首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Interactions between male stag beetles usually involve aggressive behavior using their long mandibles as weapons to compete with rival males over females. Considerable variation exists within populations in male body size, and may affect their behavior and the outcome of male-male contests. We investigated the aggressive interactions between male Aegus chelifer chelifer, a small tropical stag beetle species. Morphological traits in relation to aggressiveness and the outcome of fights were examined in laboratory-reared beetles. The fight-engagement ratios of major and minor morph males were not significantly different and analyses revealed that the size of body parts had more effect on the fighting success than the weapon part (mandibles). The probability of winning a contest was higher in males with a larger head width (HW), and so HW was considered as the resource holding potential (RHP). No effects of the trait size on the initiation of fights or aggressive intensity was found. Relationships between the fight duration and RHP were not significantly consistent with any assessment strategies, but were close to the mutual assessment model.  相似文献   

2.
Reproductive characteristics of a landlocked goby, Rhinogobius sp. (the orange form), in the Lake Biwa water system were compared between the fluvial-lacustrine and lacustrine populations to show the relationship of the egg size to the risk of larval starvation. The comparison of both oocytes in the ovaries and spawned eggs showed that egg size is larger in the fluvial-lacustrine population than in the lacustrine population. Although females of the two populations spawn eggs of the same number as a function of their body size, those of the fluvial-lacustrine population spawn larger eggs even in relation to their body size by investing more in reproduction than those of the lacustrine population. A positive correlation was experimentally shown between the egg size and larval starvation tolerance. Most larvae of the fluvial-lacustrine population (>2 days old) had exhausted their yolk during their larval drift downstream to the lake, indicating that larvae severely suffer from starvation. Egg-size variation between the two populations seemed to be the result of adaptation to the different life cycles, in which the fluvial-lacustrine population confronts the risk of larval starvation, whereas the lacustrine population seems safe from such risk of starvation.  相似文献   

3.
Body size is a multi‐functional trait related to various fitness components, but the relative importance of different selection pressures is seldom resolved. In Carabus japonicus beetles, of which the larvae exclusively prey on earthworms, adult body size is related to the presence/absence of a larger congener and habitat temperature. In sympatry, C. japonicus consistently exhibits smaller body size which is effective for avoiding interspecific mating, but in allopatry, it shows size variation unrelated to temperature. Here, we show that this predator–size variation is attributed to prey–size variation, associated with high phylogenetic diversity in earthworm communities. In allopatry, the predator size was larger where larger prey occurred. Larger adult size may have been selected because larger females produce larger larvae, which can subdue larger prey. Thus, in the absence of a larger congener, variation in prey body size had a pronounced effect on geographic body size divergence in C. japonicus.  相似文献   

4.
Supplementation of wild populations with captive-bred organisms is a common practice for conservation of threatened wild populations. Yet it is largely unknown whether such programmes actually help population size recovery. While a negative genetic effect of captive breeding that decreases fitness of captive-bred organisms has been detected, there is no direct evidence for a carry-over effect of captive breeding in their wild-born descendants, which would drag down the fitness of the wild population in subsequent generations. In this study, we use genetic parentage assignments to reconstruct a pedigree and estimate reproductive fitness of the wild-born descendants of captive-bred parents in a supplemented population of steelhead trout (Oncorhynchus mykiss). The estimated fitness varied among years, but overall relative reproductive fitness was only 37 per cent in wild-born fish from two captive-bred parents and 87 per cent in those from one captive-bred and one wild parent (relative to those from two wild parents). Our results suggest a significant carry-over effect of captive breeding, which has negative influence on the size of the wild population in the generation after supplementation. In this population, the population fitness could have been 8 per cent higher if there was no carry-over effect during the study period.  相似文献   

5.
Several characteristics of habitats of herbivores and their food-plant communities, such as plant-species composition and plant quality, influence population genetics of both herbivores and their host plants. We investigated how different ecological and geographic factors affect genetic variation in and differentiation of 23 populations of the oligophagous seed predator Lygaeus equestris (Heteroptera) in southwestern Finland and in eastern Sweden. We tested whether genetic differentiation of the L. equestris populations was related to the similarity of vegetation, and whether there was more within-population genetic variation in habitats with a high number of plant species or in those with a large population of the primary food plant, Vincetoxicum hirundinaria. We also tested whether genetic differentiation of the populations was related to the geographic distance, and whether location of the populations on islands or on mainland, island size, or population size affected within-population genetic variation. Pairwise FST ranged from 0 to 0.1 indicating low to moderate genetic differentiation of populations. Differentiation increased with geographic distance between the populations, but was not related to the similarity of vegetation between the habitats. Genetic variation within the L. equestris populations did not increase with the population size of the primary food plant. However, the more diverse the plant community the higher was the level of genetic variation within the L. equestris population. Furthermore, the level of genetic variation did not vary significantly between island and mainland populations. The effect of the population size on within-population genetic variation was related to island size. Usually small populations are susceptible to loss of genetic variation, but small L. equestris populations on large islands seemed to maintain a relatively high level of within-population genetic variation. Our findings suggest that, in addition to geographic and species-specific ecological factors, the plant community affects population genetic structure of oligophagous herbivores.  相似文献   

6.
In eastern North America, body size of the larval ant lion Myrmeleon immaculatus increases from south to north, following Bergmann's rule. We used a common-garden experiment and a reciprocal-transplant experiment to evaluate the effects of food and temperature on ant lion growth, body size, and survivorship. In the laboratory common-garden experiment, first-instar larvae from two southern (Georgia, South Carolina) and two northern (Connecticut, Rhode Island) populations were reared in incubators under high- and low-food and high- and low-temperature regimes. For all populations, high food increased final body mass and growth rate and decreased development time. Growth rates were higher at low temperatures, but temperature did not affect larval or adult body mass. Survivorship was highest in high-food and low-temperature treatments. Across all food and temperature treatments, northern populations exhibited a larger final body mass, shorter development time, faster growth rate, and greater survivorship than did southern populations. Results were similar for a field reciprocal-transplant experiment of third-instar larvae between populations in Connecticut and Oklahoma: Connecticut larvae grew faster than Oklahoma larvae, regardless of transplant site. Conversely, larvae transplanted to Oklahoma grew faster than larvae transplanted to Connecticut, regardless of population source. These results suggest that variation in food availability, not temperature, may account for differences in growth and body size of northern and southern ant lions. Although northern larvae grew faster and reached a larger body size in both experiments, northern environments should suppress growth because of reduced food availability and a limited growing season. This study provides the first example of countergradient selection causing Bergmann's rule in an ectotherm.  相似文献   

7.
Many marine fish harbor luminous bacteria as bioluminescent symbionts. Despite the diversity, abundance, and ecological importance of these fish and their apparent dependence on luminous bacteria for survival and reproduction, little is known about developmental and microbiological events surrounding the inception of their symbioses. To gain insight on these issues, we examined wild-caught larvae of the leiognathid fish Nuchequula nuchalis, a species that harbors Photobacterium leiognathi as its symbiont, for the presence, developmental state, and microbiological status of the fish's internal, supraesophageal light organ. Nascent light organs were evident in the smallest specimens obtained, flexion larvae of 6.0 to 6.5 mm in notochord length (NL), a developmental stage at which the stomach had not yet differentiated and the nascent gasbladder had not established an interface with the light organ. Light organs of certain of the specimens in this size range apparently lacked bacteria, whereas light organs of other specimens of 6.5 mm in NL and of all larger specimens harbored large populations of bacteria, representatives of which were identified as P. leiognathi. Bacteria identified as Vibrio harveyi were also present in the light organ of one larval specimen. Light organ populations were composed typically of two or three genetically distinct strain types of P. leiognathi, similar to the situation in adult fish, and the same strain type was only rarely found in light organs of different larval, juvenile, or adult specimens. Light organs of larvae carried a smaller proportion of strains merodiploid for the lux-rib operon, 79 of 249 strains, than those of adults (75 of 91 strains). These results indicate that light organs of N. nuchalis flexion and postflexion larvae of 6.0 to 6.7 mm in NL are at an early stage of development and that inception of the symbiosis apparently occurs in flexion larvae of 6.0 to 6.5 mm in NL. Ontogeny of the light organ therefore apparently precedes acquisition of the symbiotic bacteria. Furthermore, bacterial populations in larval light organs near inception of the symbiosis are genetically diverse, like those of adult fish.  相似文献   

8.
Geographic and environmental isolations of islands and the mainland offer excellent opportunity to investigate colonization and survival dynamics of island populations. We inferred and compared evolutionary processes and the demographic history of Rhododendron tsusiophyllum, in the Izu Islands and the much larger island Honshu, treated here as the mainland, using thousands of nuclear SNPs obtained by ddRAD-seq from eight populations of R. tsusiophyllum and three populations of R. tschonoskii as an outgroup. Phylogenetic relationships and their habitats suggest that R. tsusiophyllum had evolved and migrated from cold north to warm south regions. We detected clear genetic divergence among populations in three regions of Honshu and the Izu Islands, suggesting restricted migration between them due to isolated habitats on mountains even in the mainland. The three regions have different changes in effective population size, especially, genetic diversity and population size of the Izu Islands are small compared to the others. Further, habitats of populations in the Izu Islands are warmer than those in Honshu, suggesting that they have undergone adaptive evolution. Our study provides evidences of montane rather than insular isolation on genetic divergence, survival of populations and significance of adaptive evolution for island populations with small population size and low genetic diversity, despite close proximity to mainland populations.Subject terms: Genetic variation, Plant evolution, Conservation biology  相似文献   

9.
1. In burying beetles (Nicrophorinae), body size is known to provide both a fecundity advantage (in females) and successful resource defence (in males and females). Despite this, considerable variation in body sizes is observed in natural populations. 2. A possible explanation for the maintenance of this variation, even with intra‐ and inter‐specific resource competition, is that individuals might assort according to body size on different‐sized breeding resources. 3. We tested prediction that ‘bigger is always better’, in the wild and in the laboratory, by experimentally manipulating combinations of available breeding‐resource size (mouse carcasses) and competitor's body size in Nicrophorus vespilloides (Herbst 1783). 4. In the field, large female beetles deserted small carcasses, without breeding, more often than they did larger carcasses, but small females used carcasses indiscriminately with respect to size. In the laboratory, large beetles reared larger broods (with more offspring) on larger carcasses than small beetles, but on small carcasses small beetles had a reproductive advantage over large ones. Offspring size covaried with carcass size independently of parental body size. 5. The present combined results suggest breeding resource value depends on an individual's body size, and variation in body size is environmentally induced: maintained by differences in available carcass sizes. This produces a mechanism by which individual specialisation leads to an increase in niche variation via body size in these beetles.  相似文献   

10.
Summary Direct observations and analyses of selection occurring in natural populations are rare. The biology of the bruchid beetle,Acanthoscelides alboscutellatus, on its host plant,Ludwigia alternifolia, provides an anusual opportunity to study the process of selection on the morphology of an organism under field conditions.A. alboscutellatus larvae mature within the variably dehiscent fruit ofL. alternifolia. At eclosion, adults are confined within indehiscent fruit but are not confined within dehiscent fruit. Beetles can escape from indehiscent fruit only by forcing their bodies through the fruit's apical pore (a circular opening in the top of the fruit). Thus, during the eclosion stage of this beetle's life cycle the relationship between body size and differential fitness appears to be clearly defined. We examined entrapment ofA. alboscutellatus within indehiscentL. alternifolia fruit in a natural population. Only 8.8% of the beetles that attempted to escape were successful. Smaller beetles were trapped within a narrower range of pore diameters than were larger beetles; and trapped beetles had only limited abilities to enlarge fruit pore diameter. These data suggest (1) that escape from indehiscent fruit is regulated by the relationship between adult body diameter and fruit pore diameter and (2) that adult beetles may experience strong selection for small body diameter (size) within idehiscent fruit.  相似文献   

11.
The geographic distributions of many generalist herbivores differ from those of their host plants, such that they experience coarse-grained spatial variation in natural selection on characters influencing adaptation to host plants. Thus, populations differing in host use are expected to differ in their ability to survive and grow on these host plants. We examine host-associated variation in larval performance (survivorship, development time, and adult body weight) and oviposition preference, within and between two populations ofStator limbatus (Coleoptera: Bruchidae) that differ in the hosts available to them in nature. In one population,Acacia greggii (Fabaceae: Mimosoideae) andCercidium microphyllum (Fabaceae: Caesalpininoideae) are each abundant, while in the second population onlyC. floridum andC. microphyllum are present. In both populations, egg-to-adult survivorship was less than 50% onC. floridum, while survivorship was greater than 90% onA. greggii. Most of the mortality onC. floridum occurred as larvae were burrowing through the seed coat; very low mortality occurred during penetration of the seed coat ofA. greggii. Significant variation was present between populations, and among families (within populations), in survivorship and egg-to-adult development time onC. floridum; beetles restricted toCercidium in nature, without access toC. floridum, survived better and developed faster onC. floridum than beetles that had access toA. greggii. Large host effects on body size were detected for female offspring: females reared onA. greggii were larger than those reared onC. floridum, whereas male offspring wee approximately the same size regardless of rearing host. Trade-offs between performance onC. floridum andC. floridum were not detected in this experiment. Instead, our data indicate that development time and survivorship onC. floridum may be largely independent of development time and survivorship onA. greggii. Patterns of oviposition preference corresponded to the observed patterns of host suitability: in laboratory preference tests, beetles with access toA. greggii in nature tended to prefer this host more than beetles without access to this host in nature.  相似文献   

12.
In most animal species, brood size and body size exhibit some variation within and between populations. This is also true for burying beetles (genus Nicrophorus), a group in which the body size of offspring depends critically on the number of offspring competing for food due to the discrete nature of resource used for larval nutrition (vertebrate carcasses). In one species, brood size and body size are correlated with population density, and appear to be phenotypically plastic. We investigated potential proximate causes of between-population variation in brood size and body size in two species, Nicrophorus vespilloides and Nicrophorus defodiens. Our first experiment supported the notion that brood size is phenotypically plastic, because it was affected by environmental variation in adult nutritional condition. We found that the pre-breeding nutritional status of female N. vespilloides affected the number of eggs they laid, the number of surviving larvae in their broods, and the body size of their offspring. We do not know whether this plasticity is adaptive because greater offspring body size confers an advantage in contests over breeding resources, or whether starved females are constrained to produce smaller clutches because they cannot fully compensate for their poor pre-breeding nutritional status by feeding from the carcass. Our second experiment documents that brood size, specifically the infanticidal brood-size adjustment behavior, has undergone genetic differentiation between two populations of N. defodiens. Even under identical breeding conditions with identical numbers of first-instar larvae, females descended from the two populations produced broods of different size with corresponding differences in offspring body size.  相似文献   

13.
Eco-evolutionary feedback loops, where rapid evolution influences the ecology of an organism and subsequently alters the evolutionary trajectory of the population, are intriguing possibilities, but evidence for or against them is scarce. Timema cristinae stick insects express variation within and among populations in the expression of death-feigning behaviour, but the causes of variation in this species is not known. Here, I test the hypothesis that variation in death feigning across populations stems from an eco-evolutionary feedback loop, whereby gene flow causes poor camouflage, which increases the strength of bird predation, and ultimately drives the evolution of increased death-feigning. By conducting behavioural trials on eight T. cristinae populations that differ in the degree of maladaptive gene flow incurred, I falsify the eco-evolutionary feedback hypothesis for the evolution of death-feigning. Instead, I show that smaller individuals are more likely to feign death than larger individuals. By rearing individuals in the lab, I offer suggestive evidence that the body size effect is explained by the age of wild-caught individuals: younger individuals feign death more than older individuals. These findings add an example to the literature where no eco-evolutionary feedback exists in a system for which other similar feedbacks have been found, and provide evidence that death-feigning behaviour depends on body size.  相似文献   

14.
John W. Rowe 《Oecologia》1994,99(1-2):35-44
Interpopulation variation in egg size, clutch size and clutch mass was studied 3 years in four populations of painted turtles (Chrysemys picta bellii) from western Nebraska. Body size varied among all populations and was larger in two large (56–110 ha), sandhills lake populations than in two populations in smaller habitats (1.5–3.6 ha) of the Platte River floodplain. Reproductive parameters (egg mass, clutch mass, and clutch size) generally increased with maternal body size within populations. Clutch wet and dry mass varied among populations but largely as a function of maternal body size. Clutch size was largest in the sandhills lake populations, both absolutely and relative to maternal body size. Egg mass was smallest in the sandhills lakes and varied annually in one population. Over all populations, an egg sizeclutch size trade-off was detected (a negative correlation between egg mass and clutch size) after statistically removing maternal body size effects. Egg wet mass and clutch size were negatively correlated over all years within the sandhills populations and in some years in three populations. Although egg size varied within populations, egg size and clutch size covaried as expected by optimal offspring size models. Thus, patterns of egg size variation should be interpreted in the context of proximate or adaptive maternal body size and temporal effects. Comparisons among populations suggest that large egg size relative to maternal body size may occur when juvenile growth potential is poor and mean maternal body size is small.  相似文献   

15.
When size‐dependent contests over resources influence reproductive success, the trade‐off between number and size of offspring depends on the frequency of contests. Under these circumstances, clutch size should decrease and offspring size should increase as contests become more frequent. We tested these predictions with the burying beetle Nicrophorus pustulatus through manipulation of rearing densities. Burying beetles reproduce on small vertebrate carcasses, a rare but high quality food source for the larvae. Large beetles are more likely to win contests over carcasses and gain exclusive access to a carcass. The winner of a contest kills eggs and larvae already present on a carcass. As a result of the rarity of carcasses, burying beetles are unlikely to breed more than once. As predicted, brood size of N. pustulatus decreased with increasing rearing density. Despite a negative correlation between brood size and larval mass, larval mass did not increase with increasing rearing density. This may be due to the special biology of N. pustulatus which can use snake eggs for reproduction. Potentially larger supply of resources and generally small population densities of N. pustulatus may weaken selection on body size and thus the correlation between brood size and larval mass. As size‐dependent constraints can limit reproductive phenotypes, we examined whether female size influenced reproductive phenotype. Small females produced larger broods with smaller, but more variable, offspring than large females. Mechanical constraints of egg size seem an unlikely explanation for the differences because burying beetles can compensate for small egg size through parental care. Energetic constraints may impact small females because body mass and brood size of small females decreased with increasing density. Yet, at all density levels small females produced larger, not smaller, broods than large females. The larger and more variable broods of small females seem to be in agreement with a bet‐hedging strategy.  相似文献   

16.
The population structures of Terebratulina septentrionalis (Couthouy) from exposed upper rock surface and semi-cryptic rock wall habitats at 33 m depth in the Gulf of Maine differ. Over a 3-yr period, population densities were consistently higher in rock wall habitats. Although both populations were dominated by juveniles (1–4 mm shell length), size-frequency distributions constructed from upper rock surface and rock wall populations were significantly different, as a result of a greater frequency of large brachiopods (> 20 mm shell length) in rock wall populations. Prominent modes occurred at 14–15 mm shell length in upper surface populations and at 19–20 mm length in rock wall populations. Recruitment was higher in rock wall habitats where ambient light intensities were significantly lower than on upper rock surfaces. Differences in recruitment are either the result of larval selection for shaded rock walls or differential juvenile mortality between habitats. The larvae of Terebratulina settle on a diverse array of substrata. These include bedrock, sandy polychaete tubes and algae in upper surface habitats and bedrock, calcareous polychaete tubes, and ascidians in rock wall habitats. Individuals attached to polychaete tubes and algae in upper surface habitats do not attain large body size (> 13 mm shell length). It is suggested that these differences in population structure reflect the greater intensity of disturbance in upper surface habitats. For example, the cod, Gadus morhua (Linnaeus), ingests brachiopods attached to algae and polychaete tubes in this habitat. Gastropod predation affects brachiopods in upper surface habitats but not in rock wall habitats. Predation by gastropods and asteroids is not size-specific. These results are consistent with the hypothesis that predation contributed to the decline in the abundance and diversity of articulate brachiopods since the Mesozoic, and suggest that the restriction of recent populations to semi-cryptic rock wall and crevice habitats is, in part, controlled by disturbance.  相似文献   

17.
Summary The impact of differences in host plants on individuals and populations of insect herbivores was investigated using the milkweed longhorn beetle, Tetraopes tetrophthalmus (Forster), larvae of which feed parasitically on host rhizomes. One host, Asclepias syriaca L., was larger in stem and rhizome diameter and grew in cooler soil than the other host, A. verticillata L. The major effects on beetles were retarded phenology at the cooler site and reduced size on the smaller host. Reduced size of beetles was correlated with several important individual attributes: reduced length of life, number of ovarioles, egg size, and a reduced probability of mating with large beetles. The population consequences of these characteristics, largely inferred from these observations, were little or no outbreeding in the small population on A. verticillata.  相似文献   

18.

Dam constructions cause fundamental changes in the natural landscape, creating new ecological and evolutionary challenges for aquatic organisms. In some cases, such water impoundments have been related with morphological changes in organisms. Understanding how populations respond to rapid environmental changes imposed by dams is the first step to elucidate the consequences that disturbed habitats may have on species evolution. In this work, we analyzed shape and size variation in Bryconamericus iheringii Boulenger 1887 from the Chasqueiro stream basin, south of Brazil, which was recently dammed. We used linear measurements and geometric morphometrics to identify morphological differences among specimens from the reservoir (lentic habitat) compared to the habitat upstream and downstream of the dam (lotic habitats). We also tested for size- and shape-related sexual dimorphism to determine whether variations observed were the same for both sexes. We found that B. iheringii from the artificial reservoir were distinct in shape and size to those from their natural habitat in the stream. The size variation between environments was the same for both sexes, but the shape variation differed between males and females. Regarding the linear measurements, lotic populations were larger (greater body length, width, pectoral fin base length and caudal peduncle length), probably in response to increased swimming activity. Regarding body shape, we found that both sexes have a more fusiform body in lotic habitats than in the reservoir. In addition, females showed an altered mouth position that was distinct between these environments. This work indicates that the water reservoir seems to be an important factor influencing morphological variation in B. iheringii, a species with sexual shape dimorphism.

  相似文献   

19.
Morphometric variation in Ground Beetle Carabus aeruginosus F.-W. was studied. Beetles were sampled in different habitats in the gradient of disturbance: Kemerovo city, its suburbs and natural biotopes outside the city. We used multidimensional statistics (linear models, PCA and MDS) to show that all environmental factors (anthropogenic press, biotope vegetation) contributed significantly into the beetles body size variation. Various responses of males and females to the environmental factors led to the sexual size dimorphism. The value of the latter was the highest in the meadows and the lowest in urban habitats. Sexual shape dimorphism was recorded in Carabus aeruginosus also.  相似文献   

20.
We compared the general activity and heavy metal resistance of non-specific esterases in two populations of the leaf beetle Chrysomela lapponica from habitats severely contaminated by heavy metals (mostly Ni and Cu) and two populations from unpolluted habitats. Concentrations of Ni and Cu in adult beetles from the most polluted site were 7.7 and 3.6 times higher that in beetles from unpolluted habitats. Larval esterases showed higher activity and lower susceptibility to heavy metals than esterases of adults. Larval esterase activity did not differ between populations from polluted and unpolluted sites, but adult beetles from polluted localities had lower esterase activity than beetles from unpolluted habitats. Both Cu and Ni sulfates in millimolar concentrations in vitro suppressed esterase activity of larvae from unpolluted habitats, but caused no negative effect on esterases of larvae from polluted sites. Similarly, inhibition of adult esterase activity by Ni was stronger in beetles from unpolluted localities than in beetles from polluted localities. This indicates that resistance of non-specific esterases to heavy metals is higher in leaf beetle populations from contaminated environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号