首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The cysteine-rich region (CRR) of the integrin beta subunits is organised into four repeating elements. By expression of a panel of truncated beta 2 subunits, and CRR segments fused to the C-terminal end of a CD4 soluble fragment, the segment required for the expression of two monoclonal antibody conformational epitopes was determined. This segment, E482-Q574, contains 16 cysteines representing two repeating units. We have thus defined the CRR unit motif of 'xC---C---C---CxCxxCxC---Cx', where 'x' represents a single residue, and '---' represents a stretch of four to 14 residues.  相似文献   

2.
The extracellular N-terminal domain of the human Ca(2+) receptor (hCaR) consists of a Venus's-flytrap (VFT) domain and a cysteine-rich (Cys-rich) domain. We have shown earlier that the Cys-rich domain is critical for signal transmission from the VFT domain to the seven-transmembrane domain. The VFT domain contains 10 cysteines: two of them (Cys(129) and Cys(131)) were identified as involved in intermolecular disulfide bonds necessary for homodimerization, and six others (Cys(60)-Cys(101), Cys(358)-Cys(395), and Cys(437)-Cys(449)) are predicted to form three intramolecular disulfide bonds. The Cys-rich domain contains nine cysteines, the involvement of which in disulfide bond formation has not been defined. In this work, we asked whether the remaining cysteines in the hCaR VFT, namely Cys(236) and Cys(482), form disulfide bond(s) with cysteines in the Cys-rich domain. We constructed mutant hCaRs with a unique tobacco etch virus (TEV) protease recognition site inserted between the VFT domain and the Cys-rich domain. These mutant hCaRs remain fully functional compared with the wild type hCaR. After TEV protease digestion of the mutant hCaR proteins, dimers of the VFT were identified on Western blot under nonreducing conditions. We concluded that there is no disulfide bond between the VFT and the Cys-rich domains in the hCaR.  相似文献   

3.
4.
Activity domains of the TonB protein   总被引:18,自引:3,他引:15  
Escherichia coli and related Gram-negative bacteria contain an energy-coupied transport system through the outer membrane which consists of the proteins TonB, ExbB, ExbD anchored in the cytoplasmic membrane and receptors in the outer membrane. Differences in the activities of the Escherichia coli and the Serratia marcescens TonB proteins were used to identify TonB functional domains. In E. coli TonB segments were replaced by equivalent fragments of S. marcescens TonB and the activities of the resulting chimaeric proteins were determined. In addition, E. coli TonB was truncated at the C-terminal end, and point mutants were generated using bisulphite. From the results obtained we draw the following conclusions: an important site of interaction between TonB and ExbB is located in the M-terminal region of TonB within or close to the cytoplasmic membrane since an N-terminal 44-residue fragment of TonB was stabilized by ExbB and interfered with wild-type TonB activity. In addition, the activity of a TonB derivative in which histidine residue 20 was replaced by arginine was strongly reduced, and a double mutant containing arginine-7 to histidine and alanine-22 to threonine substitutions displayed an impaired uptake of ferrichrome. Furthermore, the domain around residue 160 is involved in TonB activity. S. marcescens TonB segments of this region in E. coli TonB conferred S. marcescens TonB activities, and E. coli TonB pöint mutants displayed strongly impaired activities for the uptake of colicin B and M and ferric siderophores. Plasmid-encoded tonB mutants of this region showed negative complementation of chromosomal wild-type tonB, and certain tonB mutants suppressed colicin B TonB-box mutants. Uptake of colicins required different domains in TonB, for colicin B and M around residue 160 and for colicin la, a domain closer to the C-terminal end. Tandem duplication of the E. coli (EP)X(KP) region by insertion of the S. marcescens (EP)×(KP) region (38 residues) and replacement of lysine residue 91 by glutamate did not alter TonB activity so that no evidence was obtained for this region to be implicated in receptor binding. The aberrant electrophoretic mobility of TonB was caused by the praline-rich sequence since its removal resulted in a normal mobility.  相似文献   

5.
The 612-residue extracellular domain of the human Ca(2+) receptor (hCaR) has been speculated to consist of a Venus's-flytrap domain (VFT) and a cysteine-rich domain. We studied the function of the hCaR Cys-rich domain by using mutagenesis and chimera approaches. A chimeric hCaR with the sequence from residues 540-601 replaced by the corresponding sequence from the Fugu CaR remained fully functional. Another chimeric hCaR with the same region of sequence replaced by the corresponding sequence from metabotropic glutamate receptor subtype 1 (mGluR1) still was activated by extracellular Ca(2+) ([Ca(2+)](o)), but its function was severely compromised. Chimeric receptors with the hCaR VFT and mGluR1 seven-transmembrane domain plus C-tail domain retained good response to [Ca(2+)](o) whether the Cys-rich domain was from hCaR or from mGluR1. Mutant hCaR with the Cys-rich domain deleted failed to respond to [Ca(2+)](o), although it was expressed at the cell surface and capable of dimerization. Our results indicate that the hCaR Cys-rich domain plays a critical role in signal transmission from VFT to seven-transmembrane domain. This domain tolerates a significant degree of amino acid substitution and may not be directly involved in the binding of [Ca(2+)](o).  相似文献   

6.
The hepatitis A virus cellular receptor 1 (HAVcr-1) cDNA codes for a class I integral membrane glycoprotein, termed havcr-1, of unknown natural function which serves as an African green monkey kidney (AGMK) cell receptor for HAV. The extracellular domain of havcr-1 has an N-terminal Cys-rich region that displays homology with sequences of members of the immunoglobulin superfamily, followed by a Thr/Ser/Pro (TSP)-rich region characteristic of mucin-like O-glycosylated proteins. The havcr-1 glycoprotein contains four putative N-glycosylation sites, two in the Cys-rich region and two in the TSP-rich region. To characterize havcr-1 and define region(s) involved in HAV receptor function, we expressed the TSP-rich region in Escherichia coli fused to glutathione S-transferase and generated antibodies (Ab) in rabbits (anti-GST2 Ab). Western blot analysis with anti-GST2 Ab detected 62- and 65-kDa bands in AGMK cells and 59-, 62-, and 65-kDa bands in dog cells transfected with the HAVcr-1 cDNA (cr5 cells) but not in dog cells transfected with the vector alone (DR2 cells). Treatment of AGMK and cr5 cell extracts with peptide-N-glycosidase F resulted in the collapse of the havcr-1-specific bands into a single band of 56 kDa, which indicated that different N-glycosylated forms of havcr-1 were expressed in these cells. Treatment of AGMK and cr5 cells with tunicamycin reduced binding of protective monoclonal Ab (MAb) 190/4, which suggested that N-glycans are required for binding of MAb 190/4 to havcr-1. To test this hypothesis, havcr-1 mutants lacking the N-glycosylation motif at the first site (mut1), second site (mut2), and both (mut3) sites were constructed and transfected into dog cells. Binding of MAb 190/4 and HAV to mut1 and mut3 cells was highly reduced, while binding to mut2 cells was not affected and binding to dog cells expressing an havcr-1 construct containing a deletion of the Cys-rich region (d1− cells) was undetectable. HAV-infected cr5 and mut2 cells but not mut1, mut3, d1−, and DR2 cells developed the characteristic cytoplasmic granular fluorescence of HAV-infected cells. These results indicate that the Cys-rich region of havcr-1 and its first N-glycosylation site are required for binding of protective MAb 190/4 and HAV receptor function.

Viral hepatitis is a major public health problem, with estimated annual medical costs of billions of dollars. The Center for Disease Control and Prevention estimated that in the United States alone, hepatitis A virus (HAV), the causative agent of acute hepatitis in humans, produces substantial morbidity and mortality, with an estimated 125,000 to 200,000 infections occurring each year and approximately 100 deaths from fulminant hepatitis. HAV is the only member of the hepatovirus genus of the Picornaviridae, a family of small, nonenveloped, positive-strand RNA viruses that include human pathogens such as poliovirus (PV) and rhinovirus as well as animal pathogens such as foot-and-mouth disease virus and encephalomyocarditis virus. Hepatitis A is transmitted via the oral-fecal route and can be prevented by vaccination with cell culture-adapted formalin-inactivated HAV (6, 22). The HAV RNA genome of about 7,500 nucleotides (nt) is covalently linked to the small virus-encoded VPg protein at its 5′ end (21) and has a poly(A) tail at its 3′ end. The approximately 750-nt long 5′ nontranslated region of the HAV genome codes for a long and complex internal ribosome entry site which directs the cap-independent translation of the viral message (reference ;9; and references therein). The HAV mRNA contains a single long open reading frame, which is translated into a polyprotein from which the structural proteins VP0, VP3, and VP1 and nonstructural proteins are cleaved by 3Cpro, the only HAV-encoded protease (8, 17). Sixty copies of VP0, VP3, and VP1 assemble into viral capsids, which, in association with the HAV genome, form provirions that undergo a slow RNA-dependent maturation cleavage of VP0 into VP4 and VP2 (2). VP4 of HAV is a very small protein of 21 to 23 amino acids which, in contrast to VP4s of all other picornaviruses, has not yet been found in the viral capsid (5, 12, 19).Although there have been major advances in our knowledge about human hepatitis viruses, very little is known about the mechanisms of their cell entry. Cellular receptors for human hepatitis viruses have been difficult to characterize due to poor in vitro viral growth, association of virions with serum and cell-derived materials which mask genuine virus-receptor interactions leading to cell entry, and attachment of virions to susceptible and nonsusceptible cells. We identified havcr-1 as an African green monkey kidney (AGMK) cellular receptor for HAV using protective monoclonal antibody (MAb) 190/4 as a probe (10). Ashida and Hamada recently identified a protein very similar to havcr-1 in S.la/Ve-1 cells, hybrid cells between marmoset liver and Vero cells, as an HAV receptor using the independently derived protective MAb 2H4 to screen a cDNA library (1). Nucleotide sequence analysis revealed that the HAVcr-1 cDNA codes for a novel mucin-like class I integral membrane glycoprotein, termed havcr-1, whose extracellular domain contains four putative N-glycosylation sites and two distinctive regions: an N-terminal Cys-rich region that displays homology to sequences of members of the immunoglobulin superfamily, and a mucin-like C-terminal region containing 27 repeats of the consensus PTTTTL. Our knowledge about the interaction of HAV with havcr-1 is currently limited, and the natural function(s) and ligand(s) of this receptor are unknown. In this work we characterize different species of havcr-1 migrating between 59 and 65 kDa as N-glycosylated forms of a 56-kDa band present after removal of N-glycans with peptide-N-glycosidase F (PNGase F). We also determined, using N-glycosylation and deletion mutants, that the havcr-1 Cys-rich region and its first N-glycosylation site are required for HAV receptor function. Further characterization of havcr-1 and the HAV–havcr-1 interaction will help us to understand the mechanism of cell entry of HAV and possibly to develop drugs which can prevent such interaction.  相似文献   

7.
The functionality of the disintegrin-like/cysteine-rich domains of snake venom metalloproteinases (SVMPs) has been shown to reside in the cysteine-rich region, which can interact with VWA-containing proteins. Recently, the hyper-variable region (HVR) of the cysteine-rich domain was suggested to constitute a potential protein-protein adhesive interface. Here we show that recombinant proteins of HF3, a hemorrhagic P-III SVMP, containing the cysteine-rich domain (disintegrin-like/cysteine-rich and cysteine-rich proteins) but not the disintegrin-like protein were able to significantly increase leukocyte rolling in the microcirculation. Peptides from the HVR also promoted leukocyte rolling and this activity was inhibited by anti-alphaM/beta2 antibodies. These results show, for the first time, that the cysteine-rich domain and its HVR play a role in triggering pro-inflammatory effects mediated by integrins.  相似文献   

8.
We have determined the sequence of a partial cDNA clone encoding the C-terminal region of bovine cartilage aggregating proteoglycan core protein. The deduced amino acid sequence contains a cysteine-rich region which is homologous with chicken hepatic lectin. This lectin-homologous region has previously been identified in rat and chicken cartilage proteoglycan. The bovine sequence presented here is highly homologous with the rat and chicken amino acid sequences in this apparently globular region. A region containing clusters of Ser-Gly sequences is located N-terminal to the lectin homology domain. These Ser-Gly-rich segments are arranged in tandemly repeated, approx. 100-residue-long, homology domains. Each homology domain consists of an approx. 75-residue-long Ser-Gly-rich region separated by an approx. 25-residue-long segment lacking Ser-Gly dipeptides. These dipeptides are arranged in 10-residue-long segments in the 100-residue-long homology domains. The shorter homologous segments are tandemly repeated some six times in each 100-residue-long homology domain. Serine residues in these repeats are potential attachment sites for chondroitin sulphate chains.  相似文献   

9.
In order to sequence the cysteine-rich regions of pig gastric mucin (PGM), we used our previously identified pig gastric mucin clone PGM-2A to screen a pig stomach cDNA library and perform rapid amplification of cDNA ends to obtain two cysteine-rich clones, PGM-2X and PGM-Z13. PGM-2X has 1071 base pairs (bp) encoding 357 amino acids containing five serine-threonine-rich 16 amino acid tandem repeats, downstream from a cysteine-rich region similar to human and mouse MUC5AC. PGM-Z13 encodes the complete 3'-terminus of PGM and is composed of 3336 bp with a 2964 bp open reading frame encoding 988 amino acids with four serine-threonine-rich tandem repeats upstream from a cysteine-rich region similar to the carboxyl terminal regions of human and rat MUC5AC and human MUC5B. This region is homologous to von Willebrand factor C and D domains involved in acid induced polymerization, and to the carboxyl terminal cystine-knot domain of various mucins, TGF-beta, vWF and norrin, which is involved in dimerization. These newly sequenced cysteine-rich regions of pig gastric mucin may be critical for its gelation and for its observed increased viscosity induced by low pH.  相似文献   

10.
Insect cuticle is composed mainly of chitin, a polymer of N-acetylglucosamine, and chitin-binding cuticle proteins. Four major cuticle proteins, BMCP30, 22, 18, and 17, have been previously identified and purified from the larval cuticle of silkworm, B. mori. We analyzed the chitin-binding activity of BMCP30 by use of chitin-affinity chromatography. The pH optimum for the binding of BMCP30 to chitin is 6.4, which corresponds to hemolymph pH. Competition experiments using chitooligosaccharides suggested that BMCP30 recognizes 4-6 mer of N-acetylglucosamine in chitin fiber as a unit for binding. The comparison of the binding properties of BMCP30 with those of BMCP18 showed that their binding activities to chitin are similar in a standard buffer but that BMCP30 binds to chitin more stably than BMCP18 in the presence of urea. BMCPs possess the RR-1 form of the R&R consensus, about 70 amino acids region conserved widely among cuticle proteins mainly from the soft cuticle of many insect and arthropod species. Analysis of the binding activity using deletion mutants of BMCPs revealed that this type of conserved region also functions as the chitin-binding domain, similarly to the RR-2 region previously shown to confer chitin binding. Thus, the extended R&R consensus is the general chitin-binding domain of cuticle proteins in Arthropoda.  相似文献   

11.
Cytoplasmic type I DnaJ/Hsp40 chaperones contain a Cys-rich domain consisting of four CXXCXG motifs that are in a reduced state and coordinate zinc, stabilizing the intervening sequence in a loop structure. However, the Cys-rich region of the endoplasmic reticulum localized HEDJ (ERdj3/ERj3p), is considerably different in sequence and arrangement. Unlike the typical type I molecule, the HEDJ CXC, and CXXC motifs were demonstrated in this study to be predominantly oxidized in intramolecular disulfide bonds. In the native state, HEDJ bound to immobilized, denatured thyroglobulin. Unlike its binding partner GRP78, redox conditions affected the interaction of HEDJ with substrate. Substitution of the Cys-rich domain cysteine residues with serine diminished or abolished HEDJ binding in the in vitro assay. These findings suggest that the Cys-rich region of HEDJ and its oxidation state are important in maintaining the substrate interaction domain in a binding-competent conformation.  相似文献   

12.
The KcsA channel is a representative potassium channel that is activated by changes in pH. Previous studies suggested that the region that senses pH is entirely within its transmembrane segments. However, we recently revealed that the cytoplasmic domain also has an important role, because its conformation was observed to change dramatically in response to pH changes. Here, to investigate the effects of the cytoplasmic domain on pH-dependent gating, we made a chimera mutant channel consisting of the cytoplasmic domain of the KcsA channel and the transmembrane region of the MthK channel. The chimera showed a pH dependency similar to that of KcsA, indicating that the cytoplasmic domain can act as a pH sensor. To identify how this region detects pH, we substituted certain cytoplasmic domain amino acids that are normally negatively charged at pH 7 for neutral ones in the KcsA channels. These mutants opened independently of pH, suggesting that electrostatic charges have a major role in the cytoplasmic domain's ability to sense and respond to pH.  相似文献   

13.
Zein is the major storage protein of the endosperm of maize kernels. When this alcohol-soluble protein is subjected to SDS polyacrylamide gel electrophoresis, it is resolved into four fractions of different molecular weight: 10, 14, 20 and 22 kilodaltons (kd). Each fraction is heterogeneous with respect to isoelectric pH. For example, the 20 kd fraction contains at least seven subfractions as revealed by isoelectric focusing in polyacrylamide gels. In this report, we present evidence that the structural genes coding for the 20 kd proteins are clustered on the short arm of chromosome 7, a region that also bears loci regulating endosperm zein biosynthesis [opaque-2 (02) and defective endosperm-B30 (De*-B30)]. The organization of these zein genes suggests that the evolution of at least some of the maize genome has occurred as the result of repeated duplication and divergence of chromosome segments.  相似文献   

14.
Glycogenin is a self-glucosylating protein that initiates glycogen biosynthesis. We recently identified a family of proteins, GNIPs, that interact with glycogenin and stimulate its self-glucosylating activity [J. Biol. Chem. 277 (2002) 19331]. The GNIP gene (also called TRIM7) encodes at least four distinct isoforms of GNIP, three of which (GNIP1, GNIP2, and GNIP3) have in common a COOH-terminal B30.2 domain and predicted coiled-coil regions. Based on Western blot analysis, the GNIP1 protein is widely distributed in tissues. From analysis of a series of deletion mutants of GNIP2 using the yeast two-hybrid system, the B30.2 domain was found to be responsible for the interaction with glycogenin. A truncated form of recombinant GNIP2, lacking the NH2-terminal coiled-coil region, was cross-linked to glycogenin by glutaraldehyde treatment, supporting the idea that the B30.2 domain was sufficient for the interaction. In the course of this study, GNIP2 was also found to interact with itself, via the coiled-coil domain. Heterologous interactions between GNIP1 and GNIP2 were also detected. Since glycogenin is also a dimer, higher order multimeric complexes between glycogenin and GNIPs would be possible.  相似文献   

15.
TOM22 is an essential mitochondrial outer membrane protein required for the import of precursor proteins into the organelles. The amino-terminal 84 amino acids of TOM22 extend into the cytosol and include 19 negatively and 6 positively charged residues. This region of the protein is thought to interact with positively charged presequences on mitochondrial preproteins, presumably via electrostatic interactions. We constructed a series of mutant derivatives of TOM22 in which 2 to 15 of the negatively charged residues in the cytosolic domain were changed to their corresponding amido forms. The mutant constructs were transformed into a sheltered Neurospora crassa heterokaryon bearing a tom22::hygromycin R disruption in one nucleus. All constructs restored viability to the disruption-carrying nucleus and gave rise to homokaryotic strains containing mutant tom22 alleles. Isolated mitochondria from three representative mutant strains, including the mutant carrying 15 neutralized residues (strain 861), imported precursor proteins at efficiencies comparable to those for wild-type organelles. Precursor binding studies with mitochondrial outer membrane vesicles from several of the mutant strains, including strain 861, revealed only slight differences from binding to wild-type vesicles. Deletion mutants lacking portions of the negatively charged region of TOM22 can also restore viability to the disruption-containing nucleus, but mutants lacking the entire region cannot. Taken together, these data suggest that an abundance of negative charges in the cytosolic domain of TOM22 is not essential for the binding or import of mitochondrial precursor proteins; however, other features in the domain are required.  相似文献   

16.
The Mycobacterium tuberculosis protein kinase B (PknB) comprises an intracellular kinase domain, connected through a transmembrane domain to an extracellular region that contains four PASTA domains. The present study describes the comprehensive analysis of different domains of PknB in the context of viability in avirulent and virulent mycobacteria. We find stringent regulation of PknB expression necessary for cell survival, with depletion or overexpression of PknB leading to cell death. Although PknB-mediated kinase activity is essential for cell survival, active kinase lacking the transmembrane or extracellular domain fails to complement conditional mutants not expressing PknB. By creating chimeric kinases, we find that the intracellular kinase domain has unique functions in the virulent strain, which cannot be substituted by other kinases. Interestingly, we find that although the presence of the C-terminal PASTA domain is dispensable in the avirulent M. smegmatis, all four PASTA domains are essential in M. tuberculosis. The differential behavior of PknB vis-à-vis the number of essential PASTA domains and the specificity of kinase domain functions suggest that PknB-mediated growth and signaling events differ in virulent compared with avirulent mycobacteria. Mouse infection studies performed to determine the role of PknB in mediating pathogen survival in the host demonstrate that PknB is not only critical for growth of the pathogen in vitro but is also essential for the survival of the pathogen in the host.  相似文献   

17.
Activation of Raf-1 kinase is preceded by a translocation of Raf-1 to the plasma membrane in response to external stimuli. The membrane localization of Raf-1 is facilitated through its interaction with activated Ras and with membrane phospholipids. Previous evidence suggests that the interaction of Raf-1 with Ras is mediated by two distinct domains within the N-terminal region of Raf-1 comprising amino acid residues 51-131 and residues 139-184, the latter of which codes for a zinc containing cysteine-rich domain. The cysteine-rich domain of Raf-1 is also reported to associate with other proteins, such as 14-3-3, and for selectively binding acidic phospholipids, particularly phosphatidylserine (PS). In the present study, we have investigated the consequences of progressive deletions and point mutations within the cysteine-rich domain of Raf-1 on its ability to bind PS. A reduced interaction with PS was observed in vitro for all deletion mutants of Raf-1 expressed either as full-length proteins or as fragments containing the isolated cysteine-rich domain. In particular, the cluster of basic amino acids R143, K144, and K148 appeared to be critical for interaction with PS, since substitution of all three residues to alanine resulted in a protein that failed to interact with liposomes enriched for PS. Expression of Raf-1 in vivo, containing point mutations in the cysteine-rich domain resulted in a truncated polypeptide that lacked both the Ras and PS binding sites and could no longer translocate to the plasma membrane upon serum stimulation. These results indicate that the basic residues 143, 144 and 148 in the anterior half of Raf-1 cysteine-rich domain play a role in the association with the lipid bilayer and possibly in protein stability, therefore they might contribute to Raf-1 localization and subsequent activation.  相似文献   

18.
19.
Kinetochores are macromolecular machines that drive eukaryotic chromosome segregation by interacting with centromeric DNA and spindle microtubules. While most eukaryotes possess conventional kinetochore proteins, evolutionarily distant kinetoplastid species have unconventional kinetochore proteins, composed of at least 19 proteins (KKT1–19). Polo-like kinase (PLK) is not a structural kinetochore component in either system. Here, we report the identification of an additional kinetochore protein, KKT20, in Trypanosoma brucei. KKT20 has sequence similarity with KKT2 and KKT3 in the Cys-rich region, and all three proteins have weak but significant similarity to the polo box domain (PBD) of PLK. These divergent PBDs of KKT2 and KKT20 are sufficient for kinetochore localization in vivo. We propose that the ancestral PLK acquired a Cys-rich region and then underwent gene duplication events to give rise to three structural kinetochore proteins in kinetoplastids.  相似文献   

20.
This study aimed to improve the thermostability of alkaline α-amylase from Alkalimonas amylolytica through structure-based rational design and systems engineering of its catalytic domain. Separate engineering strategies were used to increase alkaline α-amylase thermostability: (1) replace histidine residues with leucine to stabilize the least similar region in domain B, (2) change residues (glycine, proline, and glutamine) to stabilize the highly conserved α-helices in domain A, and (3) decrease the free energy of folding predicted by the PoPMuSiC program to stabilize the overall protein structure. A total of 15 single-site mutants were obtained, and four mutants — H209L, Q226V, N302W, and P477V — showed enhanced thermostability. Combinational mutations were subsequently introduced, and the best mutant was triple mutant H209L/Q226V/P477V. Its half-life at 60 °C was 3.8-fold of that of the wild type and displayed a 3.2 °C increase in melting temperature compared with that of the wild type. Interestingly, other biochemical properties of this mutant also improved: the optimum temperature increased from 50 °C to 55 °C, the optimum pH shifted from 9.5 to 10.0, the stable pH range expanded from 7.0–11.0 to 6.0–12.0, the specific activity increased by 24 %, and the catalytic efficiency (k cat/K m) increased from 1.8×104 to 3.5?×?104 l/(g min). Finally, the mechanisms responsible for the increased thermostability were analyzed through comparative analysis of structure models. The structure-based rational design and systems engineering strategies in this study may also improve the thermostability of other industrial enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号