首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytoskeletal forces involved in translocating the nucleus in a migrating tissue cell remain unresolved. Previous studies have variously implicated actomyosin-generated pushing or pulling forces on the nucleus, as well as pulling by nucleus-bound microtubule motors. We found that the nucleus in an isolated migrating cell can move forward without any trailing-edge detachment. When a new lamellipodium was triggered with photoactivation of Rac1, the nucleus moved toward the new lamellipodium. This forward motion required both nuclear-cytoskeletal linkages and myosin activity. Apical or basal actomyosin bundles were found not to translate with the nucleus. Although microtubules dampen fluctuations in nuclear position, they are not required for forward translocation of the nucleus during cell migration. Trailing-edge detachment and pulling with a microneedle produced motion and deformation of the nucleus suggestive of a mechanical coupling between the nucleus and the trailing edge. Significantly, decoupling the nucleus from the cytoskeleton with KASH overexpression greatly decreased the frequency of trailing-edge detachment. Collectively, these results explain how the nucleus is moved in a crawling fibroblast and raise the possibility that forces could be transmitted from the front to the back of the cell through the nucleus.  相似文献   

2.
《The Journal of cell biology》1996,134(5):1209-1218
We have investigated the relationship between lamellipodium protrusion and forward translocation of the cell body in the rapidly moving keratocyte. It is first shown that the trailing, ellipsoidal cell body rotates during translocation. This was indicated by the rotation of the nucleus and the movement of cytoplasmic organelles, as well as of exogenously added beads used as markers. Activated or Con A-coated fluorescent beads that were overrun by cells were commonly endocytosed and rotated with the internal organelles. Alternatively, beads applied to the rear of the cell body via a micropipette adhered to the dorsal cell surface and also moved forward, indicating that both exterior and underlying cortical elements participated in rotation. Manipulation of keratocytes with microneedles demonstrated that pushing or restraining the cell body in the direction of locomotion, and squeezing it against the substrate, which temporarily increased the intracellular pressure, did not effect the rate of lamellipodium protrusion. Rotation and translocation of the cell body continued momentarily after arrest of lamellipodium protrusion by cytochalasin B, indicating that these processes were not directly dependent on actin polymerization. The cell body was commonly flanked by phase-dense "axles," extending from the cell body into the lamellipodium. Phalloidin staining showed these to be comprised of actin bundles that splayed forward into the flanks of the lamellipodium. Disruption of the bundles on one side of the nucleus by traumatic microinjection resulted in rapid retraction of the cell body in the opposite direction, indicating that the cell body was under lateral contractile stress. Myosin II, which colocalizes with the actin bundles, presumably provides the basis of tension generation across and traction of the cell body. We propose that the basis of coupling between lamellipodium protrusion and translocation of the cell body is a flow of actin filaments from the front, where they are nucleated and engage in protrusion, to the rear, where they collaborate with myosin in contraction. Myosin-dependent force is presumably transmitted from the ends of the cell body into the flanks of the lamellipodium via the actin bundles. This force induces the spindle-shaped cell body to roll between the axles that are created continuously from filaments supplied by the advancing lamellipodium.  相似文献   

3.
Keratocytes generate traction forces in two phases   总被引:4,自引:0,他引:4       下载免费PDF全文
Forces generated by goldfish keratocytes and Swiss 3T3 fibroblasts have been measured with nanonewton precision and submicrometer spatial resolution. Differential interference contrast microscopy was used to visualize deformations produced by traction forces in elastic substrata, and interference reflection microscopy revealed sites of cell-substratum adhesions. Force ranged from a few nanonewtons at submicrometer spots under the lamellipodium to several hundred nanonewtons under the cell body. As cells moved forward, centripetal forces were applied by lamellipodia at sites that remained stationary on the substratum. Force increased and abruptly became lateral at the boundary of the lamellipodium and the cell body. When the cell retracted at its posterior margin, cell-substratum contact area decreased more rapidly than force, so that stress (force divided by area) increased as the cell pulled away. An increase in lateral force was associated with widening of the cell body. These mechanical data suggest an integrated, two-phase mechanism of cell motility: (1) low forces in the lamellipodium are applied in the direction of cortical flow and cause the cell body to be pulled forward; and (2) a component of force at the flanks pulls the rear margins forward toward the advancing cell body, whereas a large lateral component contributes to detachment of adhesions without greatly perturbing forward movement.  相似文献   

4.
Mechanical interactions between cell and substrate are involved in vital cellular functions from migration to signal transduction. A newly developed technique, traction force microscopy, makes it possible to visualize the dynamic characteristics of mechanical forces exerted by fibroblasts, including the magnitude, direction, and shear. In the present study such analysis is applied to migrating normal and transformed 3T3 cells. For normal cells, the lamellipodium provides almost all the forces for forward locomotion. A zone of high shear separates the lamellipodium from the cell body, suggesting that they are mechanically distinct entities. Timing and distribution of tractions at the leading edge bear no apparent relationship to local protrusive activities. However, changes in the pattern of traction forces often precede changes in the direction of migration. These observations suggest a frontal towing mechanism for cell migration, where dynamic traction forces at the leading edge actively pull the cell body forward. For H-ras transformed cells, pockets of weak, transient traction scatter among small pseudopods and appear to act against one another. The shear pattern suggests multiple disorganized mechanical domains. The weak, poorly coordinated traction forces, coupled with weak cell-substrate adhesions, are likely responsible for the abnormal motile behavior of H-ras transformed cells.  相似文献   

5.
Amoeboid movement is believed to involve a pressure gradient along the cell length, with contractions in the posterior region driving cytoplasmic streaming forward. However, a parallel mechanism has yet to be demonstrated in migrating adhesive cells. To probe the distribution of intracellular forces, we microinjected high molecular weight linear polyacrylamide (PAA) as a passive force sensor into migrating NIH3T3 fibroblasts. Injected PAA appeared as amorphous aggregates that underwent shape change and directional movement in response to differential forces exerted by the surrounding environment. PAA injected into the posterior region moved toward the front, whereas PAA in the anterior region never moved to the posterior region. This preferential forward movement was observed only in migrating cells with a defined polarity. Disruption of myosin II activity by blebbistatin inhibited the forward translocation of PAA while cell migration persisted in a disorganized fashion. These results suggest a myosin II-dependent force gradient in migrating cells, possibly as a result of differential cortical contractions between the anterior and posterior regions. This gradient may be responsible for the forward transport of cellular components and for maintaining the directionality during cell migration.  相似文献   

6.
Interactions between microtubules (MTs) and filamentous actin (f-actin) are involved in directed cell locomotion, but are poorly understood. To test the hypothesis that MTs and f-actin associate with one another and affect each other's organization and dynamics, we performed time-lapse dual-wavelength spinning-disk confocal fluorescent speckle microscopy (FSM) of MTs and f-actin in migrating newt lung epithelial cells. F-actin exhibited four zones of dynamic behavior: rapid retrograde flow in the lamellipodium, slow retrograde flow in the lamellum, anterograde flow in the cell body, and no movement in the convergence zone between the lamellum and cell body. Speckle analysis showed that MTs moved at the same trajectory and velocity as f-actin in the cell body and lamellum, but not in the lamellipodium or convergence zone. MTs grew along f-actin bundles, and quiescent MT ends moved in association with f-actin bundles. These results show that the movement and organization of f-actin has a profound effect on the dynamic organization of MTs in migrating cells, and suggest that MTs and f-actin bind to one another in vivo.  相似文献   

7.
Cofilin mediates lamellipodium extension and polarized cell migration by accelerating actin filament dynamics at the leading edge of migrating cells. Cofilin is inactivated by LIM kinase (LIMK)-1-mediated phosphorylation and is reactivated by cofilin phosphatase Slingshot (SSH)-1L. In this study, we show that cofilin activity is temporally and spatially regulated by LIMK1 and SSH1L in chemokine-stimulated Jurkat T cells. The knockdown of LIMK1 suppressed chemokine-induced lamellipodium formation and cell migration, whereas SSH1L knockdown produced and retained multiple lamellipodial protrusions around the cell after cell stimulation and impaired directional cell migration. Our results indicate that LIMK1 is required for cell migration by stimulating lamellipodium formation in the initial stages of cell response and that SSH1L is crucially involved in directional cell migration by restricting the membrane protrusion to one direction and locally stimulating cofilin activity in the lamellipodium in the front of the migrating cell. We propose that LIMK1- and SSH1L-mediated spatiotemporal regulation of cofilin activity is critical for chemokine-induced polarized lamellipodium formation and directional cell movement.  相似文献   

8.
To migrate, normally a cell must establish morphological polarity and continuously protrude a single lamellipodium, polarized in the direction of migration. We have previously shown that actin filament disassembly is necessary for protrusion of the lamellipodium during fibroblast migration. As ADF/cofilin (AC) proteins are essential for the catalysis of filament disassembly in cells, we assessed their role in polarized lamellipodium protrusion in migrating fibroblasts. We compared the spatial distribution of AC and the inactive, phosphorylated AC (pAC) in migrating cells. AC, but not pAC, localized to the lamellipodium. To investigate a role for AC in cell polarity, we increased the proportion of pAC in migrating fibroblasts by overexpressing constitutively active (CA) LIM kinase 1. In 87% of cells expressing CA LIM kinase, cell polarity was abolished. In such cells, the single polarized lamellipodium was replaced by multiple nonpolarized lamellipodia, which, in contrast to nonexpressing migrating cells, stained for pAC. Cell polarity was rescued by coexpressing an active, nonphosphorylatable Xenopus AC (CA XAC) with the CA LIMK. Furthermore, overexpressing a pseudophosphorylated (less active) XAC by itself also abolished cell polarity. We conclude that locally maintaining ADF/cofilin in the active, nonphosphorylated state within the lamellipodium is necessary to maintain polarized protrusion during cell migration.  相似文献   

9.
Cell migration results from forces generated by assembly, contraction, and adhesion of the cytoskeleton. To address how these forces integrate in space and time, novel assays are required that allow spatial separation of the different force categories. We used micro-contact printing of fibronectin on glass substrates to study the effect of adhesion patterns on fish epidermal keratocytes locomotion. Cells migrated at similar speeds on homogeneously adhesive substrates and on patterns with 5 microm-wide adhesive stripes interleaved by non-adhesive stripes with a width varied between 5 and 13 microm. The leading edge protruded on adhesive stripes and lagged behind on non-adhesive stripes. On patterns with non-adhesive stripes wider than 13 microm cells halted, although the lamellipodium did not collapse. High correlation was found between the widths of protruding and lagging edge segments and the widths of the underlying stripes. We explain our data by the force balances between actin polymerization, contraction and adhesion on fibronectin stripes; and between actin polymerization, contraction and lamellipodium-internal elastic tension on non-adhesive stripes. We tested our model further by blocking lamellipodium actin network contraction and polymerization. In both experiments we observed that cells eventually lost their ability to move. However, the two perturbations induced distinct morphological responses. The data suggested that forces powering forward motion of keratocytes are largely associated with network assembly whereas contraction maintains cell polarity. This study establishes spatially selective adhesion substrates and cell morphological readouts as a means to elucidate the mechanical balance between substrate adhesion and cytoskeleton-internal tension in cell migration.  相似文献   

10.
During cell migration in confinement, the nucleus has to deform for a cell to pass through small constrictions. Such nuclear deformations require significant forces. A direct experimental measure of the deformation force field is extremely challenging. However, experimental images of nuclear shape are relatively easy to obtain. Therefore, here we present a method to calculate predictions of the deformation force field based purely on analysis of experimental images of nuclei before and after deformation. Such an inverse calculation is technically non-trivial and relies on a mechanical model for the nucleus. Here we compare two simple continuum elastic models of a cell nucleus undergoing deformation. In the first, we treat the nucleus as a homogeneous elastic solid and, in the second, as an elastic shell. For each of these models we calculate the force field required to produce the deformation given by experimental images of nuclei in dendritic cells migrating in microchannels with constrictions of controlled dimensions. These microfabricated channels provide a simplified confined environment mimicking that experienced by cells in tissues. Our calculations predict the forces felt by a deforming nucleus as a migrating cell encounters a constriction. Since a direct experimental measure of the deformation force field is very challenging and has not yet been achieved, our numerical approaches can make important predictions motivating further experiments, even though all the parameters are not yet available. We demonstrate the power of our method by showing how it predicts lateral forces corresponding to actin polymerisation around the nucleus, providing evidence for actin generated forces squeezing the sides of the nucleus as it enters a constriction. In addition, the algorithm we have developed could be adapted to analyse experimental images of deformation in other situations.  相似文献   

11.
Unconventional myosins interact with the dense cortical actin network during processes such as membrane trafficking, cell migration, and mechanotransduction. Our understanding of unconventional myosin function is derived largely from assays that examine the interaction of a single myosin with a single actin filament. In this study, we have developed a model system to study the interaction between multiple tethered unconventional myosins and a model F-actin cortex, namely the lamellipodium of a migrating fish epidermal keratocyte. Using myosin VI, which moves toward the pointed end of actin filaments, we directly determine the polarity of the extracted keratocyte lamellipodium from the cell periphery to the cell nucleus. We use a combination of experimentation and simulation to demonstrate that multiple myosin VI molecules can coordinate to efficiently transport vesicle-size cargo over 10 µm of the dense interlaced actin network. Furthermore, several molecules of monomeric myosin VI, which are nonprocessive in single molecule assays, can coordinate to transport cargo with similar speeds as dimers.  相似文献   

12.
Gomes ER  Jani S  Gundersen GG 《Cell》2005,121(3):451-463
The microtubule-organizing center (MTOC) is reoriented between the nucleus and the leading edge in many migrating cells and contributes to directional migration. Models suggest that the MTOC is moved to its position during reorientation. By direct imaging of wound-edge fibroblasts after triggering MTOC reorientation with soluble factors, we found instead that the nucleus moved away from the leading edge to reorient the MTOC, while the MTOC remained stationary. Rearward nuclear movement was coupled with actin retrograde flow and was regulated by a pathway involving Cdc42, MRCK, myosin, and actin. Nuclear movement was unaffected by the inhibition of dynein, Par6, or PKCzeta, yet these components were essential for MTOC reorientation, as they maintained the MTOC at the cell centroid. These results show that nuclear repositioning is an initial polarizing event in migrating cells and that the positions of the nucleus and the MTOC are established by separate regulatory pathways.  相似文献   

13.
To investigate the mechanisms by which adhesions form and disperse in migrating cells, we expressed alpha 5 integrin, alpha-actinin, and paxillin as green fluorescent protein (GFP) fusions. All localized with their endogenous counterparts and did not perturb migration when expressed at moderate levels. alpha 5-GFP also rescued the adhesive defects in CHO B2 cells, which are alpha 5 integrin deficient. In ruffling cells, alpha 5-GFP and alpha-actinin--GFP localized prominently at the leading edge in membrane protrusions. Of the three GFP fusion proteins that we examined, paxillin was the first component to appear visibly organized in protrusive regions of the cell. When a new protrusion formed, the paxillin appeared to remodel from older to newer adhesions at the leading edge. alpha-Actinin subsequently entered adhesions, which translocated toward the cell center, and inhibited paxillin turnover. The new adhesions formed from small foci of alpha-actinin--GFP and paxillin-GFP, which grew in size. Subsequently, alpha 5 integrin entered the adhesions to form visible complexes, which served to stabilize the adhesions. alpha 5-GFP also resided in endocytic vesicles that emanated from the leading edge of protrusions. Integrin vesicles at the cell rear moved toward the cell body. As cells migrated, alpha 5 vesicles also moved from a perinuclear region to the base of the lamellipodium. The alpha 5 vesicles colocalized with transferrin receptor and FM 4-64 dye. After adhesions broke down in the rear, alpha 5-GFP was found in fibrous structures behind the cell, whereas alpha-actinin--GFP and paxillin-GFP moved up the lateral edge of retracting cells as organized structures and then dissipated.  相似文献   

14.
BACKGROUND: In motile cells, protrusion of the lamellipodium (a type of cell margin) requires assembly of actin monomers into actin filaments at the tip of the lamellipodium. The importance of actin-filament disassembly in this process is less well understood, and is assessed here using the actin drug jasplakinolide, which has two known activities - inhibition of filament disassembly and induction of an increase in actin polymer. RESULTS: In cells the two activities of jasplakinolide were found to be separable; 1 microM jasplakinolide could permeate cells, bind cellular filamentous actin (F-actin) and inhibit filament disassembly within 3.5 minutes, but significant increase in actin polymer was not detected until 60 minutes of treatment. In live, permeabilised cells, jasplakinolide did not inhibit filament assembly from supplied, purified actin monomers. In migrating chick fibroblasts, lamellipodium protrusion was blocked within 1-5 minutes of treatment with 1 microM jasplakinolide, without any perturbation of actin organisation. In non-migrating chick fibroblasts, there was a delay in the onset of jasplakinolide-induced inhibition of lamellipodium protrusion, during which lamellipodium length increased linearly with no increase in protrusion rate. Motility of the bacterium Listeria in infected PtK2 cells was reduced 2.3-fold within 3 minutes of treatment with 1 microM jasplakinolide. CONCLUSIONS: Actin-filament disassembly is tightly coupled to lamellipodium protrusion in migrating chick fibroblasts and motility of Listeria in PtK2 cells. One simple interpretation of these data is a situation whereby ongoing actin-filament assembly uses free actin monomer derived from filament disassembly, in preference to stored monomer.  相似文献   

15.
Cell migration is crucial for processes such as immune defense, wound healing, or the formation of tumor metastases. Typically, migrating cells are polarized within the plane of movement with lamellipodium and cell body representing the front and rear of the cell, respectively. Here, we address the question of whether this polarization also extends to the distribution of ion transporters such as Na(+)/H(+) exchanger (NHE) and anion exchanger in the plasma membrane of migrating cells. Both transporters are required for locomotion of renal epithelial (Madin-Darby canine kidney, MDCK-F) cells and human melanoma cells since their blockade reduces the rate of migration in a dose-dependent manner. Inhibition of migration of MDCK-F cells by NHE blockers is accompanied by a decrease of pH(i). However, when cells are acidified with weak organic acids, migration of MDCK-F cells is normal despite an even more pronounced decrease of pH(i). Under these conditions, NHE activity is increased so that cells are swelling due to the accumulation of organic anions and Na(+). When exclusively applied to the lamellipodium, blockers of NHE or anion exchange inhibit migration of MDCK-F cells as effectively as when applied to the entire cell surface. When they are directed to the cell body, migration is not affected. These data are confirmed immunocytochemically in that the anion exchanger AE2 is concentrated at the front of MDCK-F cells. Our findings show that NHE and anion exchanger are distributed in a polarized way in migrating cells. They are consistent with important contributions of both transporters to protrusion of the lamellipodium via solute uptake and consequent volume increase at the front of migrating cells.  相似文献   

16.
Cells migrate through a crowded environment during processes such as metastasis or wound healing, and must generate and withstand substantial forces. The cellular motility responses to environmental forces are represented by their force-velocity relation, which has been measured for fish keratocytes but remains unexplained. Even pN opposing forces slow down lamellipodium motion by three orders of magnitude. At larger opposing forces, the retrograde flow of the actin network accelerates until it compensates for polymerization, and cell motion stalls. Subsequently, the lamellipodium adapts to the stalled state. We present a mechanism quantitatively explaining the cell's force-velocity relation and its changes upon application of drugs that hinder actin polymerization or actomyosin-based contractility. Elastic properties of filaments, close to the lamellipodium leading edge, and retrograde flow shape the force-velocity relation. To our knowledge, our results shed new light on how these migratory responses are regulated, and on the mechanics and structure of the lamellipodium.  相似文献   

17.
Iwadate Y  Yumura S 《BioTechniques》2008,44(6):739-750
Cells must exert traction forces onto the substratum for continuous migration. Molecular dynamics such as actin polymerization at the front of the cell and myosin II accumulation at the rear should play important roles in the exertion of forces required for migration. Therefore, it is important to reveal the relationships between the traction forces and molecular dynamics. Traction forces can be calculated from the deformation of the elastic substratum under a migrating cell. A transparent and colorless elastic substratum with a high refractive index (1.40) and a low Young's modulus (1.0 kPa) were made from a pair of platinum-catalyzed silicones. We used this substratum to develop a new method for simultaneous recording of molecular dynamics and traction forces under a migrating cell in which total internal refractive fluorescence (TIRF) and force microscopies were combined. This new method allows the detection of the spatiotemporal distribution of traction forces produced by individual filopodia in migrating Dictyostelium cells, as well as simultaneous visualization of these traction forces and the dynamics of filamentous myosin II.  相似文献   

18.
The recently reported formation of highly ordered traces by migrating cells has been studied on L929 fibroblasts in time lapse experiments by means of interference reflection microscopy (IRM) as well as by conventional microscopy. Formation of pronounced traces on glass substrates correlates to migration after cell division, and the trace arrangement on the substrate depends on migration velocity: slow migration results in a highly branched, broad, and relatively short trace, while fast migration yields a slim and long trace with few branches. IRM-irradiation caused cessation of locomotion and trace formation and accelerated degradation of existing traces. Traces consist of cord-like cytoplasmic strands, which contain F-actin filaments and they seem to be enveloped by a membrane. It is supposed that cell traces are homologous to filopodia. Traces arise mainly from non-retracted filopodia at the rear margin of the migrating cell. The branches within the traces are the result of the repeated stretching out of a backwardly directed lamellipodium. They arise from the formation of new filopodia that emerge at the actin ribs of the lamellipodium.  相似文献   

19.
ABSTRACT

Migration of a fibroblast along a collagen fiber can be regarded as cell locomotion in one-dimension (1D). In this process, a cell protrudes forward, forms a new adhesion, produces traction forces, and releases its rear adhesion in order to advance itself along a path. However, how a cell coordinates its adhesion formation, traction forces, and rear release in 1D migration is unclear. Here, we studied fibroblasts migrating along a line of microposts. We found that when the front of a cell protruded onto a new micropost, the traction force produced at its front increased steadily, but did so without a temporal correlation in the force at its rear. Instead, the force at the front coordinated with a decrease in force at the micropost behind the front. A similar correlation in traction forces also occurred at the rear of a cell, where a decrease in force due to adhesion detachment corresponded to an increase in force at the micropost ahead of the rear. Analysis with a bio-chemo-mechanical model for traction forces and adhesion dynamics indicated that the observed relationship between traction forces at the front and back of a cell is possible only when cellular elasticity is lower than the elasticity of the cellular environment.  相似文献   

20.
Pieces of coverslip glass, polycarbonate filters, or coverslip plastic, coated with fibrinogen or type I collagen, were implanted under one edge of a fresh skin wound on adult newt hind limbs so that the implant served as wound bed for migrating epidermal cells as they attempted to form a wound epithelium. Migratory events were then analyzed by phase contrast and electron microscopy. Phase-contrast microscopy revealed two types of lamellipodia on leading edge cells: one which was attached broadly to the cell body and one attached by a long, thin stalk. Stalkless forms were by far the most common type and we believe they provide the motive force for cell movement. Stalked-forms often moved at distinct angles to the direction of sheet movement, suggesting that they may be sensory appendages. Phase photographs of the leading edge of migrating sheet 4 hours and 8 hours after implantation showed that all cells that were on the leading edge at 4 hours continued to advance for the next 4 hours, demonstrating clearly that under these circumstances the distalmost cells do not become immobile upon contact with the substrate as others have suggested. TEM revealed that migrating sheets were modified monolayers and that regardless of proximodistal location in the sheet, and even in the intact skin adjoining a wound, each epidermal cell adjacent to the substrate puts forth a lamellipodium which underlaps the cell in front. This and the behavior of sheets as they were teased or pulled from the implant suggest strongly that all basal cells contribute to movement of the sheet by interacting with the substrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号