首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
3.
4.
5.
6.
7.
In the present study we present evidence for the critical role of Sp1 in the mechanism of transactivation of the human cell cycle inhibitor p21(WAF1/Cip1) (p21) gene promoter by the tumor suppressor p53 protein. We found that the distal p53-binding site of the p21 promoter acts as an enhancer on the homologous or heterologous promoters in hepatoma HepG2 cells. In transfection experiments, p53 transactivated the p21 promoter in HaCaT cells that express Sp1 but have a mutated p53 form. In contrast, p53 could not transactivate the p21 promoter in the Drosophila embryo-derived Schneider's SL2 cells that lack endogenous Sp1 or related factors. Cotransfection of SL2 cells with p53 and Sp1 resulted in a synergistic transactivation of the p21 promoter. Synergistic transactivation was greatly decreased in SL2 cells and HaCaT cells by mutations in either the p53-binding site or in the -82/-77 Sp1-binding site indicating functional cooperation between Sp1 and p53 in the transactivation of the p21 promoter. Synergistic transactivation was also decreased by mutations in the transactivation domain of p53. Physical interactions between Sp1 and p53 proteins were established by glutathione S-transferase pull-down and coimmunoprecipitation assays. By using deletion mutants we found that the DNA binding domain of Sp1 is required for its physical interaction with p53. In conclusion, Sp1 must play a critical role in regulating important biological processes controlled by p53 via p21 gene activation such as DNA repair, cell growth, differentiation, and apoptosis.  相似文献   

8.
p21(Cip1/WAF1) inhibits cell-cycle progression by binding to G1 cyclin/CDK complexes and proliferating cell nuclear antigen (PCNA) through its N- and C-terminal domains, respectively. The cell-cycle inhibitory activity of p21(Cip1/WAF1) is correlated with its nuclear localization. Here, we report a novel cytoplasmic localization of p21(Cip1/WAF1) in peripheral blood monocytes (PBMs) and in U937 cells undergoing monocytic differentiation by in vitro treatment with vitamin D3 or ectopic expression of p21(Cip1/WAF1), and analyze the biological consequences of this cytoplasmic expression. U937 cells which exhibit nuclear p21(Cip1/WAF1) demonstrated G1 cell-cycle arrest and subsequently differentiated into monocytes. The latter event was associated with a cytoplasmic expression of nuclear p21(Cip1/WAF1), concomitantly with a resistance to various apoptogenic stimuli. Biochemical analysis showed that cytoplasmic p21(Cip1/WAF1) forms a complex with the apoptosis signal-regulating kinase 1 (ASK1) and inhibits stress-activated MAP kinase cascade. Expression of a deletion mutant of p21(Cip1/WAF1) lacking the nuclear localization signal (DeltaNLS-p21) did not induce cell cycle arrest nor monocytic differentiation, but led to an apoptosis-resistant phenotype, mediated by binding to and inhibition of the stress-activated ASK1 activity. Thus, cytoplasmic p21(Cip1/WAF1) itself acted as an inhibitor of apoptosis. Our findings highlight the different functional roles of p21(Cip1/WAF1), which are determined by its intracellular distribution and are dependent on the stage of differentiation.  相似文献   

9.
10.
Wang W  Nacusi L  Sheaff RJ  Liu X 《Biochemistry》2005,44(44):14553-14564
Multiple proteolytic pathways are involved in the degradation of the cyclin-dependent kinase inhibitor p21(Cip1/WAF1). Timed destruction of p21(Cip1/WAF1) plays a critical role in cell-cycle progression and cellular response to DNA damage. The SCF(Skp2) complex (consisting of Rbx1, Cul1, Skp1, and Skp2) is one of the E3 ubiquitin ligases involved in ubiquitination of p21(Cip1/WAF1). Little is known about how SCF(Skp2) recruits its substrates and selects particular acceptor lysine residues for ubiquitination. In this study, we investigated the requirements for SCF(Skp2) recognition of p21(Cip1/WAF1) and lysine residues that are ubiquitinated in vitro and inside cells. We demonstrate that ubiquitination of p21(Cip1/WAF1) requires a functional interaction between p21(Cip1/WAF1) and the cyclin E-Cdk2 complex. Mutation of both the cyclin E recruitment motif (RXL) and the Cdk2-binding motif (FNF) at the N terminus of p21(Cip1/WAF1) abolishes its ubiquitination by SCF(Skp2), while mutation of either motif alone has minimal effects, suggesting either contact is sufficient for substrate recruitment. Thus, SCF(Skp2) appears to recognize a trimeric complex consisting of cyclin E-Cdk2-p21(Cip1/WAF1). Furthermore, we show that p21(Cip1/WAF1) can be ubiquitinated at four distinct lysine residues located in the carboxyl-terminal region but not two other lysine residues in the N-terminal region. Any one of these four lysine residues can be targeted for ubiquitination in the absence of the others in vitro, and three of these four lysine residues are also ubiquitinated in vivo, suggesting that there is limited specificity in the selection of ubiquitination sites. Interestingly, mutation of the carboxyl-terminal proline to lysine enables ubiquitin conjugation at the carboxyl terminus of the substrate both in vitro and in vivo. Thus, our results highlight a unique property of the ubiquitination enzymatic reaction in that substrate ubiquitination site selection can be remarkably diverse and occur in distinct spatial areas.  相似文献   

11.
p21(Cip1/WAF1) has cell cycle inhibitory activity by binding to and inhibiting both cyclin/Cdk kinases and proliferating cell nuclear antigen. Here we show that p21(Cip1/WAF1) is induced in the cytoplasm during the course of differentiation of chick retinal precursor cells and N1E-115 cells. Ectopic expression of p21(Cip1/WAF1) lacking the nuclear localization signal in N1E-115 cells and NIH3T3 cells affects the formation of actin structures, characteristic of inactivation of Rho. p21(Cip1/WAF1) forms a complex with Rho-kinase and inhibits its activity in vitro and in vivo. Neurite outgrowth and branching from the hippocampal neurons are promoted if p21(Cip1/WAF1) is expressed abundantly in the cytoplasm. These results suggest that cytoplasmic p21(Cip1/WAF1) may contribute to the developmental process of the newborn neurons that extend axons and dendrites into target regions.  相似文献   

12.
The molecular mechanisms mediating death receptor-induced caspase-independent necrotic cell death are still largely unknown. We have previously reported that NIH3T3 cells are sensitized by caspase inhibition to death receptor-induced cytotoxicity leading to a necrosis-like cell death. In addition, we have identified an important role of cell cycle progression for this sensitization effect. Here, we report that tumor necrosis factor-induced necrotic death is preceded by an upregulation of the cyclin-dependent kinase inhibitor p21(WAF1/Cip1). Increased expression of p21(WAF1/Cip1) occurs prior to cell death in the nucleus, where it binds to a cyclin-dependent kinase indicating its functionality. The use of specific pharmacological inhibitors revealed a partial involvement of p38 mitogen-activated protein kinase in the upregulation of p21(WAF1/Cip1). Inhibition of p21(WAF1/Cip1) upregulation prevents a previously observed delay of the cells in the G2/M phase of the cell cycle thereby augmenting, not inhibiting cell death.  相似文献   

13.
14.
15.
16.
17.
18.
19.
Protein kinase B (PKB, also called Akt) is known as a serine/threonine protein kinase. Some studies indicate that the Akt signalling pathway strongly promotes G2/M transition in mammalian cell cycle progression, but the mechanism remains to be clarified, especially in the fertilized mouse egg. Here, we report that the expression of Akt at both the protein and mRNA level was highest in G2 phase, accompanied by a peak of Akt activity. In addition, the subcellular localization of p21(Cip1/WAF1) has been proposed to be critical in the cell cycle. Hence, we detected the expression and localization of p21(Cip1/WAF1) after injecting fertilized mouse eggs with Akt mRNA. In one-cell stage fertilized embryos microinjected with mRNA coding for a constitutively active myristoylated Akt (myr-Akt), p21(Cip1/WAF1) was retained in the cytoplasm. Microinjection of mRNA of kinase-deficient Akt(Akt-KD) resulted in nuclear localization of p21(Cip1/WAF1) . Meanwhile, microinjection of different types of Akt mRNA affected the phosphorylation status of p21(Cip1/WAF1) . However, there was no obvious difference in the protein expression of p21(Cip1/WAF1) . Therefore, Akt controls the cell cycle by changing the subcellular localization of p21(Cip1/WAF1) , most likely by affecting the phosphorylation status of p21(Cip1/WAF1) .  相似文献   

20.
Currently, some controversy exists regarding the precise role of 15-lipoxygenase-1 (15-LOX-1) in colorectal carcinogenesis and other aspects of cancer biology. The aim of this study was to evaluate the effect of 15-LOX-1 on p21 (Cip/WAF 1) expression and growth regulation in human colon carcinoma cells. The effect of 13-S-hydroxyoctadecadienoic acid (HODE), a product of 15-LOX-1, on p21 (Cip/WAF 1) expression was evaluated in Caco-2 cells treated with sodium butyrate (NaBT) and/or nordihydroguaiarectic acid (NDGA), a LOX inhibitor. The effect of transfecting HCT-116 cells with 15-LOX-1 was also examined. NaBT-induced p21 (Cip/WAF 1) expression was enhanced by treatment with NDGA and 13-S-HODE reversed NaBT-induced p21 (Cip/WAF 1) expression in Caco-2 cells. Overexpression of 15-LOX-1 induced extracellular signal-related kinase (ERK) 1/2 phosphorylation, decreased p21 (Cip/WAF 1) expression, and increased HCT-116 cell growth. Treatment with NDGA decreased ERK 1/2 phosphorylation, and increased p21 (Cip/WAF 1) expression in 15-LOX-1 overexpressing HCT-116 cells. Our experimental results support the hypothesis that 15-LOX-1 may have "pro-neoplastic" effects during the development of colorectal cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号