首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The global population is predicted to increase from ~7.3 billion to over 9 billion people by 2050. Together with rising economic growth, this is forecast to result in a 50% increase in fuel demand, which will have to be met while reducing carbon dioxide (CO2) emissions by 50–80% to maintain social, political, energy and climate security. This tension between rising fuel demand and the requirement for rapid global decarbonization highlights the need to fast‐track the coordinated development and deployment of efficient cost‐effective renewable technologies for the production of CO2 neutral energy. Currently, only 20% of global energy is provided as electricity, while 80% is provided as fuel. Hydrogen (H2) is the most advanced CO2‐free fuel and provides a ‘common’ energy currency as it can be produced via a range of renewable technologies, including photovoltaic (PV), wind, wave and biological systems such as microalgae, to power the next generation of H2 fuel cells. Microalgae production systems for carbon‐based fuel (oil and ethanol) are now at the demonstration scale. This review focuses on evaluating the potential of microalgal technologies for the commercial production of solar‐driven H2 from water. It summarizes key global technology drivers, the potential and theoretical limits of microalgal H2 production systems, emerging strategies to engineer next‐generation systems and how these fit into an evolving H2 economy.  相似文献   

2.
The use of fossil fuels is now widely accepted as unsustainable due to depleting resources and the accumulation of greenhouse gases in the environment that have already exceeded the “dangerously high” threshold of 450 ppm CO2-e. To achieve environmental and economic sustainability, fuel production processes are required that are not only renewable, but also capable of sequestering atmospheric CO2. Currently, nearly all renewable energy sources (e.g. hydroelectric, solar, wind, tidal, geothermal) target the electricity market, while fuels make up a much larger share of the global energy demand (~66%). Biofuels are therefore rapidly being developed. Second generation microalgal systems have the advantage that they can produce a wide range of feedstocks for the production of biodiesel, bioethanol, biomethane and biohydrogen. Biodiesel is currently produced from oil synthesized by conventional fuel crops that harvest the sun’s energy and store it as chemical energy. This presents a route for renewable and carbon-neutral fuel production. However, current supplies from oil crops and animal fats account for only approximately 0.3% of the current demand for transport fuels. Increasing biofuel production on arable land could have severe consequences for global food supply. In contrast, producing biodiesel from algae is widely regarded as one of the most efficient ways of generating biofuels and also appears to represent the only current renewable source of oil that could meet the global demand for transport fuels. The main advantages of second generation microalgal systems are that they: (1) Have a higher photon conversion efficiency (as evidenced by increased biomass yields per hectare): (2) Can be harvested batch-wise nearly all-year-round, providing a reliable and continuous supply of oil: (3) Can utilize salt and waste water streams, thereby greatly reducing freshwater use: (4) Can couple CO2-neutral fuel production with CO2 sequestration: (5) Produce non-toxic and highly biodegradable biofuels. Current limitations exist mainly in the harvesting process and in the supply of CO2 for high efficiency production. This review provides a brief overview of second generation biodiesel production systems using microalgae.  相似文献   

3.
The industrial park of Herdersbrug (Brugge, Flanders, Belgium) comprises 92 small and medium‐sized enterprises, a waste‐to‐energy incinerator, and a power plant (not included in the study) on its site. To study the carbon dioxide (CO2) neutrality of the park, we made a park‐wide inventory for 2007 of the CO2 emissions due to energy consumption (electricity and fossil fuel) and waste incineration, as well as an inventory of the existing renewable electricity and heat generation. The definition of CO2 neutrality in Flanders only considers CO2 released as a consequence of consumption or generation of electricity, not the CO2 emitted when fossil fuel is consumed for heat generation. To further decrease or avoid CO2 emissions, we project and evaluate measures to increase renewable energy generation. The 21 kilotons (kt) of CO2 emitted due to electricity consumption are more than compensated by the 25 kt of CO2 avoided by generation of renewable electricity. Herdersbrug Industrial Park is thus CO2 neutral, according to the definition of the Flemish government. Only a small fraction (6.6%) of the CO2 emitted as a consequence of fossil fuel consumption (heat generation) and waste incineration is compensated by existing and projected measures for renewable heat generation. Of the total CO2 emission (149 kt) due to energy consumption (electricity + heat generation) and waste incineration on the Herdersbrug Industrial Park in 2007, 70.5% is compensated by existing and projected renewable energy generated in the park. Forty‐seven percent of the yearly avoided CO2 corresponds to renewable energy generated from waste incineration and biomass fermentation.  相似文献   

4.
Energy derived from second generation perennial energy crops is projected to play an increasingly important role in the decarbonization of the energy sector. Such energy crops are expected to deliver net greenhouse gas emissions reductions through fossil fuel displacement and have potential for increasing soil carbon (C) storage. Despite this, few empirical studies have quantified the ecosystem‐level C balance of energy crops and the evidence base to inform energy policy remains limited. Here, the temporal dynamics and magnitude of net ecosystem carbon dioxide (CO2) exchange (NEE) were quantified at a mature short rotation coppice (SRC) willow plantation in Lincolnshire, United Kingdom, under commercial growing conditions. Eddy covariance flux observations of NEE were performed over a four‐year production cycle and combined with biomass yield data to estimate the net ecosystem carbon balance (NECB) of the SRC. The magnitude of annual NEE ranged from ?147 ± 70 to ?502 ± 84 g CO2‐C m?2 year?1 with the magnitude of annual CO2 capture increasing over the production cycle. Defoliation during an unexpected outbreak of willow leaf beetle impacted gross ecosystem production, ecosystem respiration, and net ecosystem exchange during the second growth season. The NECB was ?87 ± 303 g CO2‐C m?2 for the complete production cycle after accounting for C export at harvest (1,183 g C m?2), and was approximately CO2‐C neutral (?21 g CO2‐C m?2 year?1) when annualized. The results of this study are consistent with studies of soil organic C which have shown limited changes following conversion to SRC willow. In the context of global decarbonization, the study indicates that the primary benefit of SRC willow production at the site is through displacement of fossil fuel emissions.  相似文献   

5.
The poorly known fossil record of fur seals and sea lions (Otariidae) does not reflect their current diversity and widespread abundance. This limited fossil record contrasts with the more complete fossil records of other pinnipeds such as walruses (Odobenidae). The oldest known otariids appear 5–6 Ma after the earliest odobenids, and the remarkably derived craniodental morphology of otariids offers few clues to their early evolutionary history and phylogenetic affinities among pinnipeds. We report a new otariid, Eotaria crypta, from the lower middle Miocene ‘Topanga’ Formation (15–17.1 Ma) of southern California, represented by a partial mandible with well-preserved dentition. Eotaria crypta is geochronologically intermediate between ‘enaliarctine’ stem pinnipedimorphs (16.6–27 Ma) and previously described otariid fossils (7.3–12.5 Ma), as well as morphologically intermediate by retaining an M2 and a reduced M1 metaconid cusp and lacking P2–4 metaconid cusps. Eotaria crypta eliminates the otariid ghost lineage and confirms that otariids evolved from an ‘enaliarctine’-like ancestor.  相似文献   

6.
The intimate arbuscular mycorrhiza (AM) association between roots and obligate symbiotic Glomeromycota (‘AM fungi’) ‘feeds’ about 80% of land plants. AM forming fungi supply land plants with inorganic nutrients and have an enormous impact on terrestrial ecosystems. In return, AM fungi obtain up to 20% of the plant-fixed CO2, putatively as monosaccharides. In a recent work we have reported the characterization of the first glomeromycotan monosaccharide transporter, GpMST1, and its gene sequence. We discuss that AM fungi might take up sugars deriving from plant cell-wall material. The GpMST1 sequence delivers valuable data for the isolation of orthologues from other AM fungi and may eventually lead to the understanding of C-flows in the AM.Key Words: arbuscular mycorrhiza, Geosiphon symbiosis, monosaccharide transporter, hexosesThe arbuscular mycorrhiza (AM) as an outstanding terrestrial plant symbiosis directly and indirectly is a driver of most terrestrial ecosystems. It is formed by ∼80% of land plants and by obligate symbiotic fungi of the phylum Glomeromycota.1 The glomeromycotan fungi usually are called ‘arbuscular mycorrhizal (AM) fungi’, or ‘AMF’, and obviously play an enormous ecological (and economical) role. Most land plants and glomeromycotan fungi are ‘joint systems’, forming the intimate AM.2 By this fact, statements like that of the BEG (European Bank of Glomeromycota) committee (1993): “The study of plants without their mycorrhizas is the study of artefacts; the majority of plants, strictly speaking, do not have roots—they have mycorrhizas” were provoked. AM fungi supply the vast majority of land plants with inorganic nutrients, mainly phosphorous, but also nitrogen, trace elements, and water. In return, they obtain up to >20% of the photosynthetically fixed CO2 as carbohydrates from the plants.3 It was calculated that, each year, 5 billion tons of carbon are transferred from plants to fungi (and therefore partly get deposited in the soil) via the AM symbiosis. AM fungi therefore represent a large sink for atmospheric CO2 on our planet and play a role in C-deposition in the soil.  相似文献   

7.
Little is known about the effects of NaCl stress on perennial ryegrass (Lolium perenne L.) photosynthesis and carbohydrate flux. The objective of this study was to understand the carbohydrate metabolism and identify the gene expression affected by salinity stress. Seventy-four days old seedlings of two perennial ryegrass accessions (salt-sensitive ‘PI 538976’ and salt-tolerant ‘Overdrive’) were subjected to three levels of salinity stress for 5 days. Turf quality in all tissues (leaves, stems and roots) of both grass accessions negatively and significantly correlated with GFS (Glu+Fru+Suc) content, except for ‘Overdrive’ stems. Relative growth rate (RGR) in leaves negatively and significantly correlated with GFS content in ‘Overdrive’ (P<0.01) and ‘PI 538976’ (P<0.05) under salt stress. ‘Overdrive’ had higher CO2 assimilation and Fv/Fm than ‘PI 538976’. Intercellular CO2 concentration, however, was higher in ‘PI 538976’ treated with 400 mM NaCl relative to that with 200 mM NaCl. GFS content negatively and significantly correlated with RGR in ‘Overdrive’ and ‘PI 538976’ leaves and in ‘PI 538976’ stems and roots under salt stress. In leaves, carbohydrate allocation negatively and significantly correlated with RGR (r2 = 0.83, P<0.01) and turf quality (r2 = 0.88, P<0.01) in salt-tolerant ‘Overdrive’, however, the opposite trend for salt-sensitive ‘PI 538976’ (r2 = 0.71, P<0.05 for RGR; r2 = 0.62, P>0.05 for turf quality). A greater up-regulation in the expression of SPS, SS, SI, 6-SFT gene was observed in ‘Overdrive’ than ‘PI 538976’. A higher level of SPS and SS expression in leaves was found in ‘PI 538976’ relative to ‘Overdrive’. Accumulation of hexoses in roots, stems and leaves can induce a feedback repression to photosynthesis in salt-stressed perennial ryegrass and the salt tolerance may be changed with the carbohydrate allocation in leaves and stems.  相似文献   

8.

Background

The effects of education and occupation on health have been well documented individually, but little is known about their joint effect, especially their cumulative joint effect on late life health.

Methods

We enrolled 14,292 participants aged 60+ years by multistage sampling across 173 communities in Xiamen, China, in 2013. Heath status was assessed by the ability to perform six basic activities of daily life. Education was classified in four categories: ‘Illiterate’, ‘Primary’, ‘Junior high school’ and ‘Senior high school and beyond’. Main lifetime occupation was also four categorized: ‘Employed’, ‘Farmer’, ‘Jobless’ and ‘Others’. Odds ratios (ORs) were estimated by random-intercept multilevel models regressing health status on education and main lifetime occupation with or without their interactions, adjusting by some covariates.

Results

Totally, 13,880 participants had complete data, of whom 12.5% suffered from disability, and ‘Illiterate’ and ‘Farmer’ took up the greatest proportion (33.01% and 42.72%, respectively). Participants who were higher educated had better health status (ORs = 0.62, 0.46, and 0.44 for the ‘Primary’, ‘Junior high school’, and ‘Senior high school and beyond’, respectively, in comparison with ‘Illiterate’). Those who were long term jobless in early life had poorest heath (ORs = 1.88, 95% CI 1.47 to 2.40). Unexpectedly, for the farmers, the risk of poor health gradually increased in relation to higher education level (ORs = 1.26, 1.28, 1.40 and 2.24, respectively). For the ‘Employed’, similar ORs were obtained for the ‘Junior high school’ and ‘Senior high school and beyond’ educated (both ORs = 1.01). For the ‘Farmer’ and ‘Jobless’, participants who were ‘Illiterate’ and ‘Primary’ educated also showed similar ORs.

Conclusions

Both education and main lifetime occupation were associated with late life health. Higher education was observed to be associated with better health, but such educational advantage was mediated by main lifetime occupation.  相似文献   

9.

Background and Aims

Although ammonium (NH4+) is the preferred form of nitrogen over nitrate (NO3) for rice (Oryza sativa), lateral root (LR) growth in roots is enhanced by partial NO3 nutrition (PNN). The roles of auxin distribution and polar transport in LR formation in response to localized NO3 availability are not known.

Methods

Time-course studies in a split-root experimental system were used to investigate LR development patterns, auxin distribution, polar auxin transport and expression of auxin transporter genes in LR zones in response to localized PNN in ‘Nanguang’ and ‘Elio’ rice cultivars, which show high and low responsiveness to NO3, respectively. Patterns of auxin distribution and the effects of polar auxin transport inhibitors were also examined in DR5::GUS transgenic plants.

Key Results

Initiation of LRs was enhanced by PNN after 7 d cultivation in ‘Nanguang’ but not in ‘Elio’. Auxin concentration in the roots of ‘Nanguang’ increased by approx. 24 % after 5 d cultivation with PNN compared with NH4+ as the sole nitrogen source, but no difference was observed in ‘Elio’. More auxin flux into the LR zone in ‘Nanguang’ roots was observed in response to NO3 compared with NH4+ treatment. A greater number of auxin influx and efflux transporter genes showed increased expression in the LR zone in response to PNN in ‘Nanguang’ than in ‘Elio’.

Conclusions

The results indicate that higher NO3 responsiveness is associated with greater auxin accumulation in the LR zone and is strongly related to a higher rate of LR initiation in the cultivar ‘Nanguang’.  相似文献   

10.

Objective

The aim of this study was to examine the complex relationships among neurocognition, insight and nonadherence in patients with schizophrenia.

Methods

Design: Cross-sectional study. Inclusion criteria: Diagnosis of schizophrenia according to the DSM-IV-TR criteria. Data collection: Neurocognition was assessed using a global approach that addressed memory, attention, and executive functions; insight was analyzed using the multidimensional ‘Scale to assess Unawareness of Mental Disorder;’ and nonadherence was measured using the multidimensional ‘Medication Adherence Rating Scale.’ Analysis: Structural equation modeling (SEM) was applied to examine the non-straightforward relationships among the following latent variables: neurocognition, ‘awareness of positive symptoms’ and ‘negative symptoms’, ‘awareness of mental disorder’ and nonadherence.

Results

One hundred and sixty-nine patients were enrolled. The final testing model showed good fit, with normed χ2 = 1.67, RMSEA = 0.063, CFI = 0.94, and SRMR = 0.092. The SEM revealed significant associations between (1) neurocognition and ‘awareness of symptoms,’ (2) ‘awareness of symptoms’ and ‘awareness of mental disorder’ and (3) ‘awareness of mental disorder’ and nonadherence, mainly in the ‘attitude toward taking medication’ dimension. In contrast, there were no significant links between neurocognition and nonadherence, neurocognition and ‘awareness of mental disorder,’ and ‘awareness of symptoms’ and nonadherence.

Conclusions

Our findings support the hypothesis that neurocognition influences ‘awareness of symptoms,’ which must be integrated into a higher level of insight (i.e., the ‘awareness of mental disorder’) to have an impact on nonadherence. These findings have important implications for the development of effective strategies to enhance medication adherence.  相似文献   

11.

Background

An impaired vascular response in the brain regionally may indicate reduced vascular reserve and vulnerability to ischemic injury. Changing the carbon dioxide (CO2) tension in arterial blood is commonly used as a cerebral vasoactive stimulus to assess the cerebral vascular response, changing cerebral blood flow (CBF) by up to 5–11 percent/mmHg in normal adults. Here we describe two approaches to generating the CO2 challenge using a computer-controlled gas blender to administer: i) a square wave change in CO2 and, ii) a ramp stimulus, consisting of a continuously graded change in CO2 over a range. Responses were assessed regionally by blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI).

Methodology/Principal Findings

We studied 8 patients with known cerebrovascular disease (carotid stenosis or occlusion) and 2 healthy subjects. The square wave stimulus was used to study the dynamics of the vascular response, while the ramp stimulus assessed the steady-state response to CO2. Cerebrovascular reactivity (CVR) maps were registered by color coding and overlaid on the anatomical scans generated with 3 Tesla MRI to assess the corresponding BOLD signal change/mmHg change in CO2, voxel-by-voxel. Using a fractal temporal approach, detrended fluctuation analysis (DFA) maps of the processed raw BOLD signal per voxel over the same CO2 range were generated. Regions of BOLD signal decrease with increased CO2 (coded blue) were seen in all of these high-risk patients, indicating regions of impaired CVR. All patients also demonstrated regions of altered signal structure on DFA maps (Hurst exponents less than 0.5; coded blue) indicative of anti-persistent noise. While ‘blue’ CVR maps remained essentially stable over the time of analysis, ‘blue’ DFA maps improved.

Conclusions/Significance

This combined dual stimulus and dual analysis approach may be complementary in identifying vulnerable brain regions and thus constitute a regional as well as global brain stress test.  相似文献   

12.
Energy supply, climate change, and global food security are among the main chalenges facing humanity in the twenty-first century. Despite global energy demand is continuing to increase, the availability of low cost energy is decreasing. Together with the urgent problem of climate change due to CO2 release from the combustion of fossil fuels, there is a strong requirement of developing the clean and renewable energy system for the hydrogen production. Solar fuel, biofuel, and hydrogen energy production gained unlimited possibility and feasibility due to understanding of the detailed photosynthetic system structures. This special issue contains selected papers on photosynthetic and biomimetic hydrogen production presented at the International Conference “Photosynthesis Research for Sustainability–2016”, that was held in Pushchino (Russia), during June 19–25, 2016, with the sponsorship of the International Society of Photosynthesis Research (ISPR) and of the International Association for Hydrogen Energy (IAHE). This issue is intended to provide recent information on the photosynthetic and biohydrogen production to our readers.  相似文献   

13.
Most species of the modern family Isoëtaceae (Quillworts) some other modern hydrophytes, use a metabolic pathway for carbon fixation that involves uptake of sedimentary carbon and enrichment of CO2 in internal gas spaces as a carbon-concentrating mechanism. This metabolism, which is related to ‘aquatic CAM’, is characterized by morphological, physiological and biochemical adaptations for decreasing photorespirative loss, aerating roots and maintaining high growth rates in anoxic, oligotrophic, stressed environments. Some of the closest relatives of the Isoëtaceae were the ‘arborescent lycopsids’, which were among the dominant taxa in the coal swamps found in lowland ecosystems during the Carboniferous and Permian periods (approx. 300 Ma). Morphological, ecological and geochemical evidence supports the hypothesis that the arborescent lycopsids had an unusual metabolism similar to that of modern Isoëtaceae and processed a biogeochemically significant proportion of organically fixed carbon over a period of about 100 million years in the late Palaeozoic. The temporal coincidence between the dominance of plants with this metabolism and an anomalous global atmosphere (high O2; low CO2) supports the idea that biosphere feedbacks are important in regulating global climatic homeostasis. The potential influence of this metabolism on the global carbon cycle and its specific adaptive function suggest that it should perhaps be considered a fourth major photosynthetic pathway.  相似文献   

14.
We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth’s measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today’s young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of ∼1000 GtC, sometimes associated with 2°C global warming, would spur “slow” feedbacks and eventual warming of 3–4°C with disastrous consequences. Rapid emissions reduction is required to restore Earth’s energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.  相似文献   

15.

Background

Most diabetic foot amputations are caused by ulcers on the skin of the foot i.e. diabetic foot ulcers. Early identification of patients at high risk for diabetic foot ulcers is crucial. The ‘Simplified 60-Second Diabetic Foot Screening Tool’ has been designed to rapidly detect high risk diabetic feet, allowing for timely identification and referral of patients needing treatment. This study aimed to determine the clinical performance and inter-rater reliability of ‘Simplified 60 Second Diabetic Foot Screening Tool’ in order to evaluate its applicability for routine screening.

Methods and Findings

The tool was independently tested by n=12 assessors with n=18 Guyanese patients with diabetes. Inter-rater reliability was assessed by calculating Cronbach’s alpha for each of the assessment items. A minimum value of 0.60 was considered acceptable. Reliability scores of the screening tool assessment items were: ‘monofilament test’ 0.98; ‘active ulcer’ 0.97; ‘previous amputation’ 0.97; ‘previous ulcer’ 0.97; ‘fixed ankle’ 0.91; ‘deformity’ 0.87; ‘callus’ 0.87; ‘absent pulses’ 0.87; ‘fixed toe’ 0.80; ‘blisters’ 0.77; ‘ingrown nail’ 0.72; and ‘fissures’ 0.55. The item ‘stiffness in the toe or ankle’ was removed as it was observed in only 1.3% of patients. The item ‘fissures’ was also removed due to low inter-rater reliability. Clinical performance was assessed via a pilot study utilizing the screening tool on n=1,266 patients in an acute care setting in Georgetown, Guyana. In total, 48% of patients either had existing diabetic foot ulcers or were found to be at high risk for developing ulcers.

Conclusions

Clinicians in low and middle income countries such as Guyana can use the Simplified 60-Second Diabetic Screening Tool to facilitate early detection and appropriate treatment of diabetic foot ulcers. Implementation of this screening tool has the potential to decrease diabetes related disability and mortality.  相似文献   

16.
In vitro acclimatization has been validated as the successful key to harden the plantlets before transplanting to ex vitro conditions. In the present study, we investigated the potential of different sugar types (glucose, fructose, galactose, sucrose) in regulating morphological, physiological and biochemical strategies, survival percentage and growth performance, and rhizome traits of turmeric under iso-osmotic potential. Leaf greenness (SPAD value) in acclimatized plantlets (4% glucose; −1.355 MPa osmotic potential) of ‘ST018’ was retained and greater than in ‘PB009’ by 1.69-fold, leading to maintain high Fv/Fm (maximum quantum yield of PSII), ΦPSII (photon yield of PSII) and Pn (net photosynthetic rate) levels, and retained shoot height, leaf length, leaf width, shoot fresh weight and shoot dry weight after one month upon transplanting to ex vitro conditions. In addition, Pn, Ci (intracellular CO2), gs (stomatal conductance) and E (transpiration rate) in acclimatized plantlets (6% sucrose; −1.355 MPa osmotic potential) of ‘PB009’ were stabilized as physiological adapted strategies, regulating the shoot and root growth and fresh and dry weights of mini-rhizome. Interestingly, the accumulation of total curcuminoids in mini-rhizome derived from 6% sucrose acclimatized plantlets of ‘ST018’ was greater than in ‘PB009’ by 3.76-fold. The study concludes that in vitro acclimation of turmeric ‘PB009’ and ‘ST018’ using 6% sucrose and 4% glucose, respectively, promoted percent survival, physiological adaptations, and overall growth performances under greenhouse conditions.  相似文献   

17.

Background

Emerging infectious diseases continue to pose serious threats to global public health. So far, however, few published study has addressed the need for manpower reallocation needed in hospitals when such a serious contagious outbreak occurs.

Aim

To quantify the demand elasticity of the major surgery types in order to guide future manpower reallocation during contagious outbreaks.

Materials and Methods

Based on a nationwide research database in Taiwan, we extracted the monthly volumes of major surgery types for the period 1998–2003, which covered the SARS period, in order to carry out a time series analysis. The demand elasticity of each surgery type was then estimated by autoregressive integrated moving average (ARIMA) analysis.

Results

During the study period, the surgical volumes of most selected surgery types either increased or remained steady. We categorized these surgery types into low-, moderate- and high-elastic groups according to their demand elasticity. Appendectomy, ‘open reduction of fracture with internal fixation’ and ‘free skin graft’ were in the low demand elasticity group. Transurethral prostatectomy and extracorporeal shockwave lithotripsy (ESWL) were in the high demand elasticity group. The manpower of the departments carrying out the surgeries with low demand elasticity should be maintained during outbreaks. In contrast, departments in charge of surgeries mainly with high demand elasticity, like urology departments, may be in a position to have part of their staff reallocated.

Conclusions

Taking advantage of the demand variation during the SARS period in 2003, we adopted the concept of demand elasticity and used a time series approach to figure out an effective index of demand elasticity for various types of surgery that could be used as a rational reference to carry out manpower reallocation during contagious outbreak situations.  相似文献   

18.
The European black fly Simulium (Simulium) colombaschense (Scopoli), once responsible for as many as 22,000 livestock deaths per year, is chromosomally mapped, permitting its evolutionary relationships and pest drivers to be inferred. The species is 12 fixed inversions removed from the standard sequence of the subgenus Simulium. Three of these fixed inversions, 38 autosomal polymorphisms, and a complex set of 12 X and 6 Y chromosomes in 29 zygotic combinations uniquely characterize S. colombaschense and reveal 5 cytoforms: ‘A’ in the Danube watershed, ‘B’ in Italy’s Adige River, ‘C’ in the Aliakmonas River of Greece, ‘D’ in the Aoös drainage in Greece, and ‘E’ in the Belá River of Slovakia. ‘C’ and ‘D’ are reproductively isolated from one another, and ‘B’ is considered a cytotype of ‘A,’ the probable name bearer of colombaschense. The species status of ‘E’ cannot be determined without additional collections. Three derived polytene sequences, based on outgroup comparisons, place S. colombaschense in a clade of species composed of the S. jenningsi, S. malyschevi, and S. reptans species groups. Only cytoforms ‘A’ and ‘B’ are pests. Within the Simuliidae, pest status is reached through one of two principal pathways, both of which promote the production of large populations of blood-seeking flies: (1) colonization of the world’s largest rivers (habitat specialization) or (2) colonization of multiple habitat types (habitat generalization). Evolutionary acquisition of the ability to colonize large rivers by an ancestor of the S. jenningsi-malyschevi-reptans clade set the scene for the pest status of S. colombaschense and other big-river members of the clade. In an ironic twist, the macrogenome of S. colombaschense reveals that the name associated with history’s worst simuliid pest represents a complex of species, two or more of which are nonpests potentially vulnerable to loss of their limited habitat.  相似文献   

19.
Bioenergy as well as bioenergy with carbon capture and storage are key options to embark on cost‐efficient trajectories that realize climate targets. Most studies have not yet assessed the influence on these trajectories of emerging bioeconomy sectors such as biochemicals and renewable jet fuels (RJFs). To support a systems transition, there is also need to demonstrate the impact on the energy system of technology development, biomass and fossil fuel prices. We aim to close this gap by assessing least‐cost pathways to 2030 for a number of scenarios applied to the energy system of the Netherlands, using a cost‐minimization model. The type and magnitude of biomass deployment are highly influenced by technology development, fossil fuel prices and ambitions to mitigate climate change. Across all scenarios, biomass consumption ranges between 180 and 760 PJ and national emissions between 82 and 178 Mt CO2. High technology development leads to additional 100–270 PJ of biomass consumption and 8–20 Mt CO2 emission reduction compared to low technology development counterparts. In high technology development scenarios, additional emission reduction is primarily achieved by bioenergy and carbon capture and storage. Traditional sectors, namely industrial biomass heat and biofuels, supply 61–87% of bioenergy, while wind turbines are the main supplier of renewable electricity. Low technology pathways show lower biochemical output by 50–75%, do not supply RJFs and do not utilize additional biomass compared to high technology development. In most scenarios the emission reduction targets for the Netherlands are not met, as additional reduction of 10–45 Mt CO2 is needed. Stronger climate policy is required, especially in view of fluctuating fossil fuel prices, which are shown to be a key determinant of bioeconomy development. Nonetheless, high technology development is a no‐regrets option to realize deep emission reduction as it also ensures stable growth for the bioeconomy even under unfavourable conditions.  相似文献   

20.
Life is evolutionarily the most complex of the emergent symmetry-breaking, macroscopically organized dynamic structures in the Universe. Members of this cascading series of disequilibria-converting systems, or engines in Cottrell''s terminology, become ever more complicated—more chemical and less physical—as each engine extracts, exploits and generates ever lower grades of energy and resources in the service of entropy generation. Each one of these engines emerges spontaneously from order created by a particular mother engine or engines, as the disequilibrated potential daughter is driven beyond a critical point. Exothermic serpentinization of ocean crust is life''s mother engine. It drives alkaline hydrothermal convection and thereby the spontaneous production of precipitated submarine hydrothermal mounds. Here, the two chemical disequilibria directly causative in the emergence of life spontaneously arose across the mineral precipitate membranes separating the acidulous, nitrate-bearing CO2-rich, Hadean sea from the alkaline and CH4/H2-rich serpentinization-generated effluents. Essential redox gradients—involving hydrothermal CH4 and H2 as electron donors, CO2 and nitrate, nitrite, and ferric iron from the ambient ocean as acceptors—were imposed which functioned as the original ‘carbon-fixing engine’. At the same time, a post-critical-point (milli)voltage pH potential (proton concentration gradient) drove the condensation of orthophosphate to produce a high energy currency: ‘the pyrophosphatase engine’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号