首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Pathogenic fungus Penicillium oxalicum sp. 68 was screened from soil and identified by ITS sequencing. The strain was found to be able to transform protopanaxadiol-type ginsenosides to produce a series of bioactive metabolites. Glycosidase from the culture of P. oxalicum sp. 68 was partially purified with a simple two-step procedure consisting of DEAE-cellulose chromatography and ammonium sulfate precipitation. Bioactive ginsenoside Compound K was prepared selectively and efficiently by biotransformation of ginsenosides Rb1, Rb2, Rc and Rd using the partially purified glycosidase. The optimal conditions for transforming Rb1 into Compound K were pH 4.0, 55 °C and 0.5 mg mL?1 Rb1. The sole product is Compound K and the maximum yield reached 87.7 % (molar ratio). The transformation pathways of Rb1, Rb2, Rc and Rd are Rb1→Rd→F2→Compound K, Rb2→CO→CY→Compound K, Rc→Mb→Mc→Compound K and Rd→F2→Compound K, respectively. This biotransformation method showed great potential for preparing minor bioactive ginsenosides, especially Compound K, in the pharmaceutical industry because of its high specificity and favorable environmental compatibility.  相似文献   

2.
为探究人与大鼠肠道菌群对三七水煎液中三醇型人参皂苷Rg1、Re及二醇型人参皂苷Rb1、Rd体外代谢的差异性及发现其代谢产物原人参二醇PPD与原人参三醇PPT,实验利用UPLC方法测定三七水煎液分别与人、大鼠肠道菌群在厌氧条件下共培养24h后的孵育液中4种皂苷的含量及代谢产物PPD与PPT的含量。结果表明三七中含有三醇型人参皂苷Rg19.4500mg/g、Re1.8872mg/g,二醇型人参皂苷Rb18.5816mg/g、Rd1.9456mg/g。与人源肠道菌共培养后,三七中含有的二醇型、三醇型人参皂苷含量显著降低,重要的是,在培养液中检测到代谢产物PPD和PPT的存在,含量分别为0.2136mg/g及0.0344mg/g,与大鼠肠道菌共培养后,三七中含有的二醇型皂苷含量有轻微降低,而三醇型皂苷含量未见明显变化,但有少量PPT(0.0184mg/g)的生成。由此可见:在体外条件下,三七水煎液中人参皂苷会被人肠道菌群降解生成代谢产物PPD和PPT,而大鼠肠道菌群的降解产物却仅有PPT生成,二者存在种属差异。  相似文献   

3.
Ginsenoside Rb2 was transformed by recombinant glycosidase (Bgp2) into ginsenosides Rd and 20(S)-Rg3. The bgp2 gene consists of 2,430 bp that encode 809 amino acids, and this gene has homology to the glycosyl hydrolase family 2 protein domain. SDS-PAGE was used to determine that the molecular mass of purified Bgp2 was 87 kDa. Using 0.1 mg ml?1 of enzyme in 20 mM sodium phosphate buffer at 40 °C and pH 7.0, 1.0 mg ml?1 ginsenoside Rb2 was transformed into 0.47 mg ml?1 ginsenoside 20(S)-Rg3 within 120 min, with a corresponding molar conversion yield of 65 %. Bgp2 hydrolyzed the ginsenoside Rb2 along the following pathway: Rb2 → Rd → 20(S)-Rg3. This is the first report of the biotransformation of ginsenoside Rb2 to ginsenoside 20(S)-Rg3 using the recombinant glycosidase.  相似文献   

4.
The hydrolytic activity of a recombinant β-glycosidase from Dictyoglomus turgidum that specifically hydrolyzed the xylose at the C-6 position and the glucose in protopanaxatriol (PPT)-type ginsenosides followed the order Rf > Rg1 > Re > R1 > Rh1 > R2. The production of aglycone protopanaxatriol (APPT) from ginsenoside Rf was optimal at pH 6.0, 80 °C, 1 mg ml?1 Rf, and 10.6 U ml?1 enzyme. Under these conditions, D. turgidum β-glycosidase converted ginsenoside R1 to APPT with a molar conversion yield of 75.6 % and a productivity of 15 mg l?1 h?1 after 24 h by the transformation pathway of R1 → R2 → Rh1 → APPT, whereas the complete conversion of ginsenosides Rf and Rg1 to APPT was achieved with a productivity of 1,515 mg l?1 h?1 after 6.6 h by the pathways of Rf → Rh1 → APPT and Rg1 → Rh1 → APPT, respectively. In addition, D. turgidum β-glycosidase produced 0.54 mg ml?1 APPT from 2.29 mg ml?1 PPT-type ginsenosides of Panax ginseng root extract after 24 h, with a molar conversion yield of 43.2 % and a productivity of 23 mg l?1 h?1, and 0.62 mg ml?1 APPT from 1.35 mg ml?1 PPT-type ginsenosides of Panax notoginseng root extract after 20 h, with a molar conversion yield of 81.2 % and a productivity of 31 mg l?1 h?1. This is the first report on the APPT production from ginseng root extract. Moreover, the concentrations, yields, and productivities of APPT achieved in the present study are the highest reported to date.  相似文献   

5.
Using enrichment culture, Rhizobium sp. strain GIN611 was isolated as having activity for deglycosylation of a ginsenoside, compound K (CK). The purified heterodimeric protein complex from Rhizobium sp. GIN611 consisted of two subunits with molecular masses of 63.5 kDa and 17.5 kDa. In the genome, the coding sequence for the small subunit was located right after the sequence for the large subunit, with one nucleotide overlapping. The large subunit showed CK oxidation activity, and the deglycosylation of compound K was performed via oxidation of ginsenoside glucose by glycoside oxidoreductase. Coexpression of the small subunit helped soluble expression of the large subunit in recombinant Escherichia coli. The purified large subunit also showed oxidation activity against other ginsenoside compounds, such as Rb1, Rb2, Rb3, Rc, F2, CK, Rh2, Re, F1, and the isoflavone daidzin, but at a much lower rate. When oxidized CK was extracted and incubated in phosphate buffer with or without enzyme, (S)-protopanaxadiol [PPD(S)] was detected in both cases, which suggests that deglycosylation of oxidized glucose is spontaneous.  相似文献   

6.
In this study, the major ginsenoside Rb1 was transformed into the more pharmacologically active minor compound K by food grade Lactobacillus paralimentarius LH4, which was isolated from kimchi, a traditional Korean fermented food. The enzymatic reaction was analyzed by TLC, HPLC, and NMR. Using the cell-free enzyme of Lactobacillus paralimentarius LH4 at optimal conditions for 30 °C at pH 6.0, 1.0 mg ml?1 ginsenoside Rb1 was transformed into 0.52 mg ml?1 compound K within 72 h, with a corresponding molar conversion yield of 88 %. The cell-free enzyme hydrolyzed the two glucose moieties attached to the C-3 position and the outer glucose moiety attached to the C-20 position of the ginsenoside Rb1. The cell-free enzyme hydrolyzed the ginsenoside Rb1 along the following pathway: ginsenoside Rb1 → gypenoside XVII and ginsenoside Rd → ginsenoside F2 → compound K. Our results indicate that Lactobacillus paralimentarius LH4 has the potential to be applied for the preparation of compound K in the food industry.  相似文献   

7.
Abstract

The fungus Penicillium oxalicum is able to selectively metabolize the 20(S)-protopanaxadiol ginsenosides Rb1, Rb2 and Rc to the bioactive ginsenoside compound K using extracellular glycosidases. In this study, two novel extracellular ginsenoside-hydrolyzing enzymes GH3-1 and GH3-2 were purified and characterized from P. oxalicum culture. Using ginsenosides as substrates, GH3-1 and GH3-2 synergistically catalyzed the hydrolysis of Rb1, Rb2 and Rc to yield the final product Compound K (C-K). The hydrolysis pathways were determined to be: Rb1→Rd→F2→C-K, Rb2→CO→CY→C-K and Rc→Mb→Mc→C-K for GH3-1 and GH3-2, respectively. The two enzymes differ, especially in composition, molecular weight, stability and substrate specificity, from GH1, a glycosidase previously purified from the same fungus. These enzymes could be of interest in glycoside degradation, especially in the production of minor ginsenosides.  相似文献   

8.
A total of 58 isolates of β-glucosidase-producing microorganisms were isolated from soil around the wild ginseng roots under forest using Esculin-R2A agar. Among these isolates, strain GS33 showed a strong ability to convert ginsenosides Rb1, Rb2, Rc, and Rd into F2, Rg3, C-K, and convert ginsenoside Rg1 into Rh1, and F1. Fermented ginseng products can inhibit ES-2 cells growth and the IC50 value was 0.73 mg ml?1. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain GS33 belongs to the genus Penicillium and is most closely related to Penicillium simplicissimum (99 %).  相似文献   

9.
A combination of high hydrostatic pressure (HHP) and enzymatic hydrolysis (HHP-EH) was applied for the extraction of ginsenosides from fresh ginseng roots (Panax ginseng C.A. Myer). The highest yield of ginsenosides was obtained by using a mixture of three enzymes (Celluclast + Termamyl + Viscozyme) along with HHP (100 MPa, at 50 °C for 12 h) in comparison to control samples (no enzymes, atmosphere pressure, P < 0.05). Total ginsenosides increased by 184 % while Rg1 + Rb1 increased by 273 %. Application of these conditions significantly increased total ginsenosides by 49 % and Rg1 + Rb1 by 103 % compared to HHP treatment alone (P < 0.05). The effect of HHP on increased yield of ginsenosides is likely due in part, to acceleration of enzyme activity. Thus HHP-EH significantly improves the extraction of ginsenosides from fresh ginseng roots.  相似文献   

10.
In order to compare the ginsenoside composition in native Panax quinquefolium and in suspension cultured cells derived from root callus, HPLC–ESI-MSn analysis was performed. Under the present HPLC–ESI-MSn conditions, ten ginsenosides from native root were acquired in the positive and negative ion modes, namely Rg1, Re, Ro, malonyl-Rb1, Rf, Rb1, Rc, Rb2, Rb3 and Rd. Only four ginsenosides (Rg1, Re, Rf and Rb1) were identified from callus cells. Radical scavenging activity of P. quinquefolium callus cells with 250 mg l?1 methanolic extract on 1,1-diphenyl-2-picrylhydrazyl (DPPH) was 55.72 %, while only 6.31 % DPPH inhibition was obtained in native root.  相似文献   

11.
The specific activity of a recombinant β-glucosidase from Pyrococcus furiosus for protopanaxatriol (PPT)-type ginsenosides followed the order Rf > R1 > Re > R2 > Rg2, which were converted to Rh1, Rg1, Rg1, Rh1, and Rh1, respectively. No activity was observed with Rg1 and Rh1. Thus, P. furiosus β-glucosidase hydrolyzed the outer glycoside at the C-6 position in PPT-type ginsenosides whereas the enzyme did not hydrolyze the inner glucoside at the C-6 position and the glucoside at the C-20 position. The activity for Rf was optimal at 95 °C, pH 5.5, 5 mM ginsenoside, and 32 U enzyme l?1. Under these conditions, P. furiosus β-glucosidase completely converted from R1 to Rg1 after 10 h, with a productivity of 0.4 g l?1 h?1 and completely converted Rf to Rh1 after 1.2 h, with a productivity of 2.74 g l?1 h?1.  相似文献   

12.
Ginsenosides are the major constituent that is responsible for the health effects of American ginseng. The ginsenoside profile of wild American ginseng is ultimately the result of germplasm, climate, geography, vegetation species, water, and soil conditions. This is the first report to address the ginsenoside profile of wild American ginseng grown in Tennessee (TN), the third leading state for production of wild American ginseng. In the present study, ten major ginsenosides in wild American ginseng roots grown in TN, including Rb1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg1, Rg2, and Rg3, were determined simultaneously. The chemotypic differences among TN wild ginseng, cultivated American ginseng, and Asian ginseng were assessed based on the widely used markers of ginsenoside profiling, including the top three ginsenosides, ratios of PPD/PPT, Rg1/Rb1, Rg1/Re, and Rb2/Rc. Our findings showed marked variation in ginsenoside profile for TN wild ginseng populations. Nevertheless, TN wild ginseng has significant higher ginsenoside content and more ginsenoside diversity than the cultivated ginseng. The total ginsenoside content in TN wild ginseng, as well as ginsenosides Rg1 and Re, increases with the age of the roots. Marked chemotypic differences between TN wild ginseng and cultivated American ginseng were observed based on the chemotypic markers. Surprisingly, we found that TN wild ginseng is close to Asian ginseng with regard to these characteristics in chemical composition. This study verified an accessible method to scientifically elucidate the difference in chemical constituents to distinguish wild from the cultivated American ginseng. This work is critical for the ecological and biological assessments of wild American ginseng so as to facilitate long‐term sustainability of the wild population.  相似文献   

13.
β-Glucosidase from Thermus thermophilus has specific hydrolytic activity for the outer glucose at the C-20 position in protopanaxadiol-type ginsenosides without hydrolysis of the inner glucose. The hydrolytic activity of the enzyme for gypenoside XVII was optimal at pH 6.5 and 90 °C, with a half-life of 1 h with 3 g enzyme l?1 and 4 g gypenoside XVII l?1. Under the optimized conditions, the enzyme converted the substrate gypenoside XVII to ginsenoside F2 with a molar yield of 100 % and a productivity of 4 g l?1 h?1. The conversion yield and productivity of ginsenoside F2 are the highest reported thus far among enzymatic transformations.  相似文献   

14.
The ocotillol (OCT)‐type saponins have been known as a tetracyclic triterpenoid, possessing five‐ or six‐membered epoxy ring in the side chain. Interestingly, this type saponin was mostly found in Panax vietnamensis Ha et Grushv ., Araliaceae (VG), hence making VG unique from the other Panax spp. Five OCT‐type saponins, majonoside R2, vina‐ginsenoside R2, majonoside R1, pseudoginsenoside RT4, vina‐ginsenoside R11, together with three protopanaxadiol (PPD)‐type saponins and four protopanaxatriol (PPT)‐type saponins from VG were evaluated for their antimelanogenic activity. All of isolates were found to be active. More importantly, the five OCT‐type saponins inhibited melanin production in B16‐F10 mouse melanoma cells, without showing any cytotoxicity. Besides ginsenoside Rd and ginsenoside Rg3 in PPD and notoginsenoside R1 in PPT‐type saponins, majonoside R2 was the most potent melanogenesis inhibitory activity in OCT‐type saponins. In this article, we highlighted antimelanogenic activity of OCT‐type saponins and potential structure–activity relationship (SAR) of ginsenosides. Our results suggested that OCT‐type saponins could be used as a depigmentation agent.  相似文献   

15.
The focus of this study was the cloning, expression, and characterization of recombinant ginsenoside hydrolyzing β-glucosidase from Arthrobacter chlorophenolicus with an ultimate objective to more efficiently bio-transform ginsenosides. The gene bglAch, consisting of 1,260 bp (419 amino acid residues) was cloned and the recombinant enzyme, overexpressed in Escherichia coli BL21 (DE3), was characterized. The GST-fused BglAch was purified using GST·Bind agarose resin and characterized. Under optimal conditions (pH 6.0 and 37°C) BglAch hydrolyzed the outer glucose and arabinopyranose moieties of ginsenosides Rb1 and Rb2 at the C20 position of the aglycone into ginsenoside Rd. This was followed by hydrolysis into F2 of the outer glucose moiety of ginsenoside Rd at the C3 position of the aglycone. Additionally, BglAch more slowly transformed Rc to F2 via C-Mc1 (compared to hydrolysis of Rb1 or Rb2). These results indicate that the recombinant BglAch could be useful for the production of ginsenoside F2 for use in the pharmaceutical and cosmetic industries.  相似文献   

16.
Herein, a novel ginsenosidase, named ginsenosidase type IV, hydrolyzing 6-O-multi-glycosides of protopanaxatrioltype ginsenosides (PPT), such as Re, R1, Rf, and Rg2, was isolated from the Aspergillus sp. 39g strain, purified, and characterized. Ginsenosidase type IV was able to hydrolyze the 6-O-alpha-L-(1-->2)-rhamnoside of Re and the 6-O-beta-D- (1-->2)-xyloside of R1 into ginsenoside Rg1. Subsequently, it could hydrolyze the 6-O-beta-D-glucoside of Rg1 into F1. Similarly, it was able to hydrolyze the 6-O-alpha-L-(1-->2)- rhamnoside of Rg2 and the 6-O-beta-D-(1-->2)-glucoside of Rf into Rh1, and then further hydrolyze Rh1 into its aglycone. However, ginsenosidase type IV could not hydrolyze the 3-O- or 20-O-glycosides of protopanaxadioltype ginsenosides (PPD), such as Rb1, Rb2, Rb3, Rc, and Rd. These exhibited properties are significantly different from those of glycosidases described in Enzyme Nomenclature by the NC-IUBMB. The optimal temperature and pH for ginsenosidase type IV were 40°C and 6.0, respectively. The activity of ginsenosidase type IV was slightly improved by the Mg(2+) ion, and inhibited by Cu(2+) and Fe(2+) ions. The molecular mass of the enzyme, based on SDS-PAGE, was noted as being approximately 56 kDa.  相似文献   

17.

Aims

This study examined the biotransformation pathway of ginsenoside Rb1 by the fungus Esteya vermicola CNU 120806.

Methods and Results

Ginsenosides Rb1 and Rd were extracted from the root of Panax ginseng. Liquid fermentation and purified enzyme hydrolysis were employed to investigate the biotransformation of ginsenoside Rb1. The metabolites were identified and confirmed using NMR analysis as gypenoside XVII and gypenoside LXXV. A mole yield of 95·4% gypenoside LXXV was obtained by enzymatic conversion (pH 5·0, temperature 50°C). Ginsenoside Rd was used to verify the transformation pathway under the same reaction condition. The product Compound K (mole yield 49·6%) proved a consecutive hydrolyses occurred at the C‐3 position of ginsenoside Rb1.

Conclusions

Strain CNU 120806 showed a high degree of specific β‐glucosidase activity to convert ginsenosides Rb1 and Rd to gypenoside LXXV and Compound K, respectively. The maximal activity of the purified glucosidase for ginsenosides transformation occurred at 50°C and pH 5·0. Compared with its activity against pNPG (100%), the β‐glucosidase exhibited quite lower level of activity against other aryl‐glycosides. Enzymatic hydrolysate, gypenoside LXXV and Compound K were produced by consecutive hydrolyses of the terminal and inner glucopyranosyl moieties at the C‐3 carbon of ginsenoside Rb1 and Rd, giving the pathway: ginsenoside Rb1→ gypenoside XVII → gypenoside LXXV; ginsenoside Rd→F2→Compound K, but did not hydrolyse the 20‐C, β‐(1‐6)‐glucoside of ginsenoside Rb1 and Rd.

Significance and Impact of the Study

The results showed an important practical application on the preparation of gypenoside LXXV. Additionally, this study for the first time provided a high efficient preparation method for gypenoside LXXV without further conversion, which also gives rise to a potential commercial enzyme application.  相似文献   

18.
The study assesses the influence of different concentrations of nitrogen and phosphorus sources on ginsenoside biosynthesis in Panax quinquefolium hairy roots cultivated in shake flasks and a nutrient sprinkle bioreactor. The saponin content was determined using HPLC. The maximum yield (12.45 mg g?1 dw) of the sum of six examined ginsenosides (Rb1, Rb2, Rc, Rd, Re and Rg1) in hairy roots cultivated in shake flasks was achieved in modified Gamborg B-5 medium containing 0.83 mM l?1 phosphate, 12.4 mM l?1 nitrate and 0.5 mM l?1 ammonium. The yield itself was 1.93 times higher than that achieved in standard Gamborg medium. The modified medium also favourably influenced the biosynthesis of studied saponins in bioreactor cultures. The saponin content (35.11 mg g?1 d.w.) was 2.75-times higher than that achieved in control medium.  相似文献   

19.
Biotransformation of ginsenosides was examined using lactic acid bacteria isolated from several kinds of kimchi. A Gram-positive, facultatively anaerobic, non-motile, non-spore-forming, and rod-shaped lactic acid bacterial strain, designated EMML 3041T, was determined to have ginsenoside-converting activity and its taxonomic position was investigated using a polyphasic approach. Strain EMML 3041T displayed β-glucosidase activity that was responsible for its ability to transform ginsenoside Rb1 (one of the dominant active components of ginseng) to F2 via gypenoside XVII, ginsenoside Rb2 to compound Y via compound O, ginsenoside Rc to compound Mc via compound Mc1, and ginsenoside Rd to ginsenoside F2. On the basis of the 16S rRNA gene sequence similarity, strain EMML 3041T was shown to belong to the genus Lactobacillus and is closely related to Lactobacillus versmoldensis KU-3T (98.3 % sequence similarity). Polyphasic taxonomy study confirmed that the strain EMML 3041T represents a novel species, for which the name Lactobacillus ginsenosidimutans sp. nov. is proposed, with EMML 3041T (=KACC 14527T = JCM 16719T) as the type strain.  相似文献   

20.
《Process Biochemistry》2014,49(5):813-820
Ginsenosidase type I from Aspergillus niger g.48 can hydrolyze the 3-O- and 20-O-multi-glycosides of PPD-type ginsenosides. The enzyme molecular weight is approximately 74 kDa. When hydrolyzing the glycosides of Rb1, Rb3, Rb2 and Rc, the structures of which only differ in their terminal 20-O-glycosides, ginsenosidase type I hydrolyzes both the 3-O- and 20-O-glycosides of Rb1 and Rb3 using two pathways, but the enzyme first hydrolyzes the 3-O-glucosides of Rb2 and Rc using one pathway. One pathway of Rb1 hydrolyzes the 20-O-Glc of Rb1 to Rd→F2→C-K; another pathway hydrolyzes the 3-O-Glc of Rb1 to Gyp17→Gyp75→C-K. Two hydrolysis pathways are used to hydrolyze the 20-O-Xyl and the 3-O-Glc of Rb3. According to the enzyme reaction parameters Km, Vmax and V0 at a 10 mM substrate concentration, the enzyme hydrolysis velocity values decrease in the following order: the 20-O-Xyl of Rb3→Rd> the 20-O-Glc of Rb1→Rd> the 3-O-Glc of Rc> the 3-O-Glc of Rb2> the 3-O-Glc of Rd> the 3-O-Glc of Rb3→C-Mx1> the 3-O-Glc of Rb1→Gyp17> the 3-O-Glc of F2> the 3-O-Glc of 20(S)-Rg3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号