首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meiofauna are ubiquitous in estuaries worldwide averaging 106 m?2. Abundance and species composition are controlled primarily by three physical factors: sediment particle size, temperature and salinity. While meiofauna are integral parts of estuarine food webs, the evidence that they are biologically controlled is equivocal. Top down (predation) control clearly does not regulate meiofaunal assemblages. Meiofauna reproduce so rapidly and are so abundant that predators cannot significantly reduce population size. Food quantity (bottom up control) also does not appear to limit meiofaunal abundance; there is little data on the effect of food quality. In estuarine sediments meiofauna: (i) facilitate biomineralization of organic matter and enhance nutrient regeneration; (ii) serve as food for a variety of higher trophic levels; and (iii) exhibit high sensitivity to anthropogenic inputs, making them excellent sentinels of estuarine pollution. Generally mineralization of organic matter is enhanced and bacterial production stimulated in the presence of meiofauna. Tannins from mangrove detritus in northern Queensland appear to inhibit meiofaunal abundance and therefore the role of meiofauna in breakdown of the leaves. Meiofauna, particularly copepods, are known foods for a variety of predators especially juvenile fish and the meiofaunal copepods are high in the essential fatty acids required by fish. The copepod’s fatty acid composition is like that of the microphytobenthos they eat; bacterial eaters (nematodes?) do not have the essential fatty acids necessary for fish. Most contaminants in estuaries reside in sediments, and meiofauna are intimately associated with sediments over their entire life-cycle, thus they are increasingly being used as pollution sentinels. Australian estuarine meiofauna research has been concentrated in Queensland, the Hunter River estuarine system in New South Wales, and Victoria’s coastal lagoons. Studies in northern Queensland have primarily concentrated on the role of nematodes in mineralization of organic matter, whereas those from southern Queensland have concentrated on the role of meiofauna as food for fish and as bacterial grazers. The New South Wales studies have concentrated on the Hunter River estuary and on the structure and function of marine nematode communities. In Victoria, several fish have been shown to eat meiofauna. The Australian world of meiofaunal research has hardly been touched; there are innumerable opportunities for meiofaunal studies. In contaminated estuarine sediments reduced trophic coupling between meiofauna and juvenile fish is a basic ecological question of habitat suitability, but also a question with relevance to management of estuarine resources. Because meiofauna have short lifecycles, the effects of a contaminant on the entire life-history can be assessed within a relatively short time. The use of modern molecular biology techniques to assess genetic diversity of meiofauna in contaminated vs uncontaminated sediments is a promising avenue for future research. Much of the important meiofaunal functions take place in very muddy substrata; thus, it is imperative to retain mudflats in estuaries.  相似文献   

2.
A series of 10 samples from sediment in and adjacent to a shallow coastal iceberg scour at Signy Island, Antarctica, were taken by hand coring from 17 December 1993 until 23 August 1994. Scouring by the iceberg led to more than a 95% decrease in meiofaunal abundance and to a certain degree of reduction in diversity. Nematodes were always the most dominant group of meiofauna. The return of major meiofauna groups to control levels was accomplished in 30 days, although a decrease in abundance on the 50th day made interpretation difficult. The pioneering meiofaunal colonisers were copepods and ostracods, followed by nematodes. Microlaimus sp.1 was dominant among the nematodes throughout the whole period. Epistratum feeders and non-selective deposit feeders were highly dominant over selective deposit feeders and predators/omnivores. The Maturity Index, a measure for stress within nematode communities, was relatively low at all times and in controls, which indicates that r-strategists prevail in this community. In spite of the catastrophic destruction, nematode community structure was not affected by the iceberg impact, and there was no evidence of succession during recovery. This suggests that the nematode community in the shallow subtidal coast at Signy Island is well adapted to ice disturbance.  相似文献   

3.
In the northern Baltic Sea juvenile flounder, Platichthys flesus, occur in high abundances on shallow sandy bottoms in late summer and autumn. They feed mainly on meiofauna and the ontogenetic switch to macrofaunal sized food occurs at a larger size here than in other areas, exemplifying the high relative importance of meiofauna. Consequently, juvenile P. flesus in the Baltic feed for a longer period on meiofauna, and could thus be expected to have a stronger predation effect on the meiofaunal assemblages. In this study the predation effects of juvenile P. flesus on meiofaunal abundances and community structure were studied using microcosms that were sampled repeatedly over a 3-week period. Significant differences between treatment and control were found for the total number of taxa, for abundances of harpacticoids, copepod nauplii and ostracods. The nematode community was not affected, but one genus, Axonolaimus, was negatively affected by predation. The predation affected meiofaunal community structure as the major taxon diversity was significantly reduced. The results suggest that the meiofauna on shallow sandy bottoms may be structured by juvenile P. flesus, and the combined predation pressure of juvenile flounder and other epibenthic predators in the area might be considerable. Microcosms are effective in testing natural predation, especially on meiofaunal communities, but field experiments should be conducted to account for the physical characteristics of the area studied.  相似文献   

4.
Meiofauna communities of four intertidal sites, two sheltered and two more exposed, in Kongsfjorden (Svalbard) were investigated in summer 2001 at two different tidal levels (i.e. the low-water line and close below the driftline, referred to as mid-water (MW) level). A total of seven meiofaunal higher taxa were recorded with nematodes, oligochaetes and turbellarians being numerically dominant. Mean total meiofaunal densities ranged between 50 ind. 10 cm−2 and 903 ind. 10 cm−2. Our data showed a clear decrease in total meiofaunal densities with increasing coarseness of the sediment. Total meiofaunal biomass varied from 0.2 g dwt m−2 to 2 g dwt m−2 and, in general, was high even at low meiofaunal densities, i.e. larger interstitial spaces in coarser sediments supported larger meiofauna, especially turbellarians. The results on the vertical distribution of meiofauna contrasted sharply with typical meiobenthic depth profiles on other beaches, probably in response to ice-scouring and concomitant salinity fluctuations. Oligochaetes were the most abundant taxon, with a peak density of 641 ind. 10 cm−2 at Breoyane Island. They were mainly comprised of juvenile Enchytraeidae, which prohibited identification to species/genus level. Nematode densities ranged between 4 ind. 10 cm−2 and 327 ind. 10 cm−2. Nematodes were identified up to genus level and assigned to trophic guilds. In total, 28 nematode genera were identified. Oncholaimus and Theristus were the most abundant genera. The composition of the nematode community and a dominance of predators and deposit feeders were in agreement with results from other arctic and temperate beaches. Nematode genus diversity was higher at the more sheltered beaches than at the more exposed ones. Low-water level stations also tended to harbour a more diverse nematode communities than stations at the MW level. Differences in nematode community structure between low- and MW stations of single beaches were more pronounced than community differences between different beaches and were mainly related to resources quality and availability.  相似文献   

5.
Iceland is situated in an important subarctic transition area where complex oceanographic dynamics occur. The intertidal, subtidal, and deep-sea faunal communities of Iceland are being intensively studied, as a critical resource for continued sustainability of fisheries and the preservation of northern littoral ecosystems. However, the meiofaunal communities and the environmental factors affecting them are still relatively poorly known. The meiobenthic metazoan community was studied with core sampling in 23 sandy beaches along the intertidal zone of the Iceland coast in a campaign developed in September 2003. Small-scale variation in meiofauna composition (major taxa) was explored and related to biotic and abiotic factors at different scales, such as beach exposure, granulometry, and organic matter content. Differences in meiofaunal community structure at a low taxonomic resolution appeared among beaches located within wide biogeographical zones of hydrobiological significance (NE and SW Shelf regions) and exposure degrees. Seventeen major taxa were recorded. In contrast with more local and taxon-focused studies, oligochaetes were the dominant group all around Iceland, followed by nematodes, turbellarians, gastrotrichs, and copepods (mainly harpacticoids). Acari, ascidians, bivalves, cnidarians, collembolans, gastropods, isopods, kinorhynchs, insects, nemerteans, ostracods, and polychaetes were relatively scarce groups, together being less than 1.6% of the meiofauna. There was a large variation in meiofaunal abundance between sites. Maximum abundances (>500 ind. cm?2) were found in Sau?arkrökur, Hraunhafnartangi, and Skálaness, whereas minimum abundances (<40 ind. cm?2) were recorded in Magnavík, Jokülsárlón (glacier beach site), Vikurnúpur, Breidalsvík, and Stokknes. We did not find a clear pattern in overall meiofaunal abundance regarding the degree of exposure of beaches. Oligochaetes, nematodes, and copepods were relatively more abundant in sheltered beaches, whereas turbellarians and gastrotrichs tended to be more abundant in exposed beaches. The best correlates of meiofaunal composition and abundance within beaches were the proportion of gravels and the content of utilizable organic matter in the sediment. We should consider factors operating at wider scales (importantly beach exposure and overall situation in the complex oceanographical context of Iceland) to find a pattern in the local structure of intertidal meiofaunal assemblages.  相似文献   

6.
Meiofaunal prominence and benthic seasonality in a coastal marine ecosystem   总被引:13,自引:0,他引:13  
Summary The muds of a shallow (7 m) site in Narragansett Bay, Rhode Island contained higher abundances of meiofauna (averaging 17×106 individuals per m2 and ash free dry weight of 2.9 g/m2 during a 3 year period) than have been found in any other sediment. The majority of sublittoral muds, worldwide, have been reported to contain about 106 individuals per m2. This difference is attributed primarily to differences in sampling techniques and laboratory processing.Extremely high meiofaunal abundances may have also occurred because Narragansett Bay sediments were a foodrich environment. While the quantity of organic deposition in the bay is not unusually high for coastal waters, this input, primarily composed of diatom detritus, may contain an unusually high proportion of labile organics. Furthermore, meiofauna could have thrived because of spatial segregation of meiofauna and macrofauna. While meiofauna were concentrated at the sediment-water interface, most macrofauna were subsurface deposit feeders. Macrofaunal competition with, and ingestion of meiofauna may thus have been minimized.The seasonal cycles of meiofauna and macrofauna were similar. Highest abundances and biomass were observed in May and June and lowest values in the late summer and fall. Springtime increases of meiofaunal abundance were observed in all depth horizons, to 10 cm. We hypothesize that phytoplankton detritus accumulated in the sediment during the winter and early spring, and that the benthos responded to this store of food when temperatures rose rapidly in the late spring. By late summer, the stored detritus was exhausted and the benthos declined.  相似文献   

7.
1. The effects of eutrophication on phytoplankton, zooplankton and fish in lakes are well known. By contrast, little is known about the response of the zoobenthos to nutrient enrichment, while smaller organisms, such as the meiofauna, have for the most part been neglected. 2. In a long‐term (16 months) microcosm experiment, we assessed the effects of five levels of nutrients [total phosphorus (TP), 7–250 μg L?1; nitrate, 2–8 mg L?1] on a freshwater meiofaunal assemblage and on nematode diversity in particular. 3. Within the first 8 months, meiofaunal succession was only weakly affected, whereas, during the last 4 months, nutrient addition influenced most of the main taxa, with a concomitant change in the assemblage structure. 4. The density of the numerically dominant nematodes decreased upon nutrient enrichment, whereas ostracods became more numerous. Other taxa, including copepods, reached a maximum at intermediate nutrient levels or, in case of oligochaetes, were almost unaffected by nutrient enrichment. However, the changes in the density of the main taxa were usually insufficient to alter their biomass. Consequently, meiofaunal biomass was remarkably unresponsive to nutrient addition, while meiofaunal density displayed a unimodal relationship, with a peak at a TP concentration of 30 μg L?1. In addition, nematode species richness decreased significantly with increasing nutrient concentrations. 5. We hypothesise that the response of meiofaunal taxa to nutrients is attributable to the development of primary producers, which shifted with enrichment from low densities of edible diatoms and unicellular green algae to large standing stocks of inedible forms, such as Lemna minor and Cladophora spp.  相似文献   

8.
Knowiedge on community structure of North Sea meiofauna has greatly increased recently. A quasisynoptic picture of meiofauna densities and copepod community structure from 171 stations of the southern North Sea, sampled in April–May 1986, has been obtained during the North Sea Benthos Survey. Latitudinal patterns in meiofauna abundance and copepod weight, abundance and diversity exist in an area between 51°30′N and 58°30′N. Using TWINSPAN-classification five major groups of copepod species can be recognized which are related to sediment type, latitude and depth. The part of the meiofauna in total benthic energy flow, their role in the benthic food web and in biogeochemical cycles is discussed based on existing literature. There are still considerable gaps in knowledge and the field is not progressing rapidly. Publication no. 599 Netherlands Institute of Ecology, Centre for Estuarine and Coastal Ecology, Yerseke, The Netherlands.  相似文献   

9.
Meiofauna are known to live on hard substrates in association with periphytic and epiphytic algae and attached epibiota; however, the abundance, diversity and colonizing abilities of hard-substrate meiofauna have been poorly documented. We quantified meiofauna living on microalgal-covered pilings associated with a wood pier in a shallow (<2 m deep) estuarine embayment with the use of a suction sampler, and compared colonization of pier-piling and sediment-dwelling meiofauna onto collectors that capture suspended meiofauna from the water column. Collectors were small mesh pads (159 cm3) suspended at mid-water depth, and their size and structural complexity were similar to floating or drifting masses of macroalgae that may be colonized by meiofauna. Sediment was collected by coring, and copepod (to species) and nematode (to genera) colonists on mesh pads were compared with pier-piling and sediment communities. Abundance of total meiofauna averaged 124±13.6 (S.E.) on pier pilings, compared to 2092±274.6 individuals 10 cm−2 in surrounding sediment. Phytal copepods (free-living copepods with prehensile first legs and dorsoventrally and laterally compressed body forms) and copepod nauplii dominated pier-piling collections, but nematodes were dominant on faunal collectors and in sediment. Phytal copepods also were abundant on faunal collectors but were rare in sediments. Copepod and nematode diversities were similar, but species composition was largely nonoverlapping, in pier pilings and sediments. Net recruitment of meiofauna to faunal collectors averaged about 900 individuals collector−1 day−1 during the 1-week experiment. Nematode and copepod colonists on faunal collectors were both much more similar to pier-piling than to sediment assemblages. These data suggest that meiofauna are abundant and diverse on algal-covered pier pilings, and they may become more important to marine ecology as artificial hard substrates increase with increasing urbanization. Furthermore, pier-piling meiofauna appear to readily migrate into the water column and probably contribute to a rapidly dispersing pool of meiofauna in estuaries.  相似文献   

10.
Two mechanisms of muddy-bottom meiofaunal dispersal, waterborne suspended transport and holobenthic infaunal immigration, were compared as to their rate and effectiveness in mediating community reestablishment after small-scale defaunation. Colonizing meiofauna were quantitatively sampled in winter and summer from 16 replicates of two azoic sediment chamber designs on 2 and 29 days postplacement. The chambers were ≈ 3750 cm3; one design allowed colonization via suspended movement through an open top, while the other design permitted entry only by infaunal crawling through subsurface open sides. After 48 h, mean harpacticoid copepod and naupliar densities in sediment chambers open to colonization exclusively by meiofauna in suspended transport were not significantly different from background sediment densities. Sediment chambers allowing colonization exclusively via infaunal immigration through the sediment, however, contained copepod and naupliar densities that were significantly less than densities in background sediments and suspension-colonized chambers. In contrast, nematode densities in both suspension- and infaunally colonized chambers were significantly less than in background sediments, but densities were not significantly different between the chamber treatments. Thus for a small-scale defaunation, copepods most rapidly and completely recolonize sediments via suspended transport. Nematode dispersal occurs equally well via suspended or infaunal movement; however nematodes never seemed to utilize the chambers fully because densities did not reach background levels even after 29 days.  相似文献   

11.
The composition and distribution of the benthic meiofauna assemblages of the Egyptian coasts along the Red Sea are described in relation to abiotic variables. Sediment samples were collected seasonally from three stations chosen along the Red Sea to observe the meiofaunal community structure, its temporal distribution and vertical fluctuation in relation to environmental conditions of the Red Sea marine ecosystem. The temperature, salinity, pH, dissolved oxygen, and redox potential were measured at the time of collection. The water content of the sediments, total organic matters and chlorophyll a values were determined, and sediment samples were subjected to granulometric analysis. A total of 10 meiofauna taxa were identified, with the meiofauna being primarily represented by nematodes (on annual average from 42% to 84%), harpacticoids, polycheates and ostracodes; and the meiofauna abundances ranging from 41 to 167 ind./10 cm2. The meiofaunal population density fluctuated seasonally with a peak of 192.52 ind./10 cm2 during summer at station II. The vertical zonation in the distribution of meiofaunal community was significantly correlated with interstitial water, chlorophyll a and total organic matter values. The present study indicates the existence of the well diversified meiofaunal group which can serve as food for higher trophic levels in the Red Sea interstitial environment.  相似文献   

12.
The composition and abundance of the meiofauna and macrofauna were studied in a survey carried out within 6 locations in a mangrove at the Island of Santa Catarina, South Brazil. Nine meiofaunal taxa were registered with densities ranging between 77 and 1589 inds.10 cm?2. The nematodes, composed by 94 putative species (86 genera), largely dominated the meiofauna. The most abundant genera were Haliplectus (Haliplectidae), Anoplostoma (Anoplostomatidae) and Terschillingia (Linhomoidae). Contrary to the meiofauna, the macrofauna showed a low number of taxa (only 17 recorded) and abundance (up 7250 inds.m?2). The macrofauna was mainly composed by deposit feeders, and numerically dominated by oligochaetes and capitellid polychaetes. For both components, differences in the composition and abundance along the sampling sites were significant but not primarily related to the typical variations along estuaries, such as salinity. The results of the stepwise multiple regression analyses showed that the detritus biomass (ash-free dry weight) was the most important predictor of faunal densities and diversity. The clear relationship between detritus and fauna, together with the contrasting community structure of the two component of the benthos suggest that the meiofauna showed a high efficiency in exploiting the micro-habitat created by the presence of the detritus. Yet the macrofauna, potentially the main consumer of the debris, is negatively affected by their low palatability and poor nutritive value.  相似文献   

13.
Top-down control of prey assemblages by fish predation has been clearly demonstrated for zooplankton and macroinvertebrates. However, in the benthic communities of freshwater ecosystems, the impact of fish predation on meiofaunal assemblages is nearly unknown. In this study, the predation effects of juvenile carp (Cyprinus carpio) and gudgeon (Gobio gobio) on meiofaunal abundance, biomass, community structure, and the diversity of nematodes were examined using microcosms that were sampled repeatedly over 64 days. Significant differences in abundance and biomass were found between the two fish treatments (carp and gudgeon) and their respective controls for nematodes, oligochaetes, and crustaceans (copepods, harpacticoids, ostracods, and cladocerans), but not for rotifers. These changes were consistent with top-down control of the freshwater meiofaunal assemblages in the microcosms over time. By contrast, small-bodied meiofauna was more abundant, suggesting indirect facilitation. Neither the species richness nor the diversity of the nematode community was affected by fish predation. The results indicate that predation by juvenile freshwater fish depresses the overall abundance and biomass of meiofaunal assemblages, except for rotifers, and alters the size structure of the meiofaunal community. Therefore, the meiofaunal assemblages of freshwater ecosystems may be influenced by bottom-feeding juvenile fish, e.g., carp and gudgeon, through top-down control of meiofaunal populations.  相似文献   

14.
The meiofaunal community structure at 32 stations in Hornsund fjord (77°N) was investigated, and results were compared with data from another Spitsbergen fjord, Kongsfjorden (79°N). Steep environmental gradients of sedimentation, organic matter content, and salinity from the inner to the outer basin of the fjord are present due to intensive glacial discharges of meltwater and ice. As the natural environmental disturbances were described for macrofauna benthic communities before, we aimed to check whether the same pattern occurs among meiofauna. A total of 12 higher meiofaunal taxa were recorded, with nematodes predominating at all stations. Non-parametric multivariate analyses demonstrated clear differences in meiofaunal abundance and composition between stations in the glacial bay and in the outer part of the fjord. Meiofaunal abundance increased with increasing distance from the source of disturbance, which in our study is tidal glaciers. Therefore, the current study demonstrates that the spatial structure of meiofauna is affected by the natural environmental disturbance, and analysis of meiofaunal assemblages can be used to assess the effect of such disturbances.  相似文献   

15.
The meiofauna of two tidal beaches, one exposed and one more sheltered, on Bjornoya (Bear Island) was investigated in summer 2000. Both meiofaunal densities and composition seem to be controlled by physical properties of the sediment, which in turn are controlled by exposure. The moderately and poorly sorted sediments in the sheltered beach were more abundant in terms of meiofaunal densities than the well sorted sediments in the exposed beach (254–481 individuals in 10 cm2 vs 7–269 individuals in 10 cm2, respectively). In total, seven higher meiofaunal taxa were found. Turbellaria were the numerically dominant taxon in the exposed beach. In the sheltered beach, Turbellaria also dominated, followed by Nematoda and Harpacticoida. The vertical distribution of the meiofauna was in accordance with what has been reported from other intertidal beaches. Nematoda were studied in detail and their densities ranged over 0.7–7.7 individuals in 10 cm2 in the exposed beach and 2.7–186.0 individuals in 10 cm2 in the sheltered beach. Nematodes were identified to genus level and a total of eight nematode genera were found. Sediment community respiration, measured as oxygen consumption, ranged between 2.3 cm3 O2 m–2 h–1 in the exposed beach and 7.3 cm3 O2 m–2 h–1 in the sheltered beach (respectively, the equivalent of 24 mg and 75 mg of organic carbon metabolised per day). Values from the sheltered site are within the range of results registered in much warmer localities.  相似文献   

16.
The responses of major meiofaunal taxa and nematode species assemblage to the decaying leaf litter of the mangrove Kandelia candel were investigated through a field colonization experiment in subtropical Hong Kong. Sixty-four replicate azoic and organic-free sediment cores were treated with leaf litter additions of 0x, 0.5x, 1x and 2x natural sediment organic concentration, respectively, and retrieved 1, 10, 30 and 60 days post-placement. Replicate cores of ambient sediment were also taken at each sampling date to provide baseline information. Results of ANOVAs suggested that either different meiofaunal taxa responded to the leaf litter in different ways or the response of the same taxon changed over decomposition time. Multivariate ordination performed on nematodes revealed an alteration in community structure after 10, 30 and 60 days between controls and treatments. This alteration was attributed to some deposit feeding nematodes, particularly a bacterivorous species, Diplolaimella sp., which bloomed in all the cores treated with leaf litter, testifying to the important role such meiofauna plays in the process of detritus decomposition.  相似文献   

17.
At five coastal silty sediment stations ranging in depth from 8 to 30 m, the abundance and composition of meiofauna were investigated. Three methods of sampling were used, i.e. Pfleger corer, Van Veen grab and SCUBA divers. Four samples per station were taken. The mean density of total meiofauna was 660 ± 109 ind. 10 cm2. The main meiofauna group was Nematoda, the second abundant was Copepoda, and third was Kinorhyncha. Statistical tests showed significant differences in meiofaunal abundance between corer and grab samples, and between corer and divers samples.Differences in meiofauna abundance between stations were found.  相似文献   

18.
Submarine canyon systems provide a heterogeneous habitat for deep-sea benthos in terms of topography, hydrography, and the quality and quantity of organic matter present. Enhanced meiofauna densities as found in organically enriched canyon sediments suggest that nematodes, as the dominant metazoan meiobenthic taxon, may play an important role in the benthic food web of these sediments. Very little is known about the natural diets and trophic biology of deep-sea nematodes, but enrichment experiments can shed light on nematode feeding selectivity and trophic position. An in-situ pulse-chase experiment (Feedex) was performed in the Nazaré Canyon on the Portuguese margin in summer 2007 to study nematode feeding behaviour. 13C-labelled diatoms and bacteria were added to sediment cores which were then sampled over a 14-day period. There was differential uptake by the nematode community of the food sources provided, indicating selective feeding processes. 13C isotope results revealed that selective feeding was less pronounced at the surface, compared to the sediment subsurface. This was supported by a higher trophic diversity in surface sediments (Θ−1 = 3.50 ± 0.2) compared to the subsurface (2.78 ± 0.6), implying that more food items may be used by the nematode community at the sediment surface. Predatory and scavenging nematodes contributed relatively more to biomass than other feeding types and can be seen as key contributors to the nematode food web at the canyon site. Non-selective deposit feeding nematodes were the dominant trophic group in terms of abundance and contributed substantially to total nematode biomass. The high levels of ‘fresh’ (bioavailable) organic matter input and moderate hydrodynamic disturbance of the canyon environment lead to a more complex trophic structure in canyon nematode communities than that found on the open continental slope, and favours predator/scavengers and non-selective deposit feeders.  相似文献   

19.
为了解污水排海对小型底栖生物丰度和生物量的影响,于2011年4、8、10、12月对青岛汇泉湾第一海水浴场中潮带一个排污口附近不同距离站位的小型底栖生物进行了春、夏、秋、冬4个季度的采样调查.结果表明: 研究区域小型底栖生物年平均丰度为(1859.9±705.1) ind·10 cm-2,最高值出现在距离排污口20和40 m的站位S2和S3,分别为(2444.9±1220.5)和(2492.2±1839.9) ind·10 cm-2,最低值出现在距离排污口0 m的站位S1,为(327.9±183.2) ind·10 cm-2.小型底栖生物的年平均生物量为(1513.4±372.7) μg·10 cm-2.小型底栖生物在丰度和生物量上呈现明显的季节变化,最高值出现在春季,最低值出现在夏季.共鉴定出11个小型底栖生物类群,包括线虫、桡足类、多毛类、寡毛类、缓步动物、海螨、涡虫、介形类、等足类、甲壳类幼体及其他类.自由生活海洋线虫是最优势的类群,占总丰度的83.1%,其次为底栖桡足类,占12.8%.在垂直分布上,小型底栖生物在0~2 cm表层分布最多,向深层呈现递减趋势,冬季部分向下迁移.Pearson相关分析表明,小型底栖生物丰度和生物量与沉积物中值粒径和有机质含量呈极显著负相关.此外,旅游等人为扰动也是影响小型底栖生物数量及分布的因素.与历史资料中的同类研究结果进行了比较,并探讨了线虫与桡足类丰度的比值
在有机质污染监测中的适用性.  相似文献   

20.
1. The ciliate and metazoan meiofaunal assemblages of two contrasting lowland streams in south‐east England were examined over the period of a year, using a high taxonomic resolution. Monthly samples were taken from an oligotrophic, acid stream (Lone Oak) and a circumneutral, nutrient‐rich stream (Pant) between March 2003 and February 2004. 2. We assessed the relative importance of ciliates and rotifers within the small‐sized benthic assemblage with respect to their abundance, biomass and species richness. In addition, we examined the influence of abiotic and biotic parameters and season on the assemblage composition at two levels of taxonomic resolution (species and groups). 3. Ciliates dominated the assemblages numerically, with maximum densities of over 900 000 and 6 000 000 ind. m?2 in Lone Oak and Pant respectively. Rotifers and nematodes dominated meiofaunal densities, although their contribution to total meiofaunal biomass (maxima of 71.9 mgC m?2 in Lone Oak and of 646.8 mgC m?2 in the Pant) was low and rotifer biomass equalled that of ciliates. 4. Although the two streams differed in terms of total abundance of ciliates and meiofauna and shared only 7% of species, the relative proportion of groups was similar. Sediment grain size distribution (the percentile representing the 0.5–1 mm fraction) was correlated with assemblage structure at the species level, revealing the tight coupling between these small organisms and their physical environment. Seasonal changes in the relative abundance of groups followed similar patterns in both streams, and were correlated with the abundance of cyclopoid copepods and temperature. 5. Information on these highly abundant but often overlooked faunal groups is essential for estimates of overall abundance, biomass, species richness and productivity in the benthos, and as such has important implications for several areas of aquatic research, e.g. for those dealing with trophic dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号