首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Harvest Mouse (Micromys minutus) has a very wide range of distribution in Asia and Europe. However, the phylogenetic relationship of M. minutus is still uncertain. In this study, we determined the complete mitochondrial (mt) genome sequences of M. minutus, and used the complete mitochondrial genome sequences constructed the phylogenetic tree of Muroidea. The size of the genome is 16,232 bp in length and has a base composition of 33.6% A, 29.1% T, 24.8% C, and 12.5% G. The mitogenome structure was similar to that of typical vertebrate and other rodents' mitochondrial genomes, includes 13 protein-coding genes, 2 rRNA genes (12S rRNA and 16S rRNA), 22 tRNA genes, and 1 control region. We suggested a new initiation codon for ND5 (NADH dehydrogenase subunit), which has been never reported in the mitochondrial genome of vertebrate. The ML and BI phylogenetic trees, which based on the combination of the 12 protein-coding genes, supported strongly that the genus Micromys was represent an early offshoot within the Muridae with high support values (BI = 1.00, ML = 100).  相似文献   

2.
This study determined the mitochondrial genome sequence of the stonefly, Kamimuria wangi. In order to investigate the relatedness of stonefly to other members of Neoptera, a phylogenetic analysis was undertaken based on 13 protein-coding genes of mitochondrial genomes in 13 representative insects. The mitochondrial genome of the stonefly is a circular molecule consisting of 16,179 nucleotides and contains the 37 genes typically found in other insects. A 10-bp poly-T stretch was observed in the A+T-rich region of the K. wangi mitochondrial genome. Downstream of the poly-T stretch, two regions were located with potential ability to form stem-loop structures; these were designated stem-loop 1 (positions 15848–15651) and stem-loop 2 (15965–15998). The arrangement of genes and nucleotide composition of the K. wangi mitogenome are similar to those in Pteronarcys princeps, suggesting a conserved genome evolution within the Plecoptera. Phylogenetic analysis using maximum likelihood and Bayesian inference of 13 protein-coding genes supported a novel relationship between the Plecoptera and Ephemeroptera. The results contradict the existence of a monophyletic Plectoptera and Plecoptera as sister taxa to Embiidina, and thus requires further analyses with additional mitogenome sampling at the base of the Neoptera.  相似文献   

3.
The complete mitochondrial genome (mitogenome) of Diaphania pyloalis (Lepidoptera: Pyralididae) was determined to be 15,298 bp and has the typical gene organization of mitogenomes from lepidopteran insects. It consists of 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and an A + T-rich region. The A + T content of this mitogenome is 80.83% and the AT skew is slightly positive. All PCGs are initiated by ATN codons, except for cytochrome c oxidase subunit 1 (cox1) gene which is initiated by CGA. Only the cox2 gene has an incomplete stop codon consisting of just a T. All the tRNA genes display a typical clover-leaf structure of mitochondrial tRNA. The A + T-rich region of the mitogenome is 332 bp in length, including several common features found in lepidopteran mitogenomes. Phylogenetic analysis showed that the D. pyloalis is close to Pyralididae.  相似文献   

4.
The mitochondrial genome (mitogenome) can provide important information for understanding molecular evolution and phylogenetic analyses. The complete mitogenome of Spodoptera frugiperda (Lepidoptera:Noctuidae) was determined to be 15,365 bp in length and has the typical gene order found in Noctuidae mitogenomes, it includes 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and a A+T-rich region. The nucleotide composition was biased toward A+T nucleotides (81.09 %) and the AT skew of this mitogenome was slightly positive (0.004). All PCGs were initiated by ATN codons, except for cytochrome c oxidase subunit 1 (cox1) gene which was initiated by CGA. Eight of the 13 PCGs have the incomplete termination codon, T or TA. All the tRNA genes displayed the typical clover-leaf structure of mitochondrial tRNAs, with the exception of trnS1 (AGN). The A+T-rich region was 328 bp in length and consisted of several features common to the Noctuidae insects. Phylogenetic analysis showed that the S. frugiperda was within the Noctuidae.  相似文献   

5.
We sequenced the complete mitochondrial genome (mitogenome) of Neochauliodes parasparsus. The 15,995-bp mitogenome contained the standard set of 13 protein-coding genes, 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and a putative control region, with a gene arrangement that was identical to that reported for most other megalopteran species. We also predicted the secondary structure of all the RNA genes and analysed the preferred codon usage of the protein-coding genes. The putative 1265-bp control region contained two tandem repeated regions and several microsatellite-like elements. The phylogenetic analysis of available neuropteridan mitogenomes, based on the 13 protein-coding genes, appeared to support the current view of the neuropteridan phylogeny, and among the Neochauliodes spp., N. parasparsus was the most closely related to N. punctatolosus.  相似文献   

6.
《Genomics》2019,111(6):1258-1265
The mitochondrial genome (mitogenome) can provide important information for understanding phylogenetic analysis and molecular evolution. Herein, we amplified the complete mitogenome sequence of Pelteobagrus fulvidraco. The mitogenome was 16,526 bp in length and included 13 protein-coding genes (PCGs), 22 transfer RNA genes, two ribosomal RNA genes and a non-coding control region (D-loop). Both the organization and location of genes in the mitogenome were consistent with those from Siluriformes fishes previously published in GenBank. The phylogenetic relationships based on Bayesian inference (BI) and Maximum likelihood (ML) methods showed that P. fulvidraco has close relationships with Pelteobagrus eupogon and Tachysurus intermedius, suggesting that P. fulvidraco belongs to Tachysurus. This study provides evidence that Tachysurus, Pseudobagrus and Leiocassis do not form monophyly, but that these three genera form a monophyletic group. Our results provide reference for further phylogenetic research of the Bagridae species.  相似文献   

7.
The avian family Picidae, which is nearly global in distribution, contains the piculets (Picumninae and Nesoctitinae), the woodpeckers (Picinae), and the wrynecks (Jynginae). However, the phylogenetic relationships within the Picidae remain obscure for most genera. In the present study, the complete mitochondrial genome of Picumnus innominatus was determined and described, which was the first complete mitogenome reported in the Picumnus. The circular mitogenome of P. innominatus was 17,180 bp in size and consisted of 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNA genes, a control region (CR), and a noncoding region. The gene order and arrangement of the P. innominatus mitogenome were identical to other mitogenomes of the Picidae. Moreover, strikingly large tandem repeats were found in the noncoding region of the P. innominatus mitogenome, which have not yet been covered in other picid species to date. At the family level (Picidae), the highest dN/dS ratio was detected for the ND1 gene (1.38726) among 13 PCGs, indicating that positive selection was powerful for this gene. Bayesian and Maximum Likelihood phylogenetic analyses based on the combination of 12S rRNA and CYTB gene supported strongly that the Picumninae is monophyletic.  相似文献   

8.
The complete mitochondrial genome of Cryptotermes domesticus (Haviland) was sequenced and annotated to study its characteristics and the phylogenetic relationship of C. domesticus to other termite species. The mitogenome of C. domesticus is a circular, close, and double-stranded molecule with a length of 15,655 bp. The sequenced mitogenome contains 37 typical genes, which are highly conserved in gene size, organization, and codon usage. Transfer RNA genes (tRNAs) also have typical secondary structures. All of the 13 protein-coding genes (PCGs) start with an ATN codon, except for nad4, which starts with GTG and terminates with the terminal codon TAA and TAG or the incomplete form T-- (cox2 and nad5). Most tRNAs have a typical cloverleaf structure, except for trnS1, in which this form is replaced by a simple loop and lacks the dihydrouridine (DHU) arm. The nucleotide diversity (Pi) and nonsynonymous (Ka)/synonymous (Ks) mutation rate ratios indicate that nad1, cox1, and cox3 are the most conserved genes, and that cox1 has the lowest rate of evolution. In addition, an 89 bp repeated sequence was found in the A + T-rich region. Phylogenetic analysis was performed using Bayesian inference (BI) and maximum likelihood (ML) methods based on 13 PCGs, and the monophyly of Kalotermitidae was supported.  相似文献   

9.
Phylogenetic relationship within Neuroptera is controversial, particularly for the various hypotheses based on both morphological and molecular evidence. In the present study, we determined the complete mitochondrial genome (mitogenome) of Gatzara jezoensis, which is the second representative of the tribe Dendroleontini. The G. jezoensis mitogenome contained the conserved set of 37 mitochondrial genes and a putative control region, with a conserved gene arrangement which was similar to that of most sequenced neuropteran mitogenomes. All transfer RNAs exhibited the canonical cloverleaf secondary structure, except for trnS(AGN). The control region contained two conserved elements (ploy-T stretch and ATGGTTCAAYAAAATAAYYCYCTC motif) and abundant microsatellite-like elements. The phylogenetic analysis of sequenced neuropteran mitogenomes using the concatenated protein-coding genes (PCGs) and ribosomal genes recovered the monophyly of Myrmeleontidae, which revealed this dataset could generate the more robust phylogeny of Neuroptera than that of 13 PCGs dataset.  相似文献   

10.
The complete mitochondrial genome (mitogenome) of Bombyx mori strain Dazao (Lepidoptera: Bombycidae) was determined to be 15,653 bp, including 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and a A + T-rich region. It has the typical gene organization and order of mitogenomes from lepidopteran insects. The AT skew of this mitogenome was slightly positive and the nucleotide composition was also biased toward A + T nucleotides (81.31%). All PCGs were initiated by ATN codons, except for cytochrome c oxidase subunit 1 (cox1) gene which was initiated by CGA. The cox1 and cox2 genes had incomplete stop codons consisting of just a T. All the tRNA genes displayed a typical clover-leaf structure of mitochondrial tRNA. The A + T-rich region of the mitogenome was 495 bp in length and consisted of several features common to the lepidopteras. Phylogenetic analysis showed that the B. mori Dazao was close to Bombycidae.  相似文献   

11.
The complete sequence of the mitochondrial genome of Podagrion sp. (Hymenoptera: Torymidae) is described. The mitogenome was 15,845 bp in size, and contained typical sets of mitochondrial genes. The base composition of the Podagrion sp. mitogenome was also biased toward A + T bases (81.8%). The mitochondrial genome of Podagrion sp. has a weak AT skew (0.07) and a strong GC skew (?0.26). Podagrion sp. exhibits a novel rearrangement compared with the ancestral order, including six protein-coding genes (nad3, cox3, atp6, atp8, cox2 and cox1), which have inverted to the minor strand from the major strand. The A + T-rich region of Podagrion sp., which is located between trnN and trnI, have five tandem repeats. The apomorphic rearrangements, including the conserved block “cox3-atp6-atp8-cox2-cox1-nad5-nad4-nad4l-nad6-cob” and the special locations of trnV and trnA, were mapped onto the phylogeny of Proctotrupomorpha.  相似文献   

12.
The complete mitochondrial genome (mitogenome) can provide novel insights into understanding the mechanisms underlying mitogenome evolution. In this study, the complete mitogenome of Eriocheir japonica sinensis (Decapoda: Varunidae) was determined to be 16,378 bp, including 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and a D-loop region. The AT skew of the E. j. sinensis mitogenome was slightly negative (−0.016), indicating a higher number of T compared with A nucleotides. The nucleotide composition of the mitogenome was also biased toward A + T nucleotides (71.6%). All PCGs were initiated by ATN codons. Eight of the 13 PCGs harbored the incomplete termination codon by T, or TA. All other tRNA genes displayed a typical clover-leaf structure of mitochondrial tRNA. The D-loop region of the E. j. sinensis mitogenome was 918 bp in length. Based on 13 PCGs, phylogenetic analysis confirmed the placement of E. j. sinensis within the Varunidae.  相似文献   

13.
The mitochondrial genome (mitogenome) has been extensively used for studying phylogenetic relationships at different taxonomic levels. Several molecular analyses have been performed, but the phylogenetic relationships among infraorders in Polyphaga have not been well resolved. In this work, three nearly complete mitogenomes of Coleoptera, Sitophilus oryzae, Oryzaephilus surinamensis and Callosobruchus chinensis, were determined. The O. surinamensis and S. oryzae mitogenomes harbor gene content typical of other Polyphaga mitogenomes, while a gene rearrangement (trnQ) was found in the C. chinensis mitogenome. The mitogenomes of these three Coleoptera species each consist of approximately 13 protein-coding genes, 22 tRNA genes, two rRNA genes and one A + T-rich region. Phylogenetic analysis within Polyphaga was carried out based on mitochondrial data. The phylogenetic results within Polyphaga support the basal position of Cyphon sp., which belonged to Scirtoidea, Elateriformia. Within Cucujiformia, monophyletic Curculionoidea, Chrysomeloidea and Tenebrionoidea were confirmed.  相似文献   

14.
Bombycoidea comprises 10 families and 4723 species, and the phylogenetic relationships among families are still in debate. In this study, we have determined the complete mitochondrial genome (mitogenome) of Brahmaea porphyria. The 15,429-bp mitogenome contains a common set of 37 mitochondrial genes including 13 protein-coding genes, 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and an inferred control region, and shares the conserved gene rearrangement (trnM-trnI-trnQ) in most ditrysian mitogenomes. Moreover, we analysed the secondary structure for all the tRNA genes of B. porphyria and the preference of codon usage in the PCGs of B. porphyria. The putative 373-bp control region (CR) possesses three types of conserved elements, including ATAGA, Ploy-T stretch, and microsatellite-like elements. A phylogenetic analysis among available Bombycoidea mitogenomes using the concatenated 37 mitochondrial genes appears to support the hypothesis of (Sphingidae+Bombycidae)+Saturniidae and the relatively basal phylogenetic position of Brahmaeidae within Bombycoidea.  相似文献   

15.
Using long-polymerase chain reaction (Long-PCR) method, we determined the complete nucleotide sequence of the mitochondrial genome (mitogenome) of Phthonandria atrilineata. The complete mtDNA from P. atrilineata was 15,499 base pairs in length and contained 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The P. atrilineata genes were in the same order and orientation as the completely sequenced mitogenomes of other lepidopteran species. The nucleotide composition of P. atrilineata mitogenome was biased toward A + T nucleotides (81.02%), and the 13 PCGs show different A + T contents that range from 73.25% (cox1) to 92.12% (atp8). Phthonandria had the canonical set of 22 tRNA genes, that fold in the typical cloverleaf structure described for metazoan mt tRNAs, with the unique exception of trnS(AGN). The phylogenetic relationships were reconstructed with the concatenated sequences of the 13 PCGs of the mitochondrial genome, which confirmed that P. atrilineata is most closely related to the superfamily Bombycoidea.  相似文献   

16.
The complete mitochondrial genome (mitogenome) of Bombyx mori strain H9 (Lepidoptera: Bombycidae) is 15,670 base pairs (bp) in length, encoding 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and a control region. The nucleotide composition of the genome is highly A + T biased, accounting for 81.31%, with a slightly positive AT skewness (0.059). The arrangement of 13 PCGs is similar to that of other sequenced lepidopterans. All the PCGs are initiated by ATN codons, except for the cytochrome c oxidase subunit 1 (cox1) gene, which is proposed by the TTAG sequence as observed in other lepidopterans. Unlike the other PCGs, the cox1 and cytochrome c oxidase subunit 2 (cox2) genes have incomplete stop codons consisting of just a T. All tRNAs have typical structures of insect mitochondrial tRNAs, which is different from other sequenced lepidopterans. The structure of A + T-rich region is similar to that of other sequenced lepidopterans, including non-repetitive sequences, the ATAGA binding domain, a 18 bp poly-T stretch and a poly-A element upstream of transfer RNA M (trnM) gene. Phylogenetic analysis shows that the domesticated silkmoth B. mori originated from the Chinese Bombyx mandarina.  相似文献   

17.
Fungi, as eukaryotic organisms, contain two genomes, the mitochondrial genome and the nuclear genome, in their cells. How the two genomes evolve and correlate to each other is debated. Herein, taking the gourmet pine mushroom Tricholoma matsutake as an example, we performed comparative mitogenomic analysis using samples collected from diverse locations and compared the evolution of the two genomes. The T. matsutake mitogenome encodes 49 genes and is rich of repetitive and non-coding DNAs. Six genes were invaded by up to 11 group I introns, with one cox1 intron cox1P372 showing presence/absence dynamics among different samples. Bioinformatic analyses suggested limited or no evidence of mitochondrial heteroplasmy. Interestingly, hundreds of mitochondrial DNA fragments were found in the nuclear genome, with several larger than 500 nt confirmed by PCR assays and read count comparisons, indicating clear evidence of transfer of mitochondrial DNA into the nuclear genome. Nuclear DNA of T. matsutake showed a higher mutation rate than mitochondrial DNA. Furthermore, we found evidence of incongruence between phylogenetic trees derived from mitogenome and nuclear DNA sequences. Together, our results reveal the dynamic genome evolution of the gourmet pine mushroom.  相似文献   

18.
《Genomics》2020,112(6):4577-4584
Mitochondrial genomes (mitogenomes) have been widely used for studies on phylogenetic relationships and molecular evolutionary biology. Here, the complete mitogenome sequence of Spilosoma lubricipedum (Noctuoidea: Erebidae: Arctiinae) was determined (total length 15,375 bp) and phylogenetic analyses S. lubricipedum were inferred from available noctuid sequence data. The mitogenome of S. lubricipedum was found to be highly A + T-biased (81.39%) and exhibited negative AT- and GC-skews. All 13 protein-coding genes (PCGs) were initiated by ATN codons, except for cox1 with CGA. All tRNAs exhibited typical clover-leaf secondary structures, except for trnS1. The gene order of the S. lubricipedum mitogenome was trnM-trnI-trnQ-nad2. The A + T-rich region of S. lubricipedum contained several conservative features common to noctuid insects. Phylogenetic analysis within Noctuoidea was carried out based on mitochondrial data. Results showed that S. lubricipedum belonged to Erebidae and the Noctuoidea insects could be divided into five well-supported families (Notodontidae + (Erebidae + (Nolidae + (Euteliidae + Noctuidae)))).  相似文献   

19.
The complete mitochondrial genome of Cucullaea labiata (Arcoida: Cucullaeidae) was firstly determined in this study in order to better understand the phylogenetic relationship between Cucullaeidae and Arcidae. The C. labiata mitochondrial genome was 25,845 bp in size and contained 12 protein-coding genes, 2 rRNA and 22 tRNA genes. The number and the location of the tRNA genes were different from three Arcidae species (Scapharca broughtonii, Scapharca kagoshimensis and Tegillarca granosa). Gene arrangement also differed dramatically. The length of the non-coding regions was 10,559 bp, in which the largest one (6057 bp) included eight point nine copies of a 659 bp repeat motif. The number of repeated sequences was different in different individuals, similar to the findings from the mitochondrial genome of S. broughtonii and Placopecten magellanicus. One intron was found in cox1 gene both in CL_98 and in CL_99 individuals of C. labiata. The reason why mitochondrial introns are retained so scarcely in bivalve taxa needs further research. Phylogenetic analyses based on 12 concatenated amino acid sequences of protein-coding genes supported Cucullaeidae was the sister group of Arcidae.  相似文献   

20.
The Taiwanese (Formosan) macaque (Macaca cyclopis) is the only nonhuman primate endemic to Taiwan. This primate species is valuable for evolutionary studies and as subjects in medical research. However, only partial fragments of the mitochondrial genome (mitogenome) of this primate species have been sequenced, not mentioning its nuclear genome. We employed next-generation sequencing to generate 2 x 90 bp paired-end reads, followed by reference-assisted de novo assembly with multiple k-mer strategy to characterize the M. cyclopis mitogenome. We compared the assembled mitogenome with that of other macaque species for phylogenetic analysis. Our results show that, the M. cyclopis mitogenome consists of 16,563 nucleotides encoding for 13 protein-coding genes, 2 ribosomal RNAs and 22 transfer RNAs. Phylogenetic analysis indicates that M. cyclopis is most closely related to M. mulatta lasiota (Chinese rhesus macaque), supporting the notion of Asia-continental origin of M. cyclopis proposed in previous studies based on partial mitochondrial sequences. Our work presents a novel approach for assembling a mitogenome that utilizes the capabilities of de novo genome assembly with assistance of a reference genome. The availability of the complete Taiwanese macaque mitogenome will facilitate the study of primate evolution and the characterization of genetic variations for the potential usage of this species as a non-human primate model for medical research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号