首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Iron-responsive elements (IREs) are regulatory RNA elements which serve as specific binding sites for the IRE-binding protein (IRE-BP). Interaction between IREs and IRE-BP induces repression of ferritin mRNA translation and transferrin receptor mRNA stabilization. We describe the identification of extensive amino acid sequence homology between IRE-BP and two known isomerases, aconitase and isopropylmalate (IPM) isomerase. We discuss the implications of this observation with regard to structure/function relationships of IRE-BP. The structural conservation between a regulatory RNA-binding protein and two enzymes involved in intermediary metabolism provides a surprising example of the functional flexibility in biological structures.  相似文献   

4.
5.
6.
Cellular iron uptake and storage are coordinately controlled by binding of iron-regulatory proteins (IRP), IRP1 and IRP2, to iron-responsive elements (IREs) within the mRNAs encoding transferrin receptor (TfR) and ferritin. Under conditions of iron starvation, both IRP1 and IRP2 bind with high affinity to cognate IREs, thus stabilizing TfR and inhibiting translation of ferritin mRNAs. The IRE/IRP regulatory system receives additional input by oxidative stress in the form of H(2)O(2) that leads to rapid activation of IRP1. Here we show that treating murine B6 fibroblasts with a pulse of 100 microm H(2)O(2) for 1 h is sufficient to alter critical parameters of iron homeostasis in a time-dependent manner. First, this stimulus inhibits ferritin synthesis for at least 8 h, leading to a significant (50%) reduction of cellular ferritin content. Second, treatment with H(2)O(2) induces a approximately 4-fold increase in TfR mRNA levels within 2-6 h, and subsequent accumulation of newly synthesized protein after 4 h. This is associated with a profound increase in the cell surface expression of TfR, enhanced binding to fluorescein-tagged transferrin, and stimulation of transferrin-mediated iron uptake into cells. Under these conditions, no significant alterations are observed in the levels of mitochondrial aconitase and the Divalent Metal Transporter DMT1, although both are encoded by two as yet lesser characterized IRE-containing mRNAs. Finally, H(2)O(2)-treated cells display an increased capacity to sequester (59)Fe in ferritin, despite a reduction in the ferritin pool, which results in a rearrangement of (59)Fe intracellular distribution. Our data suggest that H(2)O(2) regulates cellular iron acquisition and intracellular iron distribution by both IRP1-dependent and -independent mechanisms.  相似文献   

7.
The intracellular iron level exerts a negative feedback on transferrin receptor (TfR) expression in cells requiring iron for their proliferation, in contrast to the positive feedback observed in monocytes-macrophages. It has been suggested recently that modulation of TfR and ferritin synthesis by iron is mediated through a cytoplasmic protein(s) (iron regulatory element-binding protein(s) (IRE-BP)), which interacts with ferritin and TfR mRNA at the level of hairpin structures (IRE), thus leading to inhibition of transferrin mRNA degradation and repression of ferritin mRNA translation. In the present study we have evaluated in parallel the level of TfR expression, ferritin, and IRE-BP in cultures of: (i) circulating human lymphocytes stimulated to proliferate by phytohemagglutinin (PHA) and (ii) circulating human monocytes maturing in vitro to macrophages. The cells were grown in either standard or iron-supplemented culture. TfR and ferritin expression was evaluated at both the protein and mRNA level. IRE-BP activity was measured by gel retardation assay in the absence or presence of beta-mercaptoethanol (spontaneous or total IRE-BP activity, respectively). Spontaneous IRE-BP activity, already present at low level in quiescent T lymphocytes, shows a gradual and marked increase in PHA-stimulated T cells from day 1 of culture onward. This increase is directly and strictly correlated with the initiation and gradual rise of TfR expression, which is in turn associated with a decrease of ferritin content. Both the rise of TfR and spontaneous IRE-BP activity are completely inhibited in iron-supplemented T cell cultures. In contrast, the total IRE-BP level is similar in both quiescent and PHA-stimulated lymphocytes, grown in cultures supplemented or not with iron salts. Monocytes maturing in vitro to macrophages show a sharp increase of spontaneous and, to a lesser extent, total IRE-BP; the addition of iron moderately stimulates the spontaneous IRE-BP activity but not the total one. Here again, the rise of spontaneous IRE-BP from very low to high activity is strictly related to the parallel increase of TfR expression and, suprisingly, also with a very pronounced rise of ferritin expression observed at both the mRNA and protein level. It is noteworthy the effect of beta-mercaptoethanol is cell specific, i.e. the ratio of total versus spontaneous IRE-BP activity is different in activated lymphocytes and maturing monocytes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
9.
10.
11.
12.
Excess capacity of the iron regulatory protein system   总被引:4,自引:0,他引:4  
Iron regulatory proteins (IRP1 and IRP2) are master regulators of cellular iron metabolism. IRPs bind to iron-responsive elements (IREs) present in the untranslated regions of mRNAs encoding proteins of iron storage, uptake, transport, and export. Because simultaneous knockout of IRP1 and IRP2 is embryonically lethal, it has not been possible to use dual knockouts to explore the consequences of loss of both IRP1 and IRP2 in mammalian cells. In this report, we describe the use of small interfering RNA to assess the relative contributions of IRP1 and IRP2 in epithelial cells. Stable cell lines were created in which either IRP1, IRP2, or both were knocked down. Knockdown of IRP1 decreased IRE binding activity but did not affect ferritin H and transferrin receptor 1 (TfR1) expression, whereas knockdown of IRP2 marginally affected IRE binding activity but caused an increase in ferritin H and a decrease in TfR1. Knockdown of both IRPs resulted in a greater reduction of IRE binding activity and more severe perturbation of ferritin H and TfR1 expression compared with single IRP knockdown. Even though the knockdown of IRP-1, IRP-2, or both was efficient, resulting in nondetectable protein and under 5% of wild type levels of mRNA, all stable knockdowns retained an ability to modulate ferritin H and TfR1 appropriately in response to iron challenge. However, further knockdown of IRPs accomplished by transient transfection of small interfering RNA in stable knockdown cells completely abolished the response of ferritin H and TfR1 to iron challenge, demonstrating an extensive excess capacity of the IRP system.  相似文献   

13.
14.
15.
Iron homeostasis is tightly regulated, as cells work to conserve this essential but potentially toxic metal. The translation of many iron proteins is controlled by the binding of two cytoplasmic proteins, iron regulatory protein 1 and 2 (IRP1 and IRP2) to stem loop structures, known as iron-responsive elements (IREs), found in the untranslated regions of their mRNAs. In short, when iron is depleted, IRP1 or IRP2 bind IREs; this decreases the synthesis of proteins involved in iron storage and mitochondrial metabolism (e.g. ferritin and mitochondrial aconitase) and increases the synthesis of those involved in iron uptake (e.g. transferrin receptor). It is likely that more iron-containing proteins have IREs and that other IRPs may exist. One obvious place to search is in Complex I of the mitochondrial respiratory chain, which contains at least 6 iron-sulfur (Fe-S) subunits. Interestingly, in idiopathic Parkinson's disease, iron homeostasis is altered, and Complex I activity is diminished. These findings led us to investigate whether iron status affects the Fe-S subunits of Complex I. We found that the protein levels of the 75-kDa subunit of Complex I were modulated by levels of iron in the cell, whereas mRNA levels were minimally changed. Isolation of a clone of the 75-kDa Fe-S subunit with a more complete 5'-untranslated region sequence revealed a novel IRE-like stem loop sequence. RNA-protein gel shift assays demonstrated that a specific cytoplasmic protein bound the novel IRE and that the binding of the protein was affected by iron status. Western blot analysis and supershift assays showed that this cytosolic protein is neither IRP1 nor IRP2. In addition, ferritin IRE was able to compete for binding with this putative IRP. These results suggest that the 75-kDa Fe-S subunit of mitochondrial Complex I may be regulated by a novel IRE-IRP system.  相似文献   

16.
Iron regulatory proteins (IRPs) control iron metabolism by specifically interacting with iron-responsive elements (IREs) on mRNAs. Nitric oxide (NO) converts IRP-1 from a [4Fe-4S] aconitase to a trans-regulatory protein through Fe-S cluster disassembly. Here, we have focused on the fate of IRE binding IRP1 from murine macrophages when NO flux stops. We show that virtually all IRP-1 molecules from NO-producing cells dissociated from IRE and recovered aconitase activity after re-assembling a [4Fe-4S] cluster in vitro. The reverse change in IRP-1 activities also occurred in intact cells no longer exposed to NO and did not require de novo protein synthesis. Likewise, inhibition of mitochondrial aconitase via NO-induced Fe-S cluster disassembly was also reversed independently of protein translation after NO removal. Our results provide the first evidence of Fe-S cluster repair of NO-modified aconitases in mammalian cells. Moreover, we show that reverse change in IRP-1 activities and repair of mitochondrial aconitase activity depended on energized mitochondria. Finally, we demonstrate that IRP-1 activation by NO was accompanied by both a drastic decrease in ferritin levels and an increase in transferrin receptor mRNA levels. However, although ferritin expression was recovered upon IRP-1-IRE dissociation, expression of transferrin receptor mRNA continued to rise for several hours after stopping NO flux.  相似文献   

17.
18.
Iron responsive elements (IREs) are short stem-loop structures found in several mRNAs encoding proteins involved in cellular iron metabolism. Iron regulatory proteins (IRPs) control iron homeostasis through differential binding to the IREs, accommodating any sequence or structural variations that the IREs may present. Here we report the structure of IRP1 in complex with transferrin receptor 1 B (TfR B) IRE, and compare it to the complex with ferritin H (Ftn H) IRE. The two IREs are bound to IRP1 through nearly identical protein-RNA contacts, although their stem conformations are significantly different. These results support the view that binding of different IREs with IRP1 depends both on protein and RNA conformational plasticity, adapting to RNA variation while retaining conserved protein-RNA contacts.  相似文献   

19.
细胞内铁稳态的维持主要通过铁调节蛋白(ironregulatory protein,IRP)与几种铁代谢基因如转铁蛋白受体和铁蛋白mRNA上铁应答元件结合来实现。铁不足可增加IRP2活性和含量,而铁过载则诱导了IRP2的泛素化和蛋白降解。F-盒蛋白FBXL5是一种铁和氧依赖的E3泛素连接酶,在铁和氧存在的情况下催化IRP2的泛素化,而缺铁或缺氧则造成FBXL5自身被泛素化修饰和随后的蛋白酶体降解。FBXL5铁调节功能的发现使人们对细胞内铁稳态的理解更为清晰。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号