首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aerobic microbial degradation of pollutant oil (petroleum) in aquatic environments is often severely limited by the availability of combined nitrogen. We therefore studied whether the microbial community enriched in marine sediment microcosms with an added oil layer and exposure to light harboured nitrogenase activity. The acetylene reduction (AR) assay indeed indicated active nitrogenase; however, similar activity was observed in oil-free control microcosms. In both microcosms, the AR rate was significantly reduced upon a dark shift, indicating that enriched cyanobacteria were the dominant diazotrophs. Analysis of structural dinitrogenase reductase genes (nifH) amplified from both microcosms indeed revealed NifH sequences related mostly to those of heterocystous cyanobacteria. NifH sequences typically affiliating with those of heterotrophic bacteria were more frequently retrieved from the oil-containing sediment. Expression analyses showed that mainly nifH genes similar to those of heterocystous cyanobacteria were expressed in the light. Upon a dark shift, nifH genes related to those of non-heterocystous cyanobacteria were expressed. Expression of nifH assignable to heterotrophs was apparently not significant. It is concluded that cyanobacteria are the main contributors of fixed nitrogen to oil-contaminated and pristine sediments if nitrogen is a limiting factor and if light is available. Hence, also the oil-degrading heterotrophic community may thus receive a significant part of combined nitrogen from cyanobacteria, even though oil vice versa apparently does not stimulate an additional nitrogen fixation in the enriched community.  相似文献   

2.
The distribution of nitrogen-fixing microorganisms in the Chesapeake Bay was investigated using fingerprints from a nifH microarray comprised of 706 60-mer oligonucleotide nifH probes representing cultivated organisms and environmental clones from different nifH clusters. Diverse nifH targets, amplified from samples using degenerate nifH primers, were detected in water column and sediment samples collected in April and October, 2001-2002. Total nifH richness and diversity (Simpson's and Shannon indices) were highest at the most riverine, oligohaline North Bay station. In most samples, the highest diversity was in nifH Cluster 3, which includes many anaerobes, while Cluster 1 (alpha-, beta- gamma- Proteobacteria, Cyanobacteria) targets had the greatest microarray signal intensities. In a multidimensional scaling analysis, deep water communities from April and October were similar within each of the sampling sites, while the surface communities had more variability. Diazotroph communities in the water column in the North Bay were distinct from the Mid- and South Bay communities, and there was a gradual change in sediment diazotroph assemblages from the North to the South Bay. Diazotrophic assemblages from the majority of the water column samples from the Mid- and South Bay clustered with the sediment assemblage in Mid-Bay. Dissolved inorganic nitrogen, salinity, dissolved organic carbon and dissolved organic phosphorus had a significant relationship with the diazotrophic bacterioplankton community. Higher diversity in the freshwater end of the system may reflect variability in disturbance rates and environmental conditions such as forms and concentrations of organic matter, nutrients and oxygen.  相似文献   

3.
Like many estuaries, the Chesapeake Bay has pronounced gradients in salinity and nutrients. Previous studies have shown that there is a high diversity of nitrogenase (nifH) genes in the estuary, and that there are specific distributions of individual nifH phylotypes. In contrast to previous work that revealed the remarkable diversity of nifH phylotypes in the Chesapeake estuary, in this study of nifH expression we only detected two phylotypes, and both were phylogenetically related to cyanobacterial nifH genes. One of the phylotypes was closely related to a nifH sequence from the filamentous, heterocystous cyanobacterium Anabaena cylindrica, and was found at the head of the estuary. The other phylotype was found in a sample collected near the mouth of the estuary and was closely related to nifH sequences from Group A unicellular cyanobacteria, which has previously been reported in oceanic waters only. These nifH phylotypes had distinct patterns of expression that were restricted to different regions of the Chesapeake Bay. This study provides the first evidence of nifH expression in the Chesapeake Bay, and suggests that diazotrophic unicellular cyanobacteria have a broader distribution and activity than previously recognized.  相似文献   

4.
The aim of this study was to initiate autecological studies on uncultivated natural populations of diazotrophic bacteria by examining the distribution of specific diazotrophs in the Chesapeake Bay. By use of quantitative PCR, the abundance of two nifH sequences (907h22 and 912h4) was quantified in water samples collected along a transect from the head to the mouth of the Chesapeake Bay during cruises in April and October 2001 and 2002. Standard curves for the quantitative PCR assays demonstrated that the relationship between gene copies and cycle threshold was linear and highly reproducible from 1 to 10(7) gene copies. The maximum number of 907h22 gene copies detected was approximately 140 ml(-1) and the maximum number of 912h4 gene copies detected was approximately 340 ml(-1). Sequence 912h4 was most abundant at the mouth of the Chesapeake Bay, and in general, its abundance increased with increasing salinity, with the highest abundances observed in April 2002. Overall, the 907h22 phylotype was most abundant at the mid-bay station. Additionally, 907h22 was most abundant in the April samples from the mid-bay and mouth of the Chesapeake Bay. Despite the fact that the Chesapeake Bay is rarely nitrogen limited, our results show that individual nitrogen-fixing bacteria have distinct nonrandom spatial and seasonal distributions in the Chesapeake Bay and are either distributed by specific physical processes or adapted to different environmental niches.  相似文献   

5.
Using a previously developed primer system, nifH gene fragments 450 nucleotides long were amplified, cloned, and sequenced for representatives of nitrogen-fixing methanotrophic bacteria of the genera Methylococcus, Methylocystis and Methylosinus. Fragments of nifH genes were also detected and sequenced in representatives of the genera Methylomonas and Methylobacter, which were not considered diazotrophs until recently. Phylogenetic analysis revealed remoteness of nifH genes sequences of methanotroph types I and II. At the same time, close relationship was found between nifH of type I methanotrophs and representatives of gamma-proteobacteria and between nifH genes of type II methanotrophs and representatives of alpha-proteobacteria. The results obtained in this study are in good accordance with the data of phylogenetic analysis based on 16S rRNA sequence comparison with the only exception of Methylococcus capsulatus strains, whose nifH genes proved to be closely related to nifH genes of Methylocystis and Methylosinus representatives. Our findings extend the database of primary sequences of nifH genes and allow the contribution of methanotrophs to the process of nitrogen fixation to be estimated.  相似文献   

6.
The salinity tolerance of 62 strains of Pfiesteria and Pfiesteria‐like heterotrophic dinoflagellates was measured. All strains were acclimated at 12 psu for at least 1 year before experimentation. Strains isolated from the Chesapeake Bay and Neuse River systems tolerated lower salinities than strains isolated from the Wilmington River system (P< 0.005). Swimming cells were still observed after 5 days at 0.5 psu for one strain, and at 1 psu for most other Chesapeake Bay and Neuse River strains. Swimming cells for the Wilmington River were still observed after 5 days at 3–5 psu, but no swimming cells were observed at ≤ 2 psu. With regard to the upper salinity tolerance, the Wilmington River strains tolerated higher salinities than the Chesapeake Bay and Neuse River systems (P< 0.005). Most Wilmington River strains were swimming after 5 days at salinities ≥ 50 psu, whereas the Chesapeake Bay and Neuse River system strains rarely had swimming cells at salinities exceeding 35–45 psu. For all three water systems and for both lower and higher salinities, cells apparently encysted in many instances. However, when salinities were returned to 12 psu, swimming cells often re‐appeared. Statistically significant geographic differences in salinity tolerance suggest a geographic adaptation has occurred and that salinity tolerance is under genetic control. The results also suggest there is diversity among the strains.  相似文献   

7.
N(2) fixation by diazotrophic bacteria associated with the roots of the smooth cordgrass, Spartina alterniflora, is an important source of new nitrogen in many salt marsh ecosystems. However, the diversity and phylogenetic affiliations of these rhizosphere diazotrophs are unknown. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified nifH sequence segments was used in previous studies to examine the stability and dynamics of the Spartina rhizosphere diazotroph assemblages in the North Inlet salt marsh, near Georgetown, S.C. In this study, plugs were taken from gel bands from representative DGGE gels, the nifH amplimers were recovered and cloned, and their sequences were determined. A total of 59 sequences were recovered, and the amino acid sequences predicted from them were aligned with sequences from known and unknown diazotrophs in order to determine the types of organisms present in the Spartina rhizosphere. We recovered numerous sequences from diazotrophs in the gamma subdivision of the division Proteobacteria (gamma-Proteobacteria) and from various anaerobic diazotrophs. Diazotrophs in the alpha-Proteobacteria were poorly represented. None of the Spartina rhizosphere DGGE band sequences were identical to any known or previously recovered environmental nifH sequences. The Spartina rhizosphere diazotroph assemblage is very diverse and apparently consists mainly of unknown organisms.  相似文献   

8.
Based on partial 16S sequences, we previously described a novel group of nonsymbiotic, acetylene reduction activity-positive actinomycetes which were isolated from surface-sterilized roots of Casuarina equisetifolia growing in Mexico. An amplified rRNA restriction analysis confirmed that these actinomycetes are distinct from Frankia, a finding substantiated by a 16S rRNA gene phylogenetic analysis of two of the Mexican isolates. Further support for these actinomycetes being separate from Frankia comes from the very low DNA-DNA homology that was found. Nevertheless, the Mexican isolates may be diazotrophs based not only on their ability to grow in N-free medium and reduce acetylene to ethylene but also on the results from (15)N isotope dilution analysis and the finding that a nifH gene was PCR amplified. A comparison of the nifH sequences from the various isolates showed that they are closely related to nifH from Frankia; the similarity was 84 to 98% depending on the host specificity group. An analysis of complete 16S rRNA gene sequences demonstrated that the two strains analyzed in detail are most closely related to actinobacteria in the Thermomonosporaceae and the Micromonosporaceae.  相似文献   

9.
Global survey of diversity among environmental saltwater Bacteriovoracaceae   总被引:2,自引:0,他引:2  
Halophilic Bacteriovorax (Bx), formerly known as the marine Bdellovibrio, are Gram-negative, predatory bacteria found in saltwater systems. To assess their genetic diversity and geographical occurrence, the small subunit rRNA (ssu-rRNA) gene sequences were analysed from 111 marine, salt lake and estuarine isolates recovered from 27 locations around the world. Phylogenetic analysis of these isolates using Geobacter as the outgroup revealed eight distinct ribotype clusters each with at least two isolates. Each cluster was composed of isolates with >or= 96.5% similarity in ssu-rRNA sequences. Three single isolate outliers were observed. Many of the Bx ribotypes were widely dispersed among different types of ecosystems (e.g. cluster III was recovered from the Great Salt Lake, the Atlantic Ocean, Pacific Ocean, Chesapeake Bay and gills of aquarium fish). However, cluster V was only recovered from a single ecosystem, estuaries. Cluster V was originally detected in the Chesapeake Bay and subsequently in the Pamlico Sound/Neuse River system. Principal coordinate analysis revealed that the sequences of the isolates from different environments were distinct from each other. The results of this study reveal the saltwater Bx to be phylogenetically and environmentally more diverse than was previously known.  相似文献   

10.
Biological nitrogen fixation is an important source of fixed nitrogen for the biosphere. Microorganisms catalyse biological nitrogen fixation with the enzyme nitrogenase, which has been highly conserved through evolution. Cloning and sequencing of one of the nitrogenase structural genes, nifH, has provided a large, rapidly expanding database of sequences from diverse terrestrial and aquatic environments. Comparison of nifH phylogenies to ribosomal RNA phylogenies from cultivated microorganisms shows little conclusive evidence of lateral gene transfer. Sequence diversity far outstrips representation by cultivated representatives. The phylogeny of nitrogenase includes branches that represent phylotypic groupings based on ribosomal RNA phylogeny, but also includes paralogous clades including the alternative, non-molybdenum, non-vanadium containing nitrogenases. Only a few alternative or archaeal nitrogenase sequences have as yet been obtained from the environment. Extensive analysis of the distribution of nifH phylotypes among habitats indicates that there are characteristic patterns of nitrogen fixing microorganisms in termite guts, sediment and soil environments, estuaries and salt marshes, and oligotrophic oceans. The distribution of nitrogen-fixing microorganisms, although not entirely dictated by the nitrogen availability in the environment, is non-random and can be predicted on the basis of habitat characteristics. The ability to assay for gene expression and investigate genome arrangements provides the promise of new tools for interrogating natural populations of diazotrophs. The broad analysis of nitrogenase genes provides a basis for developing molecular assays and bioinformatics approaches for the study of nitrogen fixation in the environment.  相似文献   

11.
Rhizosphere associative dinitrogen fixation could be a valuable source of nitrogen in many nitrogen limited natural ecosystems, such as the rhizosphere of Molinia coerulea, a hemicryptophytic perennial grass naturally occurring in contrasted oligonitrophilic soils. The diversity of the dinitrogen-fixing bacteria associated with this environment was assessed by a cloning-sequencing approach on the nifH gene directly amplified from environmental DNA extracts. Seventy-seven randomly picked clones were analysed. One type of NifH sequence was dominant in both roots and surrounding soil, and represented 56% of all retrieved sequences. This cluster included previously described environmental clones and did not contain any NifH sequences similar to cultivated diazotrophs. The predominance of few NifH sequence types in the roots and the rhizosphere of Molinia coerulea indicate that the plant environment mediates a favourable niche for such dinitrogen-fixing bacteria.  相似文献   

12.
Small subunit rRNA sequences were amplified from Amoebophrya strains infecting Karlodinium micrum, Gymnodinium instriatum and an unidentified Scrippsiella species in Chesapeake Bay. The alignable parts of the sequences differed from each other and from the previously reported rRNA sequence of the Amoebophrya strain infecting Akashiwo sanguinea in Chesapeake Bay by 4 to 10%. This is a greater degree of difference than sometimes found between sequences from separate genera of free-living dinoflagellates. These sequence differences indicate that the Amoebophrya strains parasitizing dinoflagellates in Chesapeake Bay do not all belong to the same species. In spite of their relative dissimilarity, the sequences do group together into a single clade with high bootstrap support in phylogenetic trees constructed from the sequences.  相似文献   

13.
Free-living nitrogen-fixing prokaryotes (diazotrophs) are ubiquitous in soil and are phylogenetically and physiologically highly diverse. Molecular methods based on universal PCR detection of the nifH marker gene have been successfully applied to describe diazotroph populations in the environment. However, the use of highly degenerate primers and low-stringency amplification conditions render these methods prone to amplification bias, while less degenerate primer sets will not amplify all nifH genes. We have developed a fixed-primer-site approach with six PCR protocols using less degenerate to nondegenerate primer sets that all amplify the same nifH fragment as a previously published PCR protocol for universal amplification. These protocols target different groups of diazotrophs and allowed for direct comparison of the PCR products by use of restriction fragment length polymorphism fingerprinting. The new protocols were optimized on DNA from 14 reference strains and were subsequently tested with bulk DNA extracts from six soils. These analyses revealed that the new PCR primer sets amplified nifH sequences that were not detected by the universal primer set. Furthermore, they were better suited to distinguish between diazotroph populations in the different soils. Because the novel primer sets were not specific for monophyletic groups of diazotrophs, they do not serve as an identification tool; however, they proved powerful as fingerprinting tools for subsets of soil diazotroph communities.  相似文献   

14.
Subglacial sediments sampled from beneath Robertson Glacier (RG), Alberta, Canada, were shown to harbor diverse assemblages of potential nitrifiers, nitrate reducers, and diazotrophs, as assessed by amoA, narG, and nifH gene biomarker diversity. Although archaeal amoA genes were detected, they were less abundant and less diverse than bacterial amoA, suggesting that bacteria are the predominant nitrifiers in RG sediments. Maximum nitrification and nitrate reduction rates in microcosms incubated at 4°C were 280 and 18.5 nmol of N per g of dry weight sediment per day, respectively, indicating the potential for these processes to occur in situ. Geochemical analyses of subglacial sediment pore waters and bulk subglacial meltwaters revealed low concentrations of inorganic and organic nitrogen compounds. These data, when coupled with a C/N atomic ratio of dissolved organic matter in subglacial pore waters of ~210, indicate that the sediment communities are N limited. This may reflect the combined biological activities of organic N mineralization, nitrification, and nitrate reduction. Despite evidence of N limitation and the detection of nifH, we were unable to detect biological nitrogen fixation activity in subglacial sediments. Collectively, the results presented here suggest a role for nitrification and nitrate reduction in sustaining microbial life in subglacial environments. Considering that ice currently covers 11% of the terrestrial landmass and has covered significantly greater portions of Earth at times in the past, the demonstration of nitrification and nitrate reduction in subglacial environments furthers our understanding of the potential for these environments to contribute to global biogeochemical cycles on glacial-interglacial timescales.  相似文献   

15.
Anaerobic methane oxidation was investigated in 6-m-long cores of marine sediment from Aarhus Bay, Denmark. Measured concentration profiles for methane and sulfate, as well as in situ rates determined with isotope tracers, indicated that there was a narrow zone of anaerobic methane oxidation about 150 cm below the sediment surface. Methane could account for 52% of the electron donor requirement for the peak sulfate reduction rate detected in the sulfate-methane transition zone. Molecular signatures of organisms present in the transition zone were detected by using selective PCR primers for sulfate-reducing bacteria and for Archaea. One primer pair amplified the dissimilatory sulfite reductase (DSR) gene of sulfate-reducing bacteria, whereas another primer (ANME) was designed to amplify archaeal sequences found in a recent study of sediments from the Eel River Basin, as these bacteria have been suggested to be anaerobic methane oxidizers (K. U. Hinrichs, J. M. Hayes, S. P. Sylva, P. G. Brewer, and E. F. DeLong, Nature 398:802-805, 1999). Amplification with the primer pairs produced more amplificate of both target genes with samples from the sulfate-methane transition zone than with samples from the surrounding sediment. Phylogenetic analysis of the DSR gene sequences retrieved from the transition zone revealed that they all belonged to a novel deeply branching lineage of diverse DSR gene sequences not related to any previously described DSR gene sequence. In contrast, DSR gene sequences found in the top sediment were related to environmental sequences from other estuarine sediments and to sequences of members of the genera Desulfonema, Desulfococcus, and Desulfosarcina. Phylogenetic analysis of 16S rRNA sequences obtained with the primers targeting the archaeal group of possible anaerobic methane oxidizers revealed two clusters of ANME sequences, both of which were affiliated with sequences from the Eel River Basin.  相似文献   

16.
Isolation and Diversity of Actinomycetes in the Chesapeake Bay   总被引:15,自引:3,他引:12       下载免费PDF全文
Chesapeake Bay was investigated as a source of actinomycetes to screen for production of novel bioactive compounds. The presence of relatively large populations of actinoplanetes (chemotype II/D actinomycetes) in Chesapeake Bay sediment samples indicates that it is an eminently suitable ecosystem from which to isolate actinomycetes for screening programs. Actinomycetes were isolated from sediment samples collected in Chesapeake Bay with an isolation medium containing nalidixic acid, which proved to be more effective than heat pretreatment of samples. Actinomycete counts ranged from a high of 1.4 × 105 to a low of 1.8 × 102 CFU/ml of sediment. Actinomycetes constituted 0.15 to 8.63% of the culturable microbial community. The majority of isolates from the eight stations studied were actinoplanetes (i.e., chemotype II/D), and 249 of these isolates were obtained in a total of 298 actinomycete isolates. Antimicrobial activity profiles indicated that diverse populations of actinoplanetes were present at each station. DNA hybridization studies showed considerable diversity among isolates between stations, but indicated that actinoplanete strains making up populations at nearby stations were more similar to each other than to populations sampled at distant stations. The diversity of actinoplanetes and the ease with which these organisms were isolated from Chesapeake Bay sediments make this a useful source of these actinomycetes.  相似文献   

17.
Detection and characterization of cyanobacterial nifH genes.   总被引:5,自引:2,他引:3       下载免费PDF全文
The DNA sequence of a 359-bp fragment of nifH was determined for the heterocystous strains Anabaena sp. strain CA (ATCC 33047), Nostoc muscorum UTEX 1933, a Nostoc sp., Gloeothece sp. strain ATCC 27152, Lyngbya lagerheimii UTEX 1930, and Plectonema boryanum IU 594. Results confirmed that the DNA sequence of the 359-bp segment is sufficiently variable to distinguish cyanobacterial nifH genes from other eubacterial and arachaeobacterial nifH genes, as well as to distinguish heterocystous from nonheterocystous nifH genes. Nonheterocystous cyanobacterial nifH sequences were greater than 70 and 82% identical on the DNA and amino acid levels, respectively, whereas corresponding values for heterocystous cyanobacterial nifH sequences were 84 and 91%. The amplified nifH fragments can be used as DNA probes to differentiate between species, although there was substantial cross-reactivity between the nifH amplification products of some strains. However, an oligonucleotide designed from a sequence conserved within the heterocystous cyanobacteria hybridized primarily with the amplification product from heterocystous strains. The use of oligonucleotides designed from amplified nifH sequences shows great promise for characterizing assemblages of diazotrophs.  相似文献   

18.
The aim of this study was to initiate autecological studies on uncultivated natural populations of diazotrophic bacteria by examining the distribution of specific diazotrophs in the Chesapeake Bay. By use of quantitative PCR, the abundance of two nifH sequences (907h22 and 912h4) was quantified in water samples collected along a transect from the head to the mouth of the Chesapeake Bay during cruises in April and October 2001 and 2002. Standard curves for the quantitative PCR assays demonstrated that the relationship between gene copies and cycle threshold was linear and highly reproducible from 1 to 107 gene copies. The maximum number of 907h22 gene copies detected was approximately 140 ml−1 and the maximum number of 912h4 gene copies detected was approximately 340 ml−1. Sequence 912h4 was most abundant at the mouth of the Chesapeake Bay, and in general, its abundance increased with increasing salinity, with the highest abundances observed in April 2002. Overall, the 907h22 phylotype was most abundant at the mid-bay station. Additionally, 907h22 was most abundant in the April samples from the mid-bay and mouth of the Chesapeake Bay. Despite the fact that the Chesapeake Bay is rarely nitrogen limited, our results show that individual nitrogen-fixing bacteria have distinct nonrandom spatial and seasonal distributions in the Chesapeake Bay and are either distributed by specific physical processes or adapted to different environmental niches.  相似文献   

19.
Investigations of the distribution and diversity of nitrogen-fixing microorganisms in natural environments have often relied on PCR amplification and sequence analysis of a portion of one of the key enzymes in nitrogen fixation, dinitrogenase reductase, encoded by nifH. Recent work has suggested that DNA macroarrays provide semiquantitative fingerprints of diversity within mixtures of nifH amplicons (G. F. Steward, B. D. Jenkins, B. B. Ward, and J. P. Zehr, Appl. Environ. Microbiol. 70:1455-1465, 2004). Here we report the application of macroarrays for a study in the Chesapeake Bay. Samples from different locations in the bay yielded distinct fingerprints. Analysis of replicates and samples from different locations by cluster analysis showed that replicates clustered together, whereas different samples formed distinct clusters. There was a correspondence between the hybridization pattern observed and that predicted from the distribution of sequence types in a corresponding clone library. Some discrepancies between the methods were observed which are likely a result of the high nifH sequence diversity in the Chesapeake Bay and the limited number of sequences represented on this version of the array. Analyses of sequences in the clone library indicate that the Chesapeake Bay harbors unique, phylogenetically diverse diazotrophs. The macroarray hybridization patterns suggest that there are spatially variable communities of diazotrophs, which have been confirmed by quantitative PCR methods (S. M. Short, B. D. Jenkins, and J. P. Zehr, Appl. Environ. Microbiol., in press). The results show that DNA macroarrays have great potential for mapping the spatial and temporal variability of functional gene diversity in the environment.  相似文献   

20.
Anaerobic methane oxidation was investigated in 6-m-long cores of marine sediment from Aarhus Bay, Denmark. Measured concentration profiles for methane and sulfate, as well as in situ rates determined with isotope tracers, indicated that there was a narrow zone of anaerobic methane oxidation about 150 cm below the sediment surface. Methane could account for 52% of the electron donor requirement for the peak sulfate reduction rate detected in the sulfate-methane transition zone. Molecular signatures of organisms present in the transition zone were detected by using selective PCR primers for sulfate-reducing bacteria and for Archaea. One primer pair amplified the dissimilatory sulfite reductase (DSR) gene of sulfate-reducing bacteria, whereas another primer (ANME) was designed to amplify archaeal sequences found in a recent study of sediments from the Eel River Basin, as these bacteria have been suggested to be anaerobic methane oxidizers (K. U. Hinrichs, J. M. Hayes, S. P. Sylva, P. G. Brewer, and E. F. DeLong, Nature 398:802–805, 1999). Amplification with the primer pairs produced more amplificate of both target genes with samples from the sulfate-methane transition zone than with samples from the surrounding sediment. Phylogenetic analysis of the DSR gene sequences retrieved from the transition zone revealed that they all belonged to a novel deeply branching lineage of diverse DSR gene sequences not related to any previously described DSR gene sequence. In contrast, DSR gene sequences found in the top sediment were related to environmental sequences from other estuarine sediments and to sequences of members of the genera Desulfonema, Desulfococcus, and Desulfosarcina. Phylogenetic analysis of 16S rRNA sequences obtained with the primers targeting the archaeal group of possible anaerobic methane oxidizers revealed two clusters of ANME sequences, both of which were affiliated with sequences from the Eel River Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号