首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
The Distal-less gene is known for its role in proximodistal patterning of Drosophila limbs. However, Distal-less has a second critical function during Drosophila limb development, that of distinguishing the antenna from the leg. The antenna-specifying activity of Distal-less is genetically separable from the proximodistal patterning function in that certain Distal-less allelic combinations exhibit antenna-to-leg transformations without proximodistal truncations. Here, we show that Distal-less acts in parallel with homothorax, a previously identified antennal selector gene, to induce antennal differentiation. While mutations in either Distal-less or homothorax cause antenna-to-leg transformations, neither gene is required for the others expression, and both genes are required for antennal expression of spalt. Coexpression of Distal-less and homothorax activates ectopic spalt expression and can induce the formation of ectopic antennae at novel locations in the body, including the head, the legs, the wings and the genital disc derivatives. Ectopic expression of homothorax alone is insufficient to induce antennal differentiation from most limb fields, including that of the wing. Distal-less therefore is required for more than induction of a proximodistal axis upon which homothorax superimposes antennal identity. Based on their genetic and biochemical properties, we propose that Homothorax and Extradenticle may serve as antenna-specific cofactors for Distal-less.  相似文献   

3.
Loss-of-function mutations in the spineless-aristapedia gene of Drosophila (ssa mutants) cause transformations of the distal antenna to distal second leg, deletions or fusions of the tarsi from all three legs, a general reduction in bristle size, and sterility. Because ssa mutants are pleiotropic, it has been suggested that ss+ has some rather general function and that the ssa antennal transformation is an indirect consequence of perturbations in the expression of other genes that more directly control antennal or second leg identity. Here we test whether the ssa transformation results from aberrant expression of Antennapedia (Antp), a homeotic gene thought to specify directly the identity of the second thoracic segment. We find that Antp-ssa mitotic recombination clones in the distal antenna behave identically to Antp+ ssa clones, and are transformed to second leg. This demonstrates that the ssa antennal transformation is independent of Antp+, and suggests that ss+ may itself directly define distal antennal identity. The results also reveal that Antp+ is not required for the development of distal second leg structures, as these develop apparently normally in Antp- ssa antennal clones. Because Antp- mutations cause deletions or transformations that are restricted to proximal structures, whereas ssa alleles cause similar defects that are distally restricted, we suggest that ss+ and Antp+ may play similar, but complementary, roles in the distal and proximal portions of appendages, respectively.  相似文献   

4.
5.
The formation of different structures in Drosophila depends on the combined activities of selector genes and signaling pathways. For instance, the antenna requires the selector gene homothorax, which distinguishes between the leg and the antenna and can specify distal antenna if expressed ectopically. Similarly, the eye is formed by a group of "eye-specifying" genes, among them eyeless, which can direct eye development ectopically. We report here the characterization of the hernandez and fernandez genes, expressed in the antennal and eye primordia of the eye-antenna imaginal disc. The predicted proteins encoded by these two genes have 27% common amino acids and include a Pipsqueak domain. Reduced expression of either hernandez or fernandez mildly affects antenna and eye development, while the inactivation of both genes partially transforms distal antenna into leg. Ectopic expression of either of the two genes results in two different phenotypes: it can form distal antenna, activating genes like homothorax, spineless, and spalt, and it can promote eye development and activates eyeless. Reciprocally, eyeless can induce hernandez and fernandez expression, and homothorax and spineless can activate both hernandez and fernandez when ectopically expressed. The formation of eye by these genes seems to require Notch signaling, since the induction of ectopic eyes and the activation of eyeless by the hernandez gene are suppressed when the Notch function is compromised. Our results show that the hernandez and fernandez genes are required for antennal and eye development and are also able to specify eye or antenna ectopically.  相似文献   

6.
Evolving role of Antennapedia protein in arthropod limb patterning   总被引:5,自引:0,他引:5  
Evolutional changes in homeotic gene functions have contributed to segmental diversification of arthropodan limbs, but crucial molecular changes have not been identified to date. The first leg of the crustacean Daphnia lacks a prominent ventral branch found in the second to fourth legs. We show here that this phenotype correlates with the loss of Distal-less and concomitant expression of Antennapedia in the limb primordium. Unlike its Drosophila counterpart, Daphnia Antennapedia represses Distal-less in Drosophila assays, and the protein region conferring this activity was mapped to the N terminal region of the protein. The results imply that Dapnia Antennapedia specifies leg morphology by repressing Distal-less, and this activity was acquired through a change in protein structure after separation of crustaceans and insects.  相似文献   

7.
8.
Cellular interaction between the proximal and distal domains of the limb plays key roles in proximal-distal patterning. In Drosophila, these domains are established in the embryonic leg imaginal disc as a proximal domain expressing escargot, surrounding the Distal-less expressing distal domain in a circular pattern. The leg imaginal disc is derived from the limb primordium that also gives rise to the wing imaginal disc. We describe here essential roles of Wingless in patterning the leg imaginal disc. Firstly, Wingless signaling is essential for the recruitment of dorsal-proximal, distal, and ventral-proximal leg cells. Wingless requirement in the proximal leg domain appears to be unique to the embryo, since it was previously shown that Wingless signal transduction is not active in the proximal leg domain in larvae. Secondly, downregulation of Wingless signaling in wing disc is essential for its development, suggesting that Wg activity must be downregulated to separate wing and leg discs. In addition, we provide evidence that Dll restricts expression of a proximal leg-specific gene expression. We propose that those embryo-specific functions of Wingless signaling reflect its multiple roles in restricting competence of ectodermal cells to adopt the fate of thoracic appendages.  相似文献   

9.
Summary The ash-1 locus is in the proximal region of the left arm of the third chromosome of Drosophila melanogaster and the ash-2 locus is in the distal region of the right arm of the third chromosome. Mutations at either locus can cause homeotic transformations of the antenna to leg, proboscis to leg and/or antenna, dorsal prothorax to wing, first and third leg to second leg, haltere to wing, and genitalia to leg and/or antenna. Mutations at the ash-1 locus cause, in addition, transformations of the posterior wing and second leg to anterior wing and second leg, respectively. A similar spectrum of transformations is caused by mutations at yet another third chromosome locus, trithorax. One extraordinary aspect of mutations at all three of these loci is that they cause such a wide variety of transformations. For mutations at both of the loci that we have studied the expression of the homeotic phenotype is both disc-autonomous (as shown by injecting mutant discs into metamorphosing larvae) and cell autonomous (as shown by somatic recombination analysis). The original mutations which identified these two loci, although lethal, manifest variable expressivity and incomplete penetrance of the homeotic phenotype suggesting that they are hypomorphic. The phenotype of double mutants which were synthesized by combining different pairs of those original mutations manifest for two of the four pairs a greater degree of expressivity and slightly more penetrance of the homeotic transformations. This mutual enhancement suggests that the products of both loci interact in the same process. A third double mutant expresses a discless phenotype.Additional alleles have been recovered at both the ash-1 and the ash-2 loci. Some of these alleles as homozygotes or transheterozygotes express the wide range of transformations revealed first by double mutants. One of the alleles at the ash-1 locus when homozygous and several transheterozygous pairs can cause either the homeotic transformation of discs or the absence of those discs. The fact that these two defects, absence of specific discs and homeotic transformations of those same discs can be caused by mutations within a single gene suggests that the activity of the product of this gene is essential for normal imaginal disc cell proliferation. Loss of that activity leads to the absence of discs, whereas, reduction of that activity leads to homeotic transformations.  相似文献   

10.
The insect leg and antenna are thought to be homologous structures, evolved from a common ancestral appendage. The homeotic transformations of antenna to leg in Drosophila produced by mutation of the Hox gene Antennapedia are position-specific, such that every particular antenna structure is transformed into a specific leg counterpart. This has been taken to suggest that the developmental programmes of these two appendages are still similar. In particular, the mechanisms for the specification of a cell's position within the appendage would be identical, only their interpretation would be different and subject to homeotic gene control. Here we explore the degree of conservation between the developmental programmes of leg and antenna in Drosophila and other dipterans, in wild-type and homeotic conditions. Most of the appendage pattern-forming genes are active in both appendages, and their expression domains are partially conserved. However, the regulatory relationships and interactions between these genes are different, and in fact cells change their expression while undergoing homeotic transformation. Thus, the positional information, and the mechanisms which generate it, are not strictly conserved between leg and antenna; and homeotic genes alter the establishment of positional clues, not only their interpretation. The partial conservation of pattern-forming genes in both appendages ensures a predictable re-specification of positional clues, producing the observed positional specificity of homeotic transformations.  相似文献   

11.
In insects, selector genes are thought to modify the development of a default, or 'ground state', appendage into a tagma-specific appendage such as a mouthpart, antenna or leg. In the best described example, Drosophila melanogaster, the primary determination of leg identity is thought to result from regulatory interactions between the Hox genes and the antennal-specifying gene homothorax. Based on RNA-interference, a functional analysis of the selector gene tiptop and the Hox gene Antennapedia in Oncopeltus fasciatus embryogenesis is presented. It is shown that, in O. fasciatus, tiptop is required for the segmentation of distal leg segments and is required to specify the identity of the leg. The distal portions of legs with reduced tiptop develop like antennae. Thus, tiptop can act as a regulatory switch that chooses between antennal and leg identity. By contrast, Antennapedia does not act as a switch between leg and antennal identity. This observation suggests a significant difference in the mechanism of leg specification between O. fasciatus and D. melanogaster. These observations also suggest a significant plasticity in the mechanism of leg specification during insect evolution that is greater than would have been expected based on strictly morphological or molecular comparisons. Finally, it is proposed that a tiptop-like activity is a likely component of an ancestral leg specification mechanism. Incorporating a tiptop-like activity into a model of the leg-specification mechanism explains several mutant phenotypes, previously described in D. melanogaster, and suggests a mechanism for the evolution of legs from a ground state.  相似文献   

12.
The linear cardiac tube of Drosophila, the dorsal vessel, is an important model organ for the study of cardiac specification and patterning in vertebrates. In Drosophila, the Hox segmentation gene abdominal-A (abd-A) is required for the specification of a functionally distinct heart region at the posterior of the dorsal vessel, from which blood is pumped anteriorly through a tube termed the aorta. Since we have previously shown that the posterior part of the aorta is specified during embryogenesis to form the adult heart during metamorphosis, we determined if the embryonic aorta is also patterned by the function of Hox segmentation genes. Using gain- and loss-of-function experiments, we demonstrate that the three Hox genes expressed in the posterior aorta and heart are sufficient to confer heart or posterior aorta fate throughout the dorsal vessel. Additionally, we demonstrate that Ultrabithorax and abd-A, but not Antennapedia, function to control cell number in the dorsal vessel. These studies add robustness to the model that homeotic selector genes pattern the Drosophila dorsal vessel, and further extend our understanding of how the cardiac tube is patterned in animal models.  相似文献   

13.
The Drosophila adult head mostly derives from the composite eye-antenna imaginal disc. The antennal disc gives rise to two adult olfactory organs: the antennae and maxillary palps. Here, we have analysed the regional specification of the maxillary palp within the antennal disc. We found that a maxillary field, defined by expression of the Hox gene Deformed, is established at about the same time as the eye and antennal fields during the L2 larval stage. The genetic program leading to maxillary regionalisation and identity is very similar to the antennal one, but is distinguished primarily by delayed prepupal expression of the ventral morphogen Wingless (Wg). We find that precociously expressing Wg in the larval maxillary field suffices to transform it towards antennal identity, whereas overexpressing Wg later in prepupae does not. These results thus indicate that temporal regulation of Wg is decisive to distinguishing maxillary and antennal organs. Wg normally acts upstream of the antennal selector spineless (ss) in maxillary development. However, mis-expression of Ss can prematurely activate wg via a positive-feedback loop leading to a maxillary-to-antenna transformation. We characterised: (1) the action of Wg through ss selector function in distinguishing maxillary from antenna; and (2) its direct contribution to identity choice.  相似文献   

14.
15.
In Drosophila, the homeotic gene Distal-less (Dll) has a fundamental role in the establishment of the identity of ventral appendages such as the leg and antenna. This study reports the expression pattern of Dll in the genital disc, the requirement of Dll activity for the development of the terminalia and the activation of Dll by the combined action of the morphogenetic signals Wingless (Wg) and Decapentaplegic (Dpp). During the development of the two components of the anal primordium - the hindgut and the analia - only the latter is dependent on Dll and hedgehog (hh) functions. The hindgut is defined by the expression of the homeobox gene even-skipped. The lack of Dll function in the anal primordia transforms the anal tissue into hindgut by the extension of the eve domain. Meanwhile targeted ectopic Dll represses eve expression and hindgut formation. The Dll requirement for the development of both anal plates in males and only for the dorsal anal plate in females, provides further evidence for the previously held idea that the analia arise from two primordia. In addition, evaluation was made of the requirement for the optomotor-blind (omb) gene which, as in the leg and antenna, is located downstream to Dpp. These results suggest that the terminalia show similar behaviour to the leg disc or the antennal part of the eye-antennal disc consistent with both the proposed ventral origin of the genital disc and the evolutive consideration of the terminalia as an ancestral appendage.  相似文献   

16.
Legs and antennae are considered to be homologous appendages. The fundamental patterning mechanisms that organize spatial pattern are conserved, yet appendages with very different morphology develop. A genetic hierarchy for specification of antennal identity has been partly elucidated. We report identification of a novel family of genes with roles in antennal development. The distal antenna (dan) and distal antenna-related (danr) genes encode novel nuclear proteins that are expressed in the presumptive distal antenna, but not in the leg imaginal disc. Ectopic expression of dan or danr causes partial transformation of distal leg structure toward antennal identity. Mutants that remove dan and danr activity cause partial transformation of antenna toward leg identity. Therefore we suggest that dan and danr contribute to differentiation of antenna-specific characteristics. Antenna-specific expression of dan and danr depends on a regulatory hierarchy involving homothorax and Distal-less, as well as cut and spineless. We propose that dan and danr are effector genes that act downstream of these genes to control differentiation of distal antennal structures.  相似文献   

17.
The effects of homeotic mutations on transdetermination in eye-antenna imaginal discs of Drosophila melanogaster were studied. After 12 days of culture in vivo, antenna discs transformed to ventral mesothorax by AntpNs or AntpZ, transdetermined to notum and wing structures four to five times more frequently than the corresponding wild-type antenna discs. Likewise, eye discs transformed to dorsal mesothorax by eyopt transdetermined to leg structures, also extremely frequently (90%). It seems that, during culture, homeotic antenna as well as homeotic eye discs tend to complete the structural inventory of the mesothoracic segment. Transdetermination in the homeotic disc parts is interpreted as a regeneration process which reestablishes an entire segment, i.e., the ventral mesothoracic portion (leg) in the antenna disc regenerates dorsal mesothoracic parts, and the dorsal mesothoracic portion in the eye disc (wing) regenerates ventral mesothoracic parts, respectively. This implies that antenna and leg discs (ventral qualities) as well as eye and wing discs (dorsal qualities) are serially homologous. The transdetermination frequency of the untransformed eye disc to notum and wing structures is enhanced by Antp to the same extent as is the transdetermination frequency of the antenna disc. The first allotypic wing disc structure formed by the eye disc is notum, followed by structures of the anterior wing compartment and finally by posterior wing structures. No evidence for such a sequence was found in the transdetermination pattern of the antenna disc.  相似文献   

18.
19.
The conservation of expression of appendage patterning genes, particularly Distal-less, has been shown in a wide taxonomic sampling of animals. However, the functional significance of this expression has been tested in only a few organisms. Here we report functional analyses of orthologues of the genes Distal-less, dachshund, and homothorax in the appendages of the milkweed bug Oncopeltus fasciatus (Hemiptera). This hemimetabolous insect has typical legs but highly derived mouthparts. Distal-less, dachshund, and homothorax are conserved in their individual expression patterns and functions in the legs of Oncopeltus, but their functions in other appendages are in some cases divergent. We find that specification of antennal identity does not require wild-type Distal-less activity in Oncopeltus as it does in Drosophila. Additionally, the mouthparts of Oncopeltus show novel patterns of gene expression and function, relative to other insects. Expression of Distal-less in the maxillary stylets of Oncopeltus does not seem necessary for proper development of this appendage, while dachshund and homothorax are crucial for formation of the mandibular and maxillary stylets. These data are used to evaluate hypotheses for the evolution of hemipteran mouthparts and the evolution of developmental mechanisms in insect appendages in general.  相似文献   

20.
The genes Distal-less, dachshund, extradenticle, and homothorax have been shown in Drosophila to be among the earliest genes that define positional values along the proximal-distal (PD) axis of the developing legs. In order to study PD axis formation in the appendages of the pill millipede Glomeris marginata, we have isolated homologues of these four genes and have studied their expression patterns. In the trunk legs, there are several differences to Drosophila, but the patterns are nevertheless compatible with a conserved role in defining positional values along the PD axis. However, their role in the head appendages is apparently more complex. Distal-less in the mandible and maxilla is expressed in the forming sensory organs and, thus, does not seem to be involved in PD axis patterning. We could not identify in the mouthparts components that are homologous to the distal parts of the trunk legs and antennnae. Interestingly, there is also a transient premorphogenetic expression of Distal-less in the second antennal and second maxillary segment, although no appendages are eventually formed in these segments. The dachshund gene is apparently involved both in PD patterning as well as in sensory organ development in the antenna, maxilla, and mandible. Strong dachshund expression is specifically correlated with the tooth-like part of the mandible, a feature that is shared with other mandibulate arthropods. homothorax is expressed in the proximal and medial parts of the legs, while extradenticle RNA is only seen in the proximal region. This overlap of expression corresponds to the functional overlap between extradenticle and homothorax in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号