首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
ATP-dependent chromatin remodeling complexes can induce the translocation (sliding) of nucleosomes in cis along DNA, but the mechanism by which sliding occurs is not well defined. We previously presented evidence that sliding induced by the human SWI/SNF complex does not occur solely via a proposed "twist-diffusion" mechanism whereby the DNA rotates about its helical axis without displacement from the surface of the nucleosome (Aoyagi, S., and Hayes, J. J. (2002) Mol. Cell. Biol. 22, 7484-7490). Here we examined whether the Xenopus Mi-2 nucleosome remodeling complex induces nucleosome sliding via a twist-diffusion mechanism with nucleosomes assembled onto DNA templates containing branched DNA structures expected to sterically hinder rotation of the DNA helix on the nucleosome surface. We find that the branched DNA-containing nucleosomes undergo xMi-2-catalyzed sliding at a rate and extent identical to that of nucleosomes assembled on native DNA fragments. These results indicate that both the hSWI/SNF and xMi-2 complexes induce nucleosome sliding via a mechanism(s) other than simple twist diffusion and are consistent with models in which the DNA largely maintains its rotational orientation with respect to the histone surface.  相似文献   

3.
The nucleosome remodeling activity of ISW1a was dependent on whether ISW1a was bound to one or both extranucleosomal DNAs. ISW1a preferentially bound nucleosomes with an optimal length of approximately 33 to 35 bp of extranucleosomal DNA at both the entry and exit sites over nucleosomes with extranucleosomal DNA at only one entry or exit site. Nucleosomes with extranucleosomal DNA at one of the entry/exit sites were readily remodeled by ISW1a and stimulated the ATPase activity of ISW1a, while conversely, nucleosomes with extranucleosomal DNA at both entry/exit sites were unable either to stimulate the ATPase activity of ISW1a or to be mobilized. DNA footprinting revealed that a major conformational difference between the nucleosomes was the lack of ISW1a binding to nucleosomal DNA two helical turns from the dyad axis in nucleosomes with extranucleosomal DNA at both entry/exit sites. The Ioc3 subunit of ISW1a was found to be the predominant subunit associated with extranucleosomal DNA when ISW1a is bound either to one or to both extranucleosomal DNAs. These two conformations of the ISW1a-nucleosome complex are suggested to be the molecular basis for the nucleosome spacing activity of ISW1a on nucleosomal arrays. ISW1b, the other isoform of ISW1, does not have the same dependency for extranucleosomal DNA as ISW1a and, likewise, is not able to space nucleosomes.  相似文献   

4.
We describe the results of a systematic study, using electron microscopy, of the effects of ionic strength on the morphology of chromatin and of H1-depleted chromatin. With increasing ionic strength, chromatin folds up progressively from a filament of nucleosomes at approximately 1 mM monovalent salt through some intermediate higher- order helical structures (Thoma, F., and T. Koller, 1977, Cell 12:101- 107) with a fairly constant pitch but increasing numbers of nucleosomes per turn, until finally at 60 mM (or else in approximately 0.3 mM Mg++) a thick fiber of 250 A diameter is formed, corresponding to a structurally well-organized but not perfectly regular superhelix or solenoid of pitch approximately 110 A as described by Finch and Klug (1976, Proc. Natl. Acad. Sci. U.S.A. 73:1897-1901). The numbers of nucleosomes per turn of the helical structures agree well with those which can be calculated from the light-scattering data of Campbell et al. (1978, Nucleic Acids Res. 5:1571-1580). H1-depleted chromatin also condenses with increasing ionic strength but not so densely as chromatin and not into a definite structure with a well-defined fiber direction. At very low ionic strengths, nucleosomes are present in chromatin but not in H1-depleted chromatin which has the form of an unravelled filament. At somewhat higher ionic strengths (greater than 5 mM triethanolamine chloride), nucleosomes are visible in both types of specimen but the fine details are different. In chromatin containing H1, the DNA enters and leaves the nucleosome on the same side but in chromatin depleted of H1 the entrance and exit points are much more random and more or less on opposite sides of the nucleosome. We conclude that H1 stabilizes the nucleosome and is located in the region of the exit and entry points of the DNA. This result is correlated with biochemical and x-ray crystallographic results on the internal structure of the nucleosome core to give a picture of a nucleosome in which H1 is bound to the unique region on a complete two-turn, 166 base pair particle (Fig. 15). In the formation of higher-order structures, these regions on neighboring nucleosomes come closer together so that an H1 polymer may be formed in the center of the superhelical structures.  相似文献   

5.
Material on the surface of activated T-cells was displaced following incubation with a sulfated polysaccharide, dextrin 2-sulfate (D2S), and purified by anion-exchange chromatography. This revealed a complex comprising histones H2A, H2B, H3, and H4 and DNA fragmented into 180-base pair units characteristic of mono-, di-, tri, and polynucleosomes, a pattern of fragmentation similar to that found in apoptotic cells. An antibody raised against the purified nucleosome preparation bound to the plasma membrane of activated T-cells confirming the surface location of nucleosomes. The interaction of sulfated polysaccharides with nucleosomes was investigated using a biotinylated derivative of D2S. It was found that sulfated polysaccharides bound to nucleosomes via the N termini of histones, especially H2A and H2B. Treatment of T-cells with either heparinase or heparitinase abolished nucleosome binding to plasma membranes. This suggests that nucleosomes are anchored to the surface of T-cells by heparan sulfate proteoglycans through an ionic interaction with the basic N-terminal residues in the histones. Furthermore, nucleosomes bound to the cell surface in this manner are then able to bind other sulfated polysaccharides, such as D2S, heparin, or dextran sulfate, through unoccupied histone N termini forming a complex comprising cell surface heparan sulfate proteoglycans, nucleosomes, and sulfated polysaccharides.  相似文献   

6.
The EBNA1 protein of Epstein–Barr virus (EBV) activates latent-phase DNA replication by an unknown mechanism that involves binding to four recognition sites in the dyad symmetry (DS) element of the viral latent origin of DNA replication. Since EBV episomes are assembled into nucleosomes, we have examined the ability of Epstein–Barr virus nuclear antigen 1 (EBNA1) to interact with the DS element when it is assembled into a nucleosome core particle. EBNA1 bound to its recognition sites within this nucleosome, forming a ternary complex, and displaced the histone octamer upon competitor DNA challenge. The DNA binding and dimerization region of EBNA1 was sufficient for nucleosome binding and destabilization. Although EBNA1 was able to bind to nucleosomes containing two recognition sites from the DS element positioned at the edge of the nucleosome, nucleosome destabilization was only observed when all four sites of the DS element were present. Our results indicate that the presence of a nucleosome at the viral origin will not prevent EBNA1 binding to its recognition sites. In addition, since four EBNA1 recognition sites are required for both nucleosome destabilization and efficient origin activation, our findings also suggest that nucleosome destabilization by EBNA1 is important for origin activation.  相似文献   

7.
The accessibility of DNA in nucleosome dimers (as a model of the chromosomal chain of nucleosomes) was determined by means of modification methylases from Haemophilus influenzae Rd. Using these enzymes, the rate of modification of nucleosome dimers is about one fifth the rate observed with protein-free DNA from chromatin subunit dimers. Methylated DNA sites in nucleosome dimers are readily accessible to micrococcal nuclease. The analysis of the fragment pattern of nucleosomes after methylation and mild nuclease treatment reveals that the methylated sites are predominantly located in the internucleosomal linker DNA. Polylysine binding experiments further support this interpretation. This compound preferentially interacts with the nucleosomal core DNA and protects it against internal cleavage. It neither affects the degradation of methylated sites drastically nor does it inhibit the methylation of nucleosome dimers. Thus, a combination of protection, cleavage and modification is proposed as a useful tool for the analysis of the structure of chromatin.  相似文献   

8.
Alu sequences carry periodical pattern with CG dinucleotides (CpG) repeating every 31-32 bases. Similar distances are observed in distribution of DNA curvature in crystallized nucleosomes, at positions +/-1.5 and +/-4.5 periods of DNA from nucleosome DNA dyad. Since CG elements are also found to impart to nucleosomes higher stability when positioned at +/-1.5 sites, it suggests that CG dinucleotides may play a role in modulation of the nucleosome strength when the CG elements are methylated. Thus, Alu sequences may harbor special epigenetic nucleosomes with methylation-dependent regulatory functions. Nucleosome DNA sequence probe is suggested to detect locations of such regulatory nucleosomes in the sequences.  相似文献   

9.
10.
The Saccharomyces cerevisiae Nhp6 protein contains a DNA-binding motif that is similar to those found in the high mobility group B family of chromatin proteins. Nhp6 bound to nucleosomes and made at least two changes in them: the nucleosomal DNA became more sensitive to DNase I at specific sites, and the nucleosomes became competent to bind Spt16-Pob3 to form yFACT.nucleosome complexes. Both changes occurred at similar concentrations of Nhp6, suggesting that they reflect the same structural reorganization of the nucleosome. Nucleosomes have multiple binding sites for Nhp6, and structural reorganization was associated with a concentration of Nhp6 about 10-fold higher than that needed for simple binding. We propose that the coordinated action of multiple Nhp6 molecules is required to convert nucleosomes to an alternative form as the first step in a two-step reorganization of nucleosomes with the second step being dependent on Spt16-Pob3. The presence of linker DNA had only subtle effects on these processes, indicating that both Nhp6 and yFACT act on core nucleosome structure rather than on the interaction between nucleosomes and adjacent DNA. These results suggest that Nhp6 and the related high mobility group B proteins may have a general role in promoting rearrangements of chromatin by initiating the destabilization of core nucleosomal structure.  相似文献   

11.
12.
We report the use of hydroxyl radical footprinting to analyze the interaction of distamycin and actinomycin with the 5S ribosomal RNA genes of Xenopus. There is a qualitative difference in the hydroxyl radical footprints of the two drugs. Distamycin gives a conventional (albeit high-resolution) footprint, while actinomycin does not protect DNA from hydroxyl radical attack, but instead induces discrete sites of hyperreactivity. We find concentration-dependent changes in the locations of distamycin binding sites on the somatic 5S gene of Xenopus borealis. A high-affinity site, containing a G.C base pair, is replaced at higher levels of bound drug by a periodic array of different lower affinity sites that coincide with the places where the minor groove of the DNA would face in toward a nucleosome core that is known to bind to the same sequence. These results suggest that distamycin recognizes potential binding sites more by the shape of the DNA than by the specific sequence that is contained in the site and that structures of many sequences are deformable to a shape that allows drug binding. We discuss the utility of hydroxyl radical footprinting of distamycin for investigating the underlying structure of DNA.  相似文献   

13.
Stability of nucleosome placement in newly repaired regions of DNA   总被引:1,自引:0,他引:1  
Rearrangements of chromatin structure during excision repair of UV-damaged DNA appear to involve unfolding of nucleosomal DNA while repair is taking place, followed by refolding of this DNA into a native nucleosome structure. Recently, we found that repair patches are not distributed uniformly along the DNA in nucleosome core particles immediately following their refolding into nucleosomes (Lan, S. Y., and Smerdon, M. J. (1985) Biochemistry, 24,7771). Therefore, the distribution of repair patches in nucleosome core DNA was used to monitor the stability of nucleosome placement in these regions. Our results indicate that in nondividing human cells undergoing excision repair there is a slow change in the positioning of nucleosomes in newly repaired regions of chromatin, resulting in the eventual randomization of repair patches in nucleosome core DNA. Furthermore, the nonrandom placement of nucleosomes observed just after the refolding event is not re-established during DNA replication. Possible mechanisms for this change in nucleosome placement along the DNA are discussed.  相似文献   

14.
Telomeres are dynamic nucleoprotein structures that cap the ends of eukaryotic chromosomes. In humans, the long (TTAGGG)(n) double-stranded telomeric DNA repeats are bound specifically by the two related proteins TRF1 and TRF2, and are organized in nucleosomes. Whereas the role of TRF1 and TRF2 in telomeric function has been studied extensively, little is known about the involvement of telomeric nucleosomes in telomere structures or how chromatin formation may affect binding of the TRFs. Here, we address the question of whether TRF1 is able to bind to telomeric binding sites in a nucleosomal context. We show that TRF1 is able to specifically recognize telomeric binding sites located within nucleosomes, forming a ternary complex. The formation of this complex is strongly dependent on the orientation of binding sites on the nucleosome surface, rather than on the location of the binding sites with respect to the nucleosome dyad. Strikingly, TRF1 binding causes alterations in nucleosome structure without dissociation of histone subunits. These results indicate that nucleosomes contribute to the establishment of a telomeric capping complex, whose structure and dynamics can be modulated by the binding of telomeric factors.  相似文献   

15.
16.
17.
18.
19.
Lee K  Kim DR  Ahn B 《Molecules and cells》2004,18(1):100-106
The DNA repair machinery must locate and repair DNA damage all over the genome. As nucleosomes inhibit DNA repair in vitro, it has been suggested that chromatin remodeling might be required for efficient repair in vivo. To investigate a possible contribution of nucleosome dynamics and chromatin remodeling to the repair of UV-photoproducts in nucleosomes, we examined the effect of a chromatin remodeling complex on the repair of UV-lesions by Micrococcus luteus UV endonuclease (ML-UV endo) and T4-endonuclease V (T4-endoV) in reconstituted mononucleosomes positioned at one end of a 175-bp long DNA fragment. Repair by ML-UV endo and T4-endoV was inefficient in mononucleosomes compared with naked DNA. However, the human nucleosome remodeling complex, hSWI/SNF, promoted more homogeneous repair by ML-UV endo and T4-endo V in reconstituted nucleosomes. This result suggests that recognition of DNA damage could be facilitated by a fluid state of the chromatin resulting from chromatin remodeling activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号