首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel allergenic member of the family of Ca(2+)-binding proteins has been cloned from olive tree pollen. The isolated DNA codes for a protein of 171 amino acid residues, which displays four EF-hand sequence motifs. The encoded protein was overproduced in Escherichia coli and purified. The protein (18? omitted?795 Da), which binds Ca(2+) and IgE antibodies from patients allergic to olive pollen, undergoes Ca(2+)-dependent conformational changes. It is retained on a phenyl-Sepharose column, which indicates the existence of regulatory EF-hand domains. This fact suggests its involvement in Ca(2+)-dependent signal transduction events of the pollen grain. This allergen could be considered as a member of a new subfamily of EF-hand Ca(2+)-binding proteins since it displays a low amino acid sequence similarity with the so far known proteins.  相似文献   

2.
Calbindin-D28K is a 1 alpha,25-dihydroxyvitamin D3-dependent protein that belongs to the superfamily of high affinity calcium-binding proteins which includes parvalbumin, calmodulin, and troponin C. All of these proteins bind Ca2+ ligands by an alpha-helix-loop-alpha-helix domain that is termed an EF-hand. Calbindin-D28K has been reported previously to have four high affinity Ca2(+)-binding sites (KD less than 10(-7)) as quantitated by equilibrium dialysis. With the determination of the amino acid sequence, it was clear that there are in fact six apparent EF-hand domains, although the Ca2(+)-binding functionality of the two additional domains was unclear. It was of interest to quantitate the Ca2(+)-binding ability of chick intestinal calbindin-D28K utilizing several different Ca2+ titration methods that cover a range of macroscopic binding constants for weak or strong Ca2+ sites. Titrations with the Ca2+ chelator dibromo-1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (5,5'-Br2BAPTA), a Ca2+ selective electrode, and as followed by 1H NMR, which measure KD values of 10(-6)-10(-8) M, 10(-4)-10(-7) and 10(-3)-10(-5) M, respectively, gave no evidence for the presence of weak Ca2(+)-binding sites. However, Ca2+ titration of the fluorescent Ca2+ chelator Quin 2 in the presence of calbindin-D28K yielded a least squares fit optimal for 5.7 +/- 0.8 Ca2(+)-binding sites with macroscopic dissociation constants around 10(-8) M. The binding of Ca2+ by calbindin was found to be cooperative with at least two of the sites exhibiting positive cooperativity.  相似文献   

3.
P26olf from olfactory tissue of frog, which may be involved in olfactory transduction or adaptation, is a Ca2+-binding protein with 217 amino acids. The p26olf molecule contains two homologous parts consisting of the N-terminal half with amino acids 1-109 and the C-terminal half with amino acids 110-217. Each half resembles S100 protein with about 100 amino acids and contains two helix-loop-helix Ca2+-binding structural motifs known as EF-hands: a normal EF-hand at the C-terminus and a pseudo EF-hand at the N-terminus. Multiple alignment of the two S100-like domains of p26olf with 18 S100 proteins indicated that the C-terminal putative EF-hand of each domain contains a four-residue insertion when compared with the typical EF-hand motifs in the S100 protein, while the N-terminal EF-hand is homologous to its pseudo EF-hand. We constructed a three-dimensional model of the p26olf molecule based on results of the multiple alignment and NMR structures of dimeric S100B(betabeta) in the Ca2+-free state. The predicted structure of the p26olf single polypeptide chain satisfactorily adopts a folding pattern remarkably similar to dimeric S100B(betabeta). Each domain of p26olf consists of a unicornate-type four-helix bundle and they interact with each other in an antiparallel manner forming an X-type four-helix bundle between the two domains. The two S100-like domains of p26olf are linked by a loop with no steric hindrance, suggesting that this loop might play an important role in the function of p26olf. The circular dichroism spectral data support the predicted structure of p26olf and indicate that Ca2+-dependent conformational changes occur. Since the C-terminal putative EF-hand of each domain fully keeps the helix-loop-helix motif having a longer Ca2+-binding loop, regardless of the four-residue insertion, we propose that it is a new, novel EF-hand, although it is unclear whether this EF-hand binds Ca2+. P26olf is a new member of the S100 protein family.  相似文献   

4.
Amino acid sequence of the calcium-dependent photoprotein aequorin   总被引:13,自引:0,他引:13  
The Ca(II)-dependent photoprotein aequorin produces the luminescence of the marine coelenterate Aequorea victoria. The complete amino acid sequence of aequorin has been determined. A complete set of nonoverlapping peptides was produced by cyanogen bromide cleavage. These peptides were aligned by using the amino-terminal sequence of the intact protein and the sequences of selected arginyl and lysyl cleavage products. Although the aequorin preparations employed in these studies were homogeneous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the presence of a minimum of 3 isotypes was demonstrated by the location of 17 sites of sequence microheterogeneity. Two amino acid variants were observed at each of 16 positions while 1 position had 3 different replacements. The protein as isolated has 189 amino acids with an unblocked amino terminus. According to the sequence reported here, the molecular weight of the apoprotein is 21 459 while that of the holoprotein is 21 914. The molecule possesses three internally homologous domains which were judged to be EF-hand Ca(II) binding domains by several different criteria. Aequorin is homologous to troponin C and to calmodulin. These findings demonstrate that aequorin is a member of the Ca(II) binding protein superfamily.  相似文献   

5.
The isotypes of sarcoplasmic Ca2+ binding protein (SCP) were purified from shrimp tail muscle. SCP exists in a dimeric form. One sample of shrimp contained only alpha A chain, whereas another contained alpha B and beta chains, and a heterodimer of alpha B beta which was not analyzed precisely. The amino acid sequences of the two alpha chains were determined. The two alpha chains are composed of 190 and 192 amino acid residues, respectively. The sequences of the two alpha chains differed in only four amino acids out of 192 residues. The sequences indicate that the alpha chain has three Ca2+-binding sites which are common to EF-hand type Ca2+-binding protein. In the absence of added Ca2+ and Mg2+, the amounts of bound Ca2+ in alpha A, alpha B, and beta chains were 3.0, 3.3, and 2.4 mol/22,000 g protein, respectively. Thus, it is suggested that all three isotypes of shrimp SCP have three Ca2+-binding sites which have high affinity to Ca2+. The sequence homology of shrimp SCP with other EF-hand type Ca2+-binding proteins is very low. The protein having the greatest homology with this SCP was cod parvalbumin; the sequence homology is 18%.  相似文献   

6.
The superfamily of EF-hand proteins is comprised of a large and diverse group of proteins that contain one or more characteristic EF-hand calcium-binding domains. This study describes and characterizes a novel EF-hand cDNA, CnidEF, from the sea anemone Anthopleura elegantissima (Phylum Cnidaria, Class Anthozoa). CnidEF was found to contain two EF-hand motifs near the C-terminus of the deduced amino acid sequence and two regions near the N-terminus that could represent degenerate EF-hand motifs. CnidEF homologues were also identified from two other sea anemone species. A combination of bioinformatic and molecular phylogenetic analyses was used to compare CnidEF to EF-hand proteins in other organisms. The closest homologues identified from these analyses were a luciferin binding protein (LBP) involved in the bioluminescence of the anthozoan Renilla reniformis, and a sarcoplasmic calcium-binding protein (SARC) involved in fluorescence of the annelid worm Nereis diversicolor. Predicted structure and folding analysis revealed a close association with bioluminescent aequorin (AEQ) proteins from the hydrozoan cnidarian Aequorea aequorea. Neighbor-joining analyses grouped CnidEF within the SARC lineage along with AEQ and other cnidarian bioluminescent proteins rather than in the lineage containing calmodulin (CAM) and troponin-C (TNC).  相似文献   

7.
Calcium (Ca2+) signaling-dependent systems, such as the epidermal differentiation process, must effectively respond to variations in Ca2+ concentration. Members of the Ca2+-binding proteins play a central function in the transduction of Ca2+ signals, exerting their roles through a Ca2+-dependent interaction with their target proteins, spatially and temporally. By performing a suppression subtractive hybridization screen we identified a novel mouse gene, Scarf (skin calmodulin-related factor), which has homology to calmodulin (CaM)-like Ca2+-binding protein genes and is exclusively expressed in differentiating keratinocytes in the epidermis. The Scarf open reading frame encodes a 148-amino acid protein that contains four conserved EF-hand motifs (predicted to be Ca2+-binding domains) and has homology to mouse CaM, human CaM-like protein, hClp, and human CaM-like skin protein, hClsp. The functionality of Scarf EF-hand domains was assayed with a radioactive Ca2+-binding method. By Southern blot and computational genome sequence analysis, a highly related gene, Scarf2, was found 15 kb downstream of Scarf on mouse chromosome 13. The functional Scarf Ca2+-binding domains suggest a role in the regulation of epidermal differentiation through the control of Ca2+-mediated signaling.  相似文献   

8.
Neurocalcin (molecular weight 23,000 and 24,000) is a newly identified Ca2+ binding protein with three EF-hand domains and has a strong amino acid sequence homology with visinin and recoverin (Terasawa, M., Nakano, A., Kobayashi, R., and Hidaka, H. J. Biol. Chem. In press). We produced antibody against neurocalcin. Immunoblotting showed the presence of neurocalcin in bovine retina as well as brain, suggesting that neurocalcin was a neuron specific Ca2+ binding protein. Immunohistochemistry revealed the expression of neurocalcin in retinal amacrine cells and ganglion cells but not in the photoreceptor layer. This distribution of neurocalcin was quite different from that of visinin and recoverin. Our results suggest that neurocalcin may play an important role in a Ca2+ signal pathway of the nervous system.  相似文献   

9.
A 40-kDa sexual stage radiolabeled surface protein of Plasmodium falciparum, Pfs40, was previously identified as a potential target antigen of transmission blocking immunity by an immunogenetic approach. Synthetic oligonucleotide "guessmers," based on microsequenced tryptic peptides of Pfs40 purified by two-dimensional gel electrophoresis, were used to clone the full length cDNA and genomic DNA encoding Pfs40. The deduced amino acid sequence predicted an integral membrane protein containing five EF-hand calcium-binding domains. The biological activity of one or more of these domains was confirmed by binding of 45Ca to both native and recombinant Pfs40. Antisera to recombinant Pfs40 immunoprecipitated the native radiolabeled 40-kDa surface protein. The predicted noncytosolic membrane-associated localization of Pfs40 is unique within the EF-hand calcium-binding protein superfamily.  相似文献   

10.
Stathopulos PB  Zheng L  Li GY  Plevin MJ  Ikura M 《Cell》2008,135(1):110-122
Stromal interaction molecule-1 (STIM1) activates store-operated Ca2+ entry (SOCE) in response to diminished luminal Ca2+ levels. Here, we present the atomic structure of the Ca2+-sensing region of STIM1 consisting of the EF-hand and sterile alpha motif (SAM) domains (EF-SAM). The canonical EF-hand is paired with a previously unidentified EF-hand. Together, the EF-hand pair mediates mutually indispensable hydrophobic interactions between the EF-hand and SAM domains. Structurally critical mutations in the canonical EF-hand, "hidden" EF-hand, or SAM domain disrupt Ca2+ sensitivity in oligomerization via destabilization of the entire EF-SAM entity. In mammalian cells, EF-SAM destabilization mutations within full-length STIM1 induce punctae formation and activate SOCE independent of luminal Ca2+. We provide atomic resolution insight into the molecular basis for STIM1-mediated SOCE initiation and show that the folded/unfolded state of the Ca2+-sensing region of STIM is crucial to SOCE regulation.  相似文献   

11.
C-terminal half of human centrin 2 behaves like a regulatory EF-hand domain   总被引:4,自引:0,他引:4  
Human centrin 2 (HsCen2) is an EF-hand protein that plays a critical role in the centrosome duplication and separation during cell division. We studied the structural and Ca(2+)-binding properties of two C-terminal fragments of this protein: SC-HsCen2 (T94-Y172), covering two EF-hands, and LC-HsCen2 (M84-Y172), having 10 additional residues. Both fragments are highly disordered in the apo state but become better structured (although not conformationally homogeneous) in the presence of Ca(2+) and depending on the nature of the cations (K(+) or Na(+)) in the buffer. Only the longer C-terminal domain, in the Ca(2+)-saturated state and in the presence of Na(+) ions, was amenable to structure determination by nuclear magnetic resonance. The solution structure of LC-HsCen2 reveals an open two EF-hand structure, similar to the conformation of related Ca(2+)-saturated regulatory domains. Unexpectedly, the N-terminal helix segment (F86-T94) lies over the exposed hydrophobic cavity. This unusual intramolecular interaction increases considerably the Ca(2+) affinity and constitutes a useful model for the target binding.  相似文献   

12.
We have sequenced a cDNA, isolated from a chick embryo fibroblast lambda gt11 library, that encodes all 887 amino acids of alpha-actinin. Sequence from 10 different peptides from chick smooth muscle alpha-actinin was found to match that derived from the cDNA. The deduced protein sequence can be divided into three distinct domains: (a) the N-terminal 240 amino acid contains a highly conserved region (compared with Dictyostelium alpha-actinin) which probably represents the actin-binding domain, (b) amino acids 270-740 contain four repeats of a spectrin-like sequence, and (c) the C-terminal sequence contains two EF-hand Ca2+-binding sites. Each of these sites is defective in at least one oxygen-containing Ca2+-chelating amino acid side chain, suggesting that they are nonfunctional. Southern blots suggest that the alpha-actinin cDNA described here hybridizes to only one gene in chicken. Northern blots reveal only one size class of mRNA in fibroblasts and smooth muscle, but no hybridizing species could be detected in skeletal muscle poly(A+) RNA. The results are consistent with the view that smooth and skeletal muscle alpha-actinins are encoded by separate genes, which are considerably divergent.  相似文献   

13.
A site-directed mutagenesis study of yeast calmodulin   总被引:2,自引:0,他引:2  
A site-directed mutagenesis study was carried out in order to understand the regulatory mechanism of calmodulin. We started from the yeast (Saccharomyces cerevisiae) calmodulin gene since it has many differences in amino acid sequence and inferior functional properties compared with the vertebrate calmodulin. Recombinant yeast calmodulins were generated in Escherichia coli transformed by constructed expression plasmids. Three recombinant calmodulins were obtained. The first two were YCM61G, in which the Ca2(+)-binding site 2 (the four Ca2(+)-binding EF-hand structures in calmodulin were numbered from the N-terminus) was converted to the same as that in vertebrate calmodulin, and YCM delta 132-148, in which the C-terminal half sequence of site 4 was deleted. These two recombinant calmodulins had the same maximum Ca2+ binding (3 mol/mol) as yeast calmodulin, which indicates that site 4 of yeast calmodulin was the one losing Ca2+ binding capacity. YCM delta 132-148 could not activate target enzymes, whereas its Ca2+ binding profile was similar to those of yeast calmodulin and YCM61G. Therefore, the structure in site 4 which cannot bind Ca2+ is indispensable for the regulatory function of yeast calmodulin. The complete regulatory function of vertebrate calmodulin can be attained by the combination of 4 Ca2+ binding structures. The negative charge cluster in the central alpha-helix region is suggested to stabilize the active conformation of calmodulin, since the third yeast calmodulin mutant, YCM83E, which had the negative charge cluster, increased the maximum activation of myosin light chain kinase.  相似文献   

14.
Mts1 is a member of the S100 family of Ca2+-binding proteins and is implicated in promoting tumor progression and metastasis. To better understand the structure-function relationships of this protein and to begin characterizing its Ca2+-dependent interaction with protein binding targets, the three-dimensional structure of mts1 was determined in the apo state by NMR spectroscopy. As with other S100 protein family members, mts1 is a symmetric homodimer held together by noncovalent interactions between two helices from each subunit (helices 1, 4, 1', and 4') to form an X-type four-helix bundle. Each subunit of mts1 has two EF-hand Ca2+-binding domains: a pseudo-EF-hand (or S100-hand) and a typical EF-hand that are brought into proximity by a small two-stranded antiparallel beta-sheet. The S100-hand is formed by helices 1 and 2, and is similar in conformation to other members of the S100 family. In the typical EF-hand, the position of helix 3 is similar to that of another member of the S100 protein family, calcyclin (S100A6), and less like that of other S100 family members for which three-dimensional structures are available in the calcium-free state (e.g., S100B and S100A1). The differences in the position of helix 3 in the apo state of these four S100 proteins are likely due to variations in the amino acid sequence in the C-terminus of helix 4 and in loop 2 (the hinge region) and could potentially be used to subclassify the S100 protein family.  相似文献   

15.
The three-dimensional structure of a sarcoplasmic Ca2(+)-binding protein from the sandworm Nereis diversicolor has been determined at 3.0 A resolution using multiple isomorphous replacement techniques. The NH2-terminal half of the molecule contains one variant Ca2(+)-binding domain with a novel helix-loop-helix conformation and one Ca2(+)-binding domain that is no longer functional because of amino acid changes. The overall conformation of this pair of domains is different from any previously described Ca2(+)-binding protein. The COOH-terminal half of the protein contains two Ca2(+)-binding domains with the usual helix-loop-helix configuration and is similar to calmodulin and troponin C. Unlike calmodulin or troponin C, there is no exposed alpha-helix connecting the two halves of the molecule, so the overall structure is much more compact.  相似文献   

16.
17.
Calcyclin is a homodimeric protein belonging to the S100 subfamily of EF-hand Ca(2+)-binding proteins, which function in Ca(2+) signal transduction processes. A refined high-resolution solution structure of Ca(2+)-bound rabbit calcyclin has been determined by heteronuclear solution NMR. In order to understand the Ca(2+)-induced structural changes in S100 proteins, in-depth comparative structural analyses were used to compare the apo and Ca(2+)-bound states of calcyclin, the closely related S100B, and the prototypical Ca(2+)-sensor protein calmodulin. Upon Ca(2+) binding, the position and orientation of helix III in the second EF-hand is altered, whereas the rest of the protein, including the dimer interface, remains virtually unchanged. This Ca(2+)-induced structural change is much less drastic than the "opening" of the globular EF-hand domains that occurs in classical Ca(2+) sensors, such as calmodulin. Using homology models of calcyclin based on S100B, a binding site in calcyclin has been proposed for the N-terminal domain of annexin XI and the C-terminal domain of the neuronal calcyclin-binding protein. The structural basis for the specificity of S100 proteins is discussed in terms of the variation in sequence of critical contact residues in the common S100 target-binding site.  相似文献   

18.
The crystal structure of a sarcoplasmic Ca(2+)-binding protein (SCP) from the sandworm Nereis diversicolor has been determined and refined at 2.0 A resolution using restrained least-squares techniques. The two molecules in the crystallographic asymmetric unit, which are related by a non-crystallographic 2-fold axis, were refined independently. The refined model includes all 174 residues and three calcium ions for each molecule, as well as 213 water molecules. The root-mean-square difference in co-ordinates for backbone atoms and calcium ions of the two molecules is 0.51 A. The final crystallographic R-factor, based on 18,959 reflections in the range 2.0 A less than or equal to d less than or equal to 7.0 A, with intensities exceeding 2.0 sigma, is 0.182. Bond lengths and bond angles in the molecules have root-mean-square deviations from ideal values of 0.013 A and 2.2 degrees, respectively. SCP has four distinct domains with the typical helix-loop-helix (EF-hand) Ca(2+)-binding motif, although the second Ca(2+)-binding domain is not functional due to amino acid changes in the loop. The structure shows several unique features compared to other Ca(2+)-binding proteins with four EF-hand domains. The overall structure is highly compact and globular with a predominant hydrophobic core, unlike the extended dumbbell-shaped structure of calmodulin or troponin C. A hydrophobic tail at the COOH terminus adds to the structural stability by packing against a hydrophobic pocket created by the folding of the NH2 and COOH-terminal Ca(2+)-binding domain pairs. The first and second domains show different helix-packing arrangements from any previously described for Ca(2+)-binding proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号