首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The enzyme Erwinia chrysanthemi l-asparaginase (ErA) is an important biopharmaceutical product used in the treatment of acute lymphoblastic leukaemia. Like all proteins, certain asparagine (Asn) residues of ErA are susceptible to deamidation to aspartic acid (Asp), which may be a concern with respect to enzyme activity and potentially to pharmaceutical efficacy. Recombinant ErA mutants containing Asn to Asp changes were expressed, purified and characterised. Two mutants with single deamidation sites (N41D and N281D) were found to have approximately the same specific activity (1,062 and 924 U/mg, respectively) as the wild-type (908 U/mg). However, a double mutant (N41D N281D) had an increased specific activity (1261 U/mg). The N41D mutation conferred a slight increase in the catalytic constant (k cat 657 s?1) when compared to the WT (k cat 565 s?1), which was further increased in the double mutant, with a k cat of 798 s?1. Structural analyses showed that the slight changes caused by point mutation of Asn41 to Asp may have reduced the number of hydrogen bonds in this α-helical part of the protein structure, resulting in subtle changes in enzyme turnover, both structurally and catalytically. The increased α-helical content observed with the N41D mutation by circular dichroism spectroscopy correlates with the difference in k cat, but not K m. The N281D mutation resulted in a lower glutaminase activity compared with WT and the N41D mutant, however the N281D mutation also imparted less stability to the enzyme at elevated temperatures. Taken as a whole, these data suggest that ErA deamidation at the Asn41 and Asn281 sites does not affect enzyme activity and should not be a concern during processing, storage or clinical use. The production of recombinant deamidated variants has proven an effective and powerful means of studying the effect of these changes and may be a useful strategy for other biopharmaceutical products.  相似文献   

2.
Qin Y  Fang Z  Pan F  Zhao Y  Li H  Wu H  Meng X 《Biotechnology letters》2012,34(5):895-899
The calcium-binding residues, Tyr302 and His235, and the sodium-binding residue, Asp194, on the activity of Bacillus licheniformis α-amylase were investigated using site-directed mutagenesis. Tyr302 and His235 were replaced by Asn and Asp, respectively, to produce the mutants Y302N and H235D; Asp194 was replaced by Ala to produce D194A. The mutant amylases were purified to homogeneity; each was ~53?kDa. The specific activity of the D194A was 236?U?mg(-1), lower than the specific activity of the wild-type enzyme by 55%. No significant changes of thermostability, optimum temperature, and optimum pH level were observed in D194A. Mutant amylases with H235D and Y302N significantly improved their specific activity by 43% (754?U?mg(-1)) and 7% (563?U?mg(-1)), respectively, compared with the wild-type enzyme. H235D substitution decreased its optimum pH by approx. 0.5-1 pH unit.  相似文献   

3.
Enhancing the transglycosylation (TG) activity of glycoside hydrolases does not always result in the production of oligosaccharides with longer chains, because the TG products are often decomposed into shorter oligosaccharides. Here, we investigated the mutation strategies for obtaining chitooligosaccharides with longer chains by means of TG reaction catalyzed by family GH18 chitinase A from Vibrio harveyi (VhChiA). HPLC analysis of the TG products from incubation of chitooligosaccharide substrates, GlcNAcn, with several mutant VhChiAs suggested that mutant W570G (mutation of Trp570 to Gly) and mutant D392N (mutation of Asp392 to Asn) significantly enhanced TG activity, but the TG products were immediately hydrolyzed into shorter GlcNAcn. On the other hand, the TG products obtained from mutants D313A and D313N (mutations of Asp313 to Ala and Asn, respectively) were not further hydrolyzed, leading to the accumulation of oligosaccharides with longer chains. The data obtained from the mutant VhChiAs suggested that mutations of Asp313, the middle aspartic acid residue of the DxDxE catalytic motif, to Ala and Asn are most effective for obtaining chitooligosaccharides with longer chains.  相似文献   

4.
Lin FP  Chen HC  Lin CS 《IUBMB life》1999,48(2):199-204
Site-directed mutagenesis was used to explore the roles of amino acid residues involved in the activity of chitinase from Aeromonas caviae. Kinetic parameters for 4-methylumbelliferyl-N,N'-diacetyl-chitobiose or 4-methylumbelliferyl-N,N',N"-triacetylchitotriose hydrolysis were determined with wild-type and mutant chitinases. Chitinases with the mutations E315D (or Q) and D391E (or N) were severely impaired and had dramatically decreased kcat. However, the effect of the these mutations on the Km values were different. The function of the carboxyl group of Asp313 was partially replaced by the amide of Asn when the 4-methylumbelliferyl-N,N',N"-triacetylchitotriose substrate was used. Results indicated that Asp313, Glu315, and Asp391 might be the best candidates for the catalytic residues of chitinase A from Aeromonas caviae.  相似文献   

5.
Detailed catalytic roles of the conserved Glu323, Asp460, and Glu519 of Arthrobacter sp. S37 inulinase (EnIA), a member of the glycoside hydrolase family 32, were investigated by site-directed mutagenesis and pH-dependence studies of the enzyme efficiency and homology modeling were carried out for EnIA and for D460E mutant. The enzyme efficiency (kcat/Km) of the E323A and E519A mutants was significantly lower than that of the wild-type due to a substantial decrease in kcat, but not due to variations in Km, consistent with their putative roles as nucleophile and acid/base catalyst, respectively. The D460A mutant was totally inactive, whereas the D460E and D460N mutants were active to some extent, revealing Asp460 as a catalytic residue and demonstrating that the presence of a carboxylate group in this position is a prerequisite for catalysis. The pH-dependence studies indicated that the pKa of the acid/base catalyst decreased from 9.2 for the wild-type enzyme to 7.0 for the D460E mutant, implicating Asp460 as the residue that interacts with the acid/base catalyst Glu519 and elevates its pKa. Homology modeling and molecular dynamics simulation of the wild-type enzyme and the D460E mutant shed light on the structural roles of Glu323, Asp460, and Glu519 in the catalytic activity of the enzyme.  相似文献   

6.
Bacterial chitosanases share weak amino acid sequence similarities at certain regions of each enzyme. These regions have been assumed to be important for catalytic activities of the enzyme. To verify this assumption, the functional importance of the conserved region in a novel thermostable chitosanase (TCH-2) from Bacillus coagulans CK108 was investigated. Each of the conserved amino acid residues (Leu64, Glu80, Glu94, Asp98, and Gly108) was changed to aspartate and glutamine or asparagine and glutamate by site-directed mutagenesis, respectively. Kinetic parameters for colloidal chitosan hydrolysis were determined with wild-type and 10 mutant chitosanases. The Leu64 Arg and Leu64 Gln mutations were essentially inactive and kinetic parameters such as V max and k cat were approximately 1/107 of those of the wild-type enzyme. The Asp98 Asn mutation did not affect the K m value significantly, but decreased k cat to 15% of that of wild-type chitosanase. On the other hand, the Asp98 srarr; Glu mutation affected neither K m nor k cat. The observation that approximately 15% of activity remained after the substitution of Asp98 by Asn indicated that the carboxyl side chain of Asp98 is not absolutely required for catalytic activity. These results indicate that the Leu64 residue is directly involved in the catalytic activity of TCH-2.  相似文献   

7.
Our previous study has suggested that mutation of the amino acid residue Asp102 has a significant effect on the fumarate-mediated activation of human mitochondrial NAD(P)+-dependent malic enzyme (m-NAD(P)-ME). In this paper, we examine the cationic amino acid residue Arg98, which is adjacent to Asp102 and is highly conserved in most m-NAD(P)-MEs. A series of R98/D102 mutants were created to examine the possible interactions between Arg98 and Asp102 using the double-mutant cycle analysis. Kinetic analysis revealed that the catalytic efficiency of the enzyme was severely affected by mutating both Arg98 and Asp102 residues. However, the binding energy of these mutant enzymes to fumarate as determined by analysis of the KA,Fum values, show insignificant differences, indicating that the mutation of Arg98 and Asp102 did not cause a significant decrease in the binding affinity of fumarate. The overall coupling energies for R98K/D102N as determined by analysis of the kcat/Km and KA,Fum values were −2.95 and −0.32 kcal/mol, respectively. According to these results, we conclude that substitution of both Arg98 and Asp102 residues has a synergistic effect on the catalytic ability of the enzyme.  相似文献   

8.
Chu BC  Lee H 《Current microbiology》2006,53(2):118-123
All yeast xylose reductases, with the exception of that from Schizosaccharomyces pombe, possess the catalytic and coenzyme-binding elements from both the aldo–keto reductase and short-chain dehydrogenase–reductase (SDR) enzyme families in their primary sequences. In the Saccharomyces cerevisiae xylose reductase (XR), the SDR-like coenzyme-binding GXXXGXG motif (Gly motif) is located between residues 128 and 134, with the third Gly residue being replaced by an Asp. We used site-directed mutagenesis to study the role of this SDR-like Gly motif in the S. cerevisiae xylose reductase. Site-directed mutagenesis of the individual conserved Gly residue positions (G128A, G132A, D134G, and D134A) did not significantly affect the specific activity, kinetic constants (Km, Kcat, and Kcat/Km), or dissociation constants (Kd) in any of the variants compared with the wild type. Deletion of the entire Gly motif produced an unstable protein that could not be purified. These results indicate that the SDR-like Gly motif likely provides support to the overall structure of the enzyme, but it does not contribute directly to coenzyme binding in this XR.  相似文献   

9.
Anaerobiospirillum succiniciproducens His225Gln, Asp262Asn, Asp263Asn, and Thr249Asn phosphoenolpyruvate carboxykinases were analyzed for their oxaloacetate decarboxylase, and pyruvate kinase–like activities. The His225Gln and Asp263Asn enzymes showed increased K m values for Mn2+ and PEP compared with the native enzyme, suggesting a role of His225 and Asp263 in Mn2+ and PEP binding. No mayor alterations in K m values for oxaloacetate were detected for the varied enzymes. Alterations of His225, Asp262, Asp263, or Thr249, however, did not affect the V max of the secondary activities as much as they affected the V max for the main reaction. The results presented in this communication suggest different rate-limiting steps for the primary reaction and the secondary activities.  相似文献   

10.
Three active site residues (Asp199, Glu255, Asp329) and two substrate-binding site residues (His103, His328) of oligo-1,6-glucosidase (EC 3.2.1.10) from Bacillus cereus ATCC7064 were identified by site-directed mutagenesis. These residues were deduced from the X-ray crystallographic analysis and the comparison of the primary structure of the oligo-1,6-glucosidase with those of Saccharomyces carlsbergensis α-glucosidase, Aspergillus oryzae α-amylase and pig pancreatic α-amylase which act on α-1,4-glucosidic linkages. The distances between these putative residues of B. cereus oligo-1,6-glucosidase calculated from the X-ray analysis data closely resemble those of A. oryzae α-amylase and pig pancreatic α-amylase. A single mutation of Asp199→Asn, Glu255→Gln, or Asp329→Asn resulted in drastic reduction in activity, confirming that three residues are crucial for the reaction process of α-1,6-glucosidic bond cleavage. Thus, it is identified that the basic mechanism of oligo-1,6-glucosidase for the hydrolysis of α-1,6-glucosidic linkage is essentially the same as those of other amylolytic enzymes belonging to Family 13 (α-amylase family). On the other hand, mutations of histidine residues His103 and His328 resulted in pronounced dissimilarity in catalytic function. The mutation His328→Asn caused the essential loss in activity, while the mutation His103→Asn yielded a mutant enzyme that retained 59% of the κ0/Km of that for the wild-type enzyme. Since mutants of other α-amylases acting on α-1,4-glucosidic bond linkage lost most of their activity by the site-directed mutagenesis at their equivalent residues to His103 and His328, the retaining of activity by Hisl03→Asn mutation in B. cereus oligo-1,6-glucosidase revealed the distinguished role of His103 for the hydrolysis of α-1,6-glucosidic bond linkage.  相似文献   

11.
Prephenate dehydratase is a key regulatory enzyme in the phenylalanine-specific pathway of Corynebacterium glutamicum. PCR-based random mutagenesis and functional complementation were used to screen for m-fluorophenylalanine (mFP)-resistant mutants. Comparison of the amino acid sequence of the mutant prephenate dehydratases indicated that Ser-99 plays a role in the feedback regulation of the enzyme. When Ser-99 of the wild-type enzyme was replaced by Met, the specific activity of the mutant enzyme was 30% lower than that of the wild-type. The Ser99Met mutant was active in the presence of 50 M phenylalanine, whereas the wild-type enzyme was not. The functional roles of the eight conserved residues of prephenate dehydratase were investigated by site-directed mutagenesis. Glu64Asp substitution reduced enzyme activity by 15%, with a 4.5- and 1.7-fold increase in K m and k cat values, respectively. Replacement of Thr-183 by either Ala or Tyr resulted in a complete loss of enzyme activity. Substitution of Arg-184 with Leu resulted in a 50% decrease of enzyme activity. The specific activity for Phe185Tyr was more than 96% lower than that of the wild-type, and the K m value was 26-fold higher. Alterations in the conserved Asp-76, Glu-89, His-115, and Arg-236 residues did not cause a significant change in the K m and k cat values. These results indicated that Glu-64, Thr-183, Arg-184, and Phe-185 residues might be involved in substrate binding and/or catalytic activity.  相似文献   

12.
Hong SH  Lim YR  Kim YS  Oh DK 《Biochimie》2012,94(9):1926-1934
A recombinant thermostable l-fucose isomerase from Dictyoglomus turgidum was purified with a specific activity of 93 U/mg by heat treatment and His-trap affinity chromatography. The native enzyme existed as a 410 kDa hexamer. The maximum activity for l-fucose isomerization was observed at pH 7.0 and 80 °C with a half-life of 5 h in the presence of 1 mM Mn2+ that was present one molecular per monomer. The isomerization activity of the enzyme with aldose substrates was highest for l-fucose (with a kcat of 15,500 min−1 and a Km of 72 mM), followed by d-arabinose, d-altrose, and l-galactose. The 15 putative active-site residues within 5 Å of the substrate l-fucose in the homology model were individually replaced with other amino acids. The analysis of metal-binding capacities of these alanine-substituted variants revealed that Glu349, Asp373, and His539 were metal-binding residues, and His539 was the most influential residue for metal binding. The activities of all variants at 349 and 373 positions except for a dramatically decreased kcat of D373A were completely abolished, suggesting that Glu349 and Asp373 were catalytic residues. Alanine substitutions at Val131, Met197, Ile199, Gln314, Ser405, Tyr451, and Asn538 resulted in substantial increases in Km, suggesting that these amino acids are substrate-binding residues. Alanine substitutions at Arg30, Trp102, Asn404, Phe452, and Trp510 resulted in decreases in kcat, but had little effect on Km.  相似文献   

13.
Because mutations of the ionizable Asp at position 55 of the phosphatidylcholine preferring phospholipase C from Bacillus cereus (PLC(Bc)) to a non-ionizable Asn generate a mutant enzyme (D55N) with 10(4)-fold lower catalytic activity than the wild-type enzyme, we tentatively identified Asp55 as the general base for the enzymatic reaction. To eliminate the alternate possibility that Asp55 is a structurally important amino acid, the X-ray structures of unbound D55N and complexes of D55N with two non-hydrolyzable substrate analogues have been solved and refined to 2.0, 2.0, and 2.3A, respectively. The structures of unbound wild-type PLC(Bc) and a wild-type PLC(Bc)-complex with a non-hydrolyzable substrate analogue do not change significantly as a result of replacing Asp55 with Asn. These observations demonstrate that Asp55 is not critical for the structural integrity of the enzyme and support the hypothesis that Asp55 is the general base in the PLC(Bc)-catalyzed hydrolysis of phospholipids.  相似文献   

14.
Recombinant human phenylalanine hydroxylase (hPAH) expressed in Escherichia coli for 24 h at 28 degrees C has been found by two-dimensional electrophoresis to exist as a mixture of four to five molecular forms as a result of nonenzymatic deamidation of labile Asn residues. The multiple deamidations alter the functional properties of the enzyme including its affinity for l-phenylalanine and tetrahydrobiopterin, catalytic efficiency, and substrate inhibition and also result in enzyme forms more susceptible to limited tryptic proteolysis. Asn(32) in the regulatory domain deamidates very rapidly because of its nearest neighbor amino acid Gly(33) (Solstad, T., Carvalho, R. N., Andersen, O. A., Waidelich, D., and Flatmark, T. (2003) Eur. J. Biochem., in press). Matrix-assisted laser desorption/ionization time of flight-mass spectrometry of the tryptic peptides in the catalytic domain of a 24-h (28 degrees C) expressed enzyme has shown Asn(376) and Asn(133) to be labile residues. Site-directed mutagenesis of nine Asn residues revealed that the deamidations of Asn(32) and Asn(376) are the main determinants for the functional and regulatory differences observed between the 2- and 24-h-induced wild-type (wt) enzyme. The Asn(32) --> Asp, Asn(376) --> Asp, and the double mutant forms expressed for 2 h at 28 degrees C revealed qualitatively similar regulatory properties as the highly deamidated 24-h expressed wt-hPAH. Moreover, deamidation of Asn(32) in the wt-hPAH (24 h expression at 28 degrees C) and the Asn(32) --> Asp mutation both increase the initial rate of phosphorylation of Ser(16) by cAMP-dependent protein kinase (p < 0.005). By contrast, the substitution of Gly(33) with Ala or Val, both preventing the deamidation of Asn(32), resulted in enzyme forms that were phosphorylated at a similar rate as nondeamidated wt-hPAH, even on 24-h expression. The other Asn --> Asp substitutions (in the catalytic domain) revealed that Asn(207) and Asn(223) have an important stabilizing structural function. Finally, two recently reported phenylketonuria mutations at Asn residues in the catalytic domain were studied, i.e. Asn(167) --> Ile and Asn(207) --> Asp, and their phenotypes were characterized.  相似文献   

15.
Bacteriorhodopsin (BR) is a retinal protein that functions as a light-driven proton pump. In this study, six novel mutants including K41E and D102K, were obtained to verify or rule out the possibility that residues Lys41 and Asp102 are determinants of the time order of proton release and uptake, because we found that the order was reversed in another retinal protein archaerhodopsin 4 (AR4), which had different 41th and 102th residues. Our results rule out that possibility and confirm that the pK a of the proton release complex (PRC) determines the time order. Nevertheless, mutations, especially D102K, were found to affect the kinetics of proton uptake substantially and the pK a of Asp96. Compared to the wild-type BR (BR-WT), the decay of the M intermediate and proton uptake in the photocycle was slowed about 3-fold in D102K. Hence those residues might be involved in proton uptake and delivery to the internal proton donor.  相似文献   

16.
The inositol monophosphatase (IMPase) enzyme from the hyperthermophilic archaeon Methanocaldococcus jannaschii requires Mg2+ for activity and binds three to four ions tightly in the absence of ligands: KD = 0.8 μM for one ion with a KD of 38 μM for the other Mg2+ ions. However, the enzyme requires 5–10 mM Mg2+ for optimum catalysis, suggesting substrate alters the metal ion affinity. In crystal structures of this archaeal IMPase with products, one of the three metal ions is coordinated by only one protein contact, Asp38. The importance of this and three other acidic residues in a mobile loop that approaches the active site was probed with mutational studies. Only D38A exhibited an increased kinetic KD for Mg2+; D26A, E39A, and E41A showed no significant change in the Mg2+ requirement for optimal activity. D38A also showed an increased Km, but little effect on kcat. This behavior is consistent with this side chain coordinating the third metal ion in the substrate complex, but with sufficient flexibility in the loop such that other acidic residues could position the Mg2+ in the active site in the absence of Asp38. While lithium ion inhibition of the archaeal IMPase is very poor (IC50~250 mM), the D38A enzyme has a dramatically enhanced sensitivity to Li+ with an IC50 of 12 mM. These results constitute additional evidence for three metal ion assisted catalysis with substrate and product binding reducing affinity of the third necessary metal ion. They also suggest a specific mode of action for lithium inhibition in the IMPase superfamily.  相似文献   

17.
A mutant (D165N) of clostridial glutamate dehydrogenase (GDH) in which the catalytic Asp is replaced by Asn surprisingly showed a residual 2% of wild-type activity when purified after expression in Escherichia coli at 37 degrees C. This low-level activity also displayed Michaelis constants for substrates that were remarkably similar to those of the wild-type enzyme. Expression at 8 degrees C gave a mutant enzyme preparation 1000 times less active than the first preparation, but progressively, over 2 weeks' incubation at 37 degrees C in sealed vials, this enzyme regained 90% of the specific activity of wild type. This suggested that the mutant might undergo spontaneous deamidation. Mass spectrometric analysis of tryptic peptides derived from D165N samples treated in various ways showed (i) that the Asn is in place in D165N GDH freshly prepared at 8 degrees C; (ii) that there is a time-dependent reversion of this Asn to Asp over the 2-week incubation period; (iii) that detectable deamidation of other Asn residues, in Asn-Gly sequences, mainly occurred in sample workup rather than during the 2-week incubation; (iv) that there is no significant deamidation of other randomly chosen Asn residues in this mutant over the same period; and (v) that when the protein is denatured before incubation, no deamidation at Asn-165 is detectable. It appears that this deamidation depends on the residual catalytic machinery of the mutated GDH active site. A literature search indicates that this finding is not unique and that Asn may not be a suitable mutational replacement in the assessment of putative catalytic Asp residues by site-directed mutagenesis.  相似文献   

18.
Structural analysis of glucose dehydrogenase from Haloferax mediterranei revealed that the adenosine 2′-phosphate of NADP+ was stabilized by the side chains of Arg207 and Arg208. To investigate the structural determinants for coenzyme specificity, several mutants involving residues Gly206, Arg207 and Arg208 were engineered and kinetically characterized. The single mutants G206D and R207I were less efficient with NADP+ than the wild type, and the double and triple mutants G206D/R207I and G206D/R207I/R208N showed no activity with NADP+.In the single mutant G206D, the relation kcat/KNAD+ was 1.6 times higher than in the wild type, resulting in an enzyme that preferred NAD+ over NADP+. The single mutation was sufficient to modify coenzyme specificity, whereas other dehydrogenases usually required more than one or two mutations to change coenzyme specificity. However, the highest reaction rates were reached with the double mutant G206D/R207I and with coenzyme NAD+, where the kcat was 1.6 times higher than the kcat of the wild-type enzyme with NADP+. However, catalytic efficiency with NAD+ was lower, as the Km value for coenzyme was 77 times higher than the wild type with NADP+.  相似文献   

19.
Fluoroacetate dehalogenase from Moraxella sp. B (FAc-DEX) catalyzes cleavage of the carbon–fluorine bond of fluoroacetate, whose dissociation energy is among the highest found in natural products. Asp105 functions as the catalytic nucleophile that attacks the α-carbon atom of the substrate to displace the fluorine atom. In spite of the essential role of Asp105, we found that site-directed mutagenesis to replace Asp105 by Asn does not result in total inactivation of the enzyme. The activity of the mutant enzyme increased in a time- and temperature-dependent manner. We analyzed the enzyme by ion-spray mass spectrometry and found that the reactivation was caused by the hydrolytic deamidation of Asn105 to generate the wild-type enzyme. Unlike Asn10 of the l-2-haloacid dehalogenase (L-DEX YL) D10N mutant, Asn105 of the fluoroacetate dehalogenase D105N mutant did not function as a nucleophile to catalyze the dehalogenation.  相似文献   

20.
Summary The penicillin G amidase (PGA) activity of a parent strain of E. coli (PCSIR-102) was enhanced by chemical mutagenization with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). After screening and optimization, a penicillinase deficient mutant (MNNG-37) was isolated and found effective for the production of penicillin G amidase as compared to the parent strain of E. coli (PCSIR-102). Penicillin G amidase activity of MNNG-37 appeared during an early stage of growth, whereas PCSIR-102 did not exhibit PGA activity due to the presence of penicillinase enzyme which inhibits the activity of enzyme PGA. However, MNNG-37 gave a three-fold increase in enzyme activity (231 IU mg−1) as compared to PCSIR-102 (77 IU mg−1) in medium containing 0.15 and 0.1% concentrations of phenylacetic acid, respectively which was added after 6 h of cultivation. The difference in K m values of the enzyme produced by parent strain PCSIR-102 (0.26 mM) and mutant strain MNNG-37 (0.20 mM) is significant (1.3-fold increase in K m value) which may show the superiority of the latter in terms of better enzyme properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号