungi and endotoxin were in the order of 101–102 μg/m3, 101–103 cfu/m3, 100–102 cfu/m3 and 10−2–10−1 ng/m3, respectively. The most numerous group of microorganisms in indoor air during the winter season were Gram positive mesophilic bacteria. They were more common in flats polluted with tobacco smoke. The concentrations of airborne endotoxins were higher in flats polluted with tobacco smoke in all size ranges. The highest level of endotoxins was found in the fraction of fine particles below 5μm.  相似文献   

7.
Trichoderma harzianum, a filamentous fungus, is being widely used as a potential biopesticide. The potential of this fungus in causing skin sensitization, however, was poorly investigated as yet. The objective of this study was to monitor the occurrence of T. harzianum in the air and to explore its skin sensitizing potential. Seasonal periodicity of T. harzianum was studied for the years 2002–2004 by an Andersen air sampler. The skin sensitizing potential of T. harzianum extract was studied in 389 patients with suspected respiratory allergy by skin prick test (SPT) and specific IgE level was determined by ELISA. SDS–PAGE and immunoblotting were also performed. T. harzianum colony count varied from 3.69 to 134.88 CFU m−3 with the peak achieved in February. Relative humidity was found to be a significant (P < 0.05) factor predicting the occurrence of T. harzianum in the air. Positive skin reaction (wheal diameter ≥ 3 mm) was observed in 105 patients (26.99%). T. harzianum crude extract was resolved in 18 protein bands (12–72 kDa) on SDS–PAGE (12% gel) including two IgE-binding protein bands (21 and 32 kDa). T. harzianum can be considered an important inhalant allergen.  相似文献   

8.
The aim of this work was to select endophytic fungi from mangrove plants that produced antimicrobial substances. Minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) or minimal fungicidal concentrations (MFC) of crude extracts from 150 isolates were determined against potential human pathogens by a colorimetric microdilution method. Ninety-two isolates (61.3%) produced inhibitory compounds. Most of the extracts (28–32%) inhibited Staphylococcus aureus (MIC/MBC 4–200/64–200 μg ml−1). Only two extracts inhibited Pseudomonas aeruginosa (MIC/MBC 200/>200 μg ml−1). 25.5 and 11.7% inhibited Microsporum gypseum and Cryptococcus neoformans (MIC/MFC 4–200/8–200 μg ml−1 and 8–200/8–200 μg ml−1, respectively), while 7.5% were active against Candida albicans (MIC/MFC 32–200/32–200 μg ml−1). None of the extracts inhibited Escherichia coli. The most active fungal extracts were from six genera, Acremonium, Diaporthe, Hypoxylon, Pestalotiopsis, Phomopsis, and Xylaria as identified using morphological and molecular methods. Phomopsis sp. MA194 (GU592007, GU592018) isolated from Rhizophora apiculata showed the broadest antimicrobial spectrum with low MIC values of 8–32 μg ml−1against Gram-positive bacteria, yeasts and M. gypseum. It was concluded that endophytic fungi from mangrove plants are diverse, many produce compounds with antimicrobial activity and could be suitable sources of new antimicrobial natural products.  相似文献   

9.
The daily and seasonal distribution of airborne fungal particles was recorded in a high altitude tropical zone. Sampling was carried out in the southern part of Mexico City. An Andersen air sampler was used over a period of six months. Ten minutes sampling for each set of plates was done at fixed schedule: 07:30, 14:00 and 19:00 hours. The sampler was placed 10 m above the ground. Daily variation was found to be associated with the season, weather and atmospheric stability. The highest value of mold counts (3195 CFU m−3) was recorded in the evening on October, a transitional month between the rainy and the dry seasons, the lowest (45 CFU m−3) at noon during the rainy season. Mold counts were significantly correlated with temperature, having negative signs both in the morning and at noon, and being positive in the evening. The abundance of only three genera was recorded.Cladosporium, was isolated more frequently, and its abundance at 14:00 h was of 38%;Alternaria represented 4.0%, at 14:00 h, andAspergillus 3.0% at 7:30 h. Fifteen species belonging to the latter genera were identified and most of them are considered as opportunistic molds of clinical significance.  相似文献   

10.
Chen Z  Chen S  Lu G  Chen X 《Biotechnology letters》2012,34(1):137-143
The percentage of spherical colonies from the trichomes of Nostoc sphaeroides reached 62–73% after 16 days with 50 and 250 μM P, but only10–15% at 0.5 and 5 μM P. During colony formation from microcolonies to macrocolonies, the growth rates were 95, 206 and 244% higher, respectively at 5, 50 and 250 μM P than that at 0.5 μM P. The light-saturated photosynthetic rate, maximum electron transport rate and light-limited photosynthetic efficiency at 0.5 μM P decreased, respectively, by 45, 51 and 32% than those at 250 μM P. These indicated that the colony development, growth and photosynthetic capacities were restricted at low P level, suggesting that P might be an important factor limiting the productivity and distribution of N. sphaeroides in the field.  相似文献   

11.
The zooxanthellate octocoral Sinularia flexibilis is a producer of potential pharmaceutically important metabolites such as antimicrobial and cytotoxic substances. Controlled rearing of the coral, as an alternative for commercial exploitation of these compounds, requires the study of species-specific growth requirements. In this study, phototrophic vs. heterotrophic daily energy demands of S. flexibilis was investigated through light and Artemia feeding trials in the laboratory. Rate of photosynthetic oxygen by zooxanthellae in light (≈200 μmol quanta m−2 s−1) was measured for the coral colonies with and without feeding on Artemia nauplii. Respiratory oxygen was measured in the dark, again with and without Artemia nauplii. Photosynthesis–irradiance curve at light intensities of 0, 50, 100, 200, and 400 μmol quanta m−2 s−1 showed an increase in photosynthetic oxygen production up to a light intensity between 100 and 200 μmol quanta m−2 s−1. The photosynthesis to respiration ratio (P/R > 1) confirmed phototrophy of S. flexibilis. Both fed and non-fed colonies in the light showed high carbon contribution by zooxanthellae to animal (host) respiration values of 111–127%. Carbon energy equivalents allocated to the coral growth averaged 6–12% of total photosynthesis energy (mg C g 1 buoyant weight day 1) and about 0.02% of the total daily radiant energy. “Light utilization efficiency (ε)” estimated an average ε value of 75% 12 h 1 for coral practical energetics. This study shows that besides a fundamental role of phototrophy vs. heterotrophy in daily energy budget of S. flexibilis, an efficient fraction of irradiance is converted to useable energy.  相似文献   

12.
Present study aims at estimation and validation of net primary productivity (NPP) using production efficiency model (PEM), and its possible relationship with tree diversity. The PEM estimates NPP, based on light use efficiency (LUE) and intercepted photosynthetically active radiation (IPAR). Weighted average LUE varied between 0.02 gC/μmol/m2 of PAR (Mixed forest (miscellaneous)) to 0.08 gC/μmol/m2 of PAR (Acacia forest), in growing phase (GP), and 0.0008 gC/μmol/m2 of PAR (Boswellia mixed forest) to 0.023 gC/μmol/m2 of PAR (Acacia forest) during the senescent phase (SP). The average weighted LUE for tropical dry and Moist deciduous forest (MDF) in GP were 0.05 gC/μmol/m2 of PAR and 0.03 gC/μmol/m2 of PAR, respectively. The average IPAR for different forest types was 2079.58 μmol/m2/s during GP and 1510.58 μmol/m2/s during SP. The PEM based NPP varied between 0.58–275.78 gC/m2/year during GP and 0.43–74.34 gC/m2/year during SP. The PEM based NPP and conventional (ground based) NPP were related with R 2 of 0.55. The tree diversity and NPP relationship was observed with R 2 of 0.55 at the level of both plot and forest types.  相似文献   

13.
The branching zooxanthellate soft coral Sinularia flexibillis releases antimicrobial and toxic compounds with potential pharmaceutical importance. As photosynthesis by the symbiotic algae is vital to the host, the light-dependency of the coral, including its specific growth rate (μ day−1) and the physiological response to a range of light intensities (10–1,000 μmol quanta m−2 s−1) was studied for 12 weeks. Although a range of irradiances from 100 to 400 μmol quanta m−2 s−1 was favorable for S. flexibilis, based on chlorophyll content, a light intensity around 100 μmol quanta m−2 s−1 was found to be optimal. The contents of both zooxanthellae and chlorophyll a were highest at 100 μmol quanta m−2 s−1. The specific budding rate showed almost the same pattern as the specific growth rate. The concentration of the terpene flexibilide, produced by this species, increased at high light intensities (200–600 μmol quanta m−2 s−1).  相似文献   

14.
The objective of this study was to investigate the airborne viable spore concentrations and identify the fungal species in all indoor spaces from the lending library at the Technical University “Gheorghe Asachi” Iaşi, Romania. Samples were collected using the settle plate method and swab samples from PC cooler fan grids as well as from the wall in it’s vicinity and from paper/wood fragments. There were no air conditioning systems in the library rooms. The heating systems were standard with an environmental temperature of 20°C in winter, except for the storage area of old/rare books stacks II, where the temperature was below 15°C and the humidity was very high due to water infiltrations in the walls and poor maintenance. More than 296 fungal colonies from over 78 samples were identified, enumerated, and reported. Indoor airborne fungal spore deposition rates were within the range of 419–1,677 CFU/m2, with the predominance of genera being Aspergillus spp., Penicillium spp., Cladosporium spp., Alternaria spp. and Chaetomium spp. Approximately ten fungal colonies could not be identified. The PC fans move particles from the low levels (floor) to the air, and are thus responsible for maintaining a constant air velocity and contribute to fungal-spore aerosolization, transport, deposition and resuspension. Book paper and wood furniture are known to be suitable substrates for cellulose degrading fungi.  相似文献   

15.
Production rates, abundance, chlorophyll a (Chl a) concentrations and pigment composition were measured for three size classes (<2 μm, 2–11 μm and >11 μm) of phytoplankton from May to December 2000 in deep, mesotrophic, alpine lake Mondsee in Austria. The study focuses on differences among phytoplankton size fractions characterised by their surface area to volume ratio ([mml−1: mm3l−1]), pigment distribution patterns and photosynthetic rates. Particular attention was paid to autotrophic picophytoplankton (APP, fraction <2 μm) since this size fraction differed significantly from the two larger size fractions. Among the three fractions, APP showed the highest surface area to volume ratios and a high persistence in the pattern of lipophilic pigments between temporarily and spatially successive samples (about 80% similarity of pigment composition between samples over seasons and depths). The epilimnetic abundance of APP varied seasonally with an annual maximum of 180 × 10cells ml−1 in June (at 4–9 m). The minimum (October at 12 m) was more than an order of magnitude lower (4.9 × 103 ml−1). APP peaked during autumn and contributed between 24% and 42% to the total area-integrated Chl a (10–23 mg m−2) and between 16% and 58% to total area-integrated production (5–64 mg m−2  h−1) throughout seasons.  相似文献   

16.
Landfast ice algal communities were studied in the strongly riverine-influenced northernmost part of the Baltic Sea, the Bothnian Bay, during the winter-spring transition of 2004. The under-ice river plume, detected by its low salinity and elevated nutrient concentrations, was observed only at the station closest to the river mouth. The bottommost ice layer at this station was formed from the plume water (brine volume 0.71%). This was reflected by the low flagellate-dominated (93%) algal biomass in the bottom layer, which was one-fifth of the diatom-dominated (74%) surface-layer biomass of 88 μg C l−1. Our results indicate that habitable space plays a controlling role for ice algae in the Bothnian Bay fast ice. Similarly to the water column in the Bothnian Bay, average dissolved inorganic N:P-ratios in the ice were high, varying between 12 and 265. The integrated chlorophyll a (0.1–2.2 mg m−2) and algal biomass in the ice (1–31 mg C m−2) correlated significantly (Spearman ρ = 0.79), with the highest values being measured close to the river mouth in March and during the melt season in April. Flagellates <20 μm generally dominated in both the ice and water columns in February–March. In April the main ice-algal biomass was composed of Melosira arctica and unidentified pennate diatoms, while in the water column Achnanthes taeniata, Scrippsiella hangoei and flagellates dominated. The photosynthetic efficiency (0.003–0.013 (μg C [μg chl a −1] h−1)(μE m−2s−1)−1) and maximum capacity (0.18–1.11 μg C [μg chl a −1] h−1) could not always be linked to the algal composition, but in the case of a clear diatom dominance, pennate species showed to be more dark-adapted than centric diatoms.  相似文献   

17.
The fungal concentration and flora in indoor and outdoor air in Yokohama, Japan were analyzed with a Reuter centrifugal air sampler and dichloran 18% glycerol agar (DG18), and compared with the levels assessed with potato dextrose agar (PDA). The number of fungal colony-forming units (CFU) in outdoor air was < 13–2750/m3; Cladosporium spp. predominated, followed by Alternaria spp. and Penicillium spp. The fungal concentration in outdoor air peaked in September. The concentrations of fungi in outdoor air (n = 288) were significantly correlated with the maximum temperature of the day, minimum temperature of the day, average temperature of the day, average velocity of wind of the day, average temperature of the month, average relative humidity of the month and precipitation of the month. In indoor air, the fungal CFU was < 13–3750/m3. Cladosporium spp. predominated, followed by the xerophilic fungi such as the Aspergillus restrictus group, Wallemia sebi, the A. glaucus group, and Penicillium spp. The fungal concentration in indoor air peaked in October. The concentrations of fungi in indoor air (n = 288) were significantly correlated with the indoor temperature, indoor relative humidity and the outdoor climatic factors mentioned above, except for the average velocity of wind of the day. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

19.
The frequency of fungal spores in the air of three different sections of a rural bakery was analyzed using a Burkard personal slide sampler and Andersen two stage viable sampler. In average concentration of spores (No./m3) was 228–26770/m3 and concentration of viable colony forming units (CFU/m3) was 65-2061 CFU/m3. Dominant fungus species both culturable and nonculturable, were species of Aspergillus and Penicillium, Cladosporiumsp., Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, Cladosporium cladosporioides, Penicillium citrinum and Alternaria alternata. Seasonal variations in the spore concentrations were clearly observed in case of some fungi. Total culturable mould concentration of different bakery sections sometimes exceeded the acceptable limit for a healthy indoor environment. Antigenic extracts prepared from some dominant culturable fungi showed high level of allergenicity in skin prick tests indicating that they could be responsible for allergic respiratory dysfunction of bakery workers.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

20.
Physical, biogeochemical and photosynthetic parameters were measured in sea ice brine and ice core bottom samples in the north-western Weddell Sea during early spring 2006. Sea ice brines collected from sackholes were characterised by cold temperatures (range −7.4 to −3.8°C), high salinities (range 61.4–118.0), and partly elevated dissolved oxygen concentrations (range 159–413 μmol kg−1) when compared to surface seawater. Nitrate (range 0.5–76.3 μmol kg−1), dissolved inorganic phosphate (range 0.2–7.0 μmol kg−1) and silicic acid (range 74–285 μmol kg−1) concentrations in sea ice brines were depleted when compared to surface seawater. In contrast, NH4 + (range 0.3–23.0 μmol kg−1) and dissolved organic carbon (range 140–707 μmol kg−1) were enriched in the sea ice brines. Ice core bottom samples exhibited moderate temperatures and brine salinities, but high algal biomass (4.9–435.5 μg Chl a l−1 brine) and silicic acid depletion. Pulse amplitude modulated fluorometry was used for the determination of the photosynthetic parameters F v/F m, α, rETRmax and E k. The maximum quantum yield of photosystem II, F v/F m, ranged from 0.101 to 0.500 (average 0.284 ± 0.132) and 0.235 to 0.595 (average 0.368 ± 0.127) in the sea ice internal and bottom communities, respectively. The fluorometric measurements indicated medium ice algal photosynthetic activity both in the internal and bottom communities of the sea ice. An observed lack of correlation between biogeochemical and photosynthetic parameters was most likely due to temporally and spatially decoupled physical and biological processes in the sea ice brine channel system, and was also influenced by the temporal and spatial resolution of applied sampling techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号