首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Sugarcane is an important crop producing around 75 % of sugar in world and used as first generation biofuel. In present study, the genomic and gene based microsatellite markers were analyzed by low cost Single Strand Confirmation Polymorphism technique for genetic evaluation of 22 selected sugarcane genotypes. Total 16 genomic and 12 Expression Sequence Tag derived markers were able to amplify the selected sugarcane genotypes. Total 138 alleles were amplified of which 99 alleles (72 %) found polymorphic with an average of 4.9 alleles per locus. Microsatellite marker, VCSSR7 and VCSSR 12 showed monomorphic alleles with frequency 7.1 % over the average of 3.5 obtained for polymorphic locus. The level of Polymorphic Information Content (PIC) varied from 0.09 in VCSSR 6 to 0.88 in VCSSR 11 marker respectively with a mean of 0.49. Genomic SSRs showed more polymorphism than EST-SSRs markers on selected sugarcane genotypes whereas, the genetic similarity indices calculated by Jaccard’s similarity coefficient varied from 0.55 to 0.81 indicate a high level of genetic similarity among the genotypes that was mainly attributed to intra specific diversity. Hence, the SSR-SSCP technique helped to identify the genetically diverse clones which could be used in crossing program for introgression of sugar and stress related traits in hybrid sugarcane.  相似文献   

2.
Microsatellite or simple sequence repeats (SSRs) are one of the most used markers in population genetic studies. SSR markers developed from expressed sequence tags (EST) have proved useful to examine functional diversity in relation to adaptive variation. The information provided by both genomic and genic microsatellite markers could offer more accurate indication on the distribution of the genetic diversity among and within populations assuming different evolutionary drivers. This is the first study on chestnut (Castanea sativa Mill.) in which the genetic diversity was evaluated by means of genomic (SSRs) and genic (EST-SSRs) microsatellite markers. We genotyped nine natural European chestnut populations distributed throughout representative areas of contrasting climatic conditions in the Mediterranean basin. Genomic SSRs showed significantly higher levels of diversity in terms of number of alleles, effective number of alleles, expected heterozygosity and level of polymorphism. Furthermore, there were significant differences in the level of differentiation among populations. The UPGMA analysis revealed different clustering pattern between populations, being the grouping according to geographic distances in the case of genomic SSRs and two differentiated groups based on the northern–southern distribution of the populations for EST-SSRs. Furthermore, the EST-SSR transferability among related Castanea and Quercus species was stated. Our results confirm that combining genomic SSRs and EST-SSRs is a useful tool to give complementary information to explain the genetic and adaptive diversity in chestnut.  相似文献   

3.
The wedge clam Donax trunculus is an Atlantic-Mediterranean warm-temperate species found from Senegal to the northern coast of France, including the Mediterranean and Black Sea. It is commercially exploited in several European countries and constitutes an important fishing resource due to its high economical value. To contribute to its conservation and management, nineteen microsatellite markers were isolated from two enriched genomic libraries. These loci were characterized in 30 clams from a single population from northwest Spain. The number of alleles per locus ranged from 2 to 17 and observed and expected heterozygosity varied from zero to 0.714 and from 0.078 to 0.950, respectively. Linkage disequilibrium was not detected and nine loci were in agreement with Hardy–Weinberg equilibrium. Fifteen polymorphic markers were arranged into three multiplex PCR sets to reduce both time and cost of microsatellite genotyping. This is the first time that polymorphic microsatellite markers have been reported for D. trunculus. These new markers provide a valuable resource for future population genetics studies and management and culture of this species.  相似文献   

4.
5.
Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.)   总被引:5,自引:0,他引:5  
This paper aims at providing reliable and cost effective genotyping conditions, level of polymorphism in a range of genotypes and map position of newly developed microsatellite markers in order to promote broad application of these markers as a common set for genetic studies in pea. Optimal PCR conditions were determined for 340 microsatellite markers based on amplification in eight genotypes. Levels of polymorphism were determined for 309 of these markers. Compared to data obtained for other species, levels of polymorphism detected in a panel of eight genotypes were high with a mean number of 3.8 alleles per polymorphic locus and an average PIC value of 0.62, indicating that pea represents a rather polymorphic autogamous species. One of our main objectives was to locate a maximum number of microsatellite markers on the pea genetic map. Data obtained from three different crosses were used to build a composite genetic map of 1,430 cM (Haldane) comprising 239 microsatellite markers. These include 216 anonymous SSRs developed from enriched genomic libraries and 13 SSRs located in genes. The markers are quite evenly distributed throughout the seven linkage groups of the map, with 85% of intervals between the adjacent SSR markers being smaller than 10 cM. There was a good conservation of marker order and linkage group assignment across the three populations. In conclusion, we hope this report will promote wide application of these markers and will allow information obtained by different laboratories worldwide in diverse fields of pea genetics, such as QTL mapping studies and genetic resource surveys, to be easily aligned.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

6.
Microsatellites, or simple sequence repeats (SSRs), are usually regarded as the markers of choice in population genetics research because they exhibit high variability. The development cost of these markers is usually high. In addition, microsatellite primers developed for one species often do not cross-amplify in related species, requiring separate development for each species. However, microsatellites found in expressed sequence tags (ESTs) might better cross-amplify as they reside in or near conserved coding DNA. In this study, we identified 14 Pinus taeda (loblolly pine) EST-SSRs from public EST databases and tested for their cross-species transferability to P. contorta ssp. latifolia, P. ponderosa, and P. sylvestris. As part of our development of a P. contorta microsatellite set, we also compared their transferability to that of 99 traditional microsatellite markers developed in P. taeda and tested on P. contorta ssp. latifolia. Compared to traditional microsatellites, EST-SSRs had higher transfer rates across pine species; however, the level of polymorphism of microsatellites derived from ESTs was lower. Sequence analyses revealed that the frequencies of insertions/deletions and base substitutions were lower in EST-SSRs than in other types of microsatellites, confirming that EST-SSRs are more conserved than traditional SSRs. Our results also provide a battery of 23 polymorphic, robust microsatellite primer pairs for lodgepole pine.Communicated by O. Savolainen  相似文献   

7.
ABSTRACT: BACKGROUND: Domestication generally implies a loss of diversity in crop species relative to their wild ancestors because of genetic drift through bottleneck effects. Compared to native Mediterranean fruit species like olive and grape, the loss of genetic diversity is expected to be more substantial for fruit species introduced into Mediterranean areas such as apricot (Prunus armeniaca L.), which was probably primarily domesticated in China. By comparing genetic diversity among regional apricot gene pools in several Mediterranean areas, we investigated the loss of genetic diversity associated with apricot selection and diffusion into the Mediterranean Basin. RESULTS: According to the geographic origin of apricots and using Bayesian clustering of genotypes, Mediterranean apricot (207 genotypes) was structured into three main gene pools: 'Irano-Caucasian', 'North Mediterranean Basin' and 'South Mediterranean Basin'. Among the 25 microsatellite markers used, only one displayed deviations from the frequencies expected under neutrality. Similar genetic diversity parameters were obtained within each of the three main clusters using both all SSR loci and only 24 SSR loci based on the assumption of neutrality. A significant loss of genetic diversity, as assessed by the allelic richness and private allelic richness, was revealed from the 'Irano-Caucasian' gene pool, considered as a secondary centre of diversification, to the northern and southwestern Mediterranean Basin. A substantial proportion of shared alleles was specifically detected when comparing gene pools from the 'North Mediterranean Basin' and 'South Mediterranean Basin' to the secondary centre of diversification. CONCLUSIONS: A marked domestication bottleneck was detected with microsatellite markers in the Mediterranean apricot material, depicting a global image of two diffusion routes from the 'Irano-Caucasian' gene pool: North Mediterranean and Southwest Mediterranean. This study generated genetic insight that will be useful for management of Mediterranean apricot germplasm as well as genetic selection programs related to adaptive traits.  相似文献   

8.
9.
Genetic variation present in 64 durum wheat accessions was investigated by using three sources of microsatellite (SSR) markers: EST-derived SSRs (EST-SSRs) and two sources of SSRs isolated from total genomic DNA. Out of 245 SSR primer pairs screened, 22 EST-SSRs and 20 genomic-derived SSRs were polymorphic and used for genotyping. The EST-SSR primers produced high quality markers, but had the lowest level of polymorphism (25%) compared to the other two sources of genomic SSR markers (53%). The 42 SSR markers detected 189 polymorphic alleles with an average number of 4.5 alleles per locus. The coefficient of similarity ranged from 0.28 to 0.70 and the estimates of similarity varied when different sources of SSR markers were used to genotype the accessions. This study showed that EST-derived SSR markers developed in bread wheat are polymorphic in durum wheat when assaying loci of the A and B genomes. A minumum of ten EST-SSRs generated a very low probability of identity (0.36×10−12) indicating that these SSRs have a very high discriminatory power. EST-SSR markers directly sample variation in transcribed regions of the genome, which may enhance their value in marker-assisted selection, comparative genetic analysis and for exploiting wheat genetic resources by providing a more-direct estimate of functional diversity. Received: 19 December 2000 / Accepted: 17 April 2001  相似文献   

10.
Genetic diversity studies using the RAPD technique were carried out in a set of 103 olive cultivars from the World Germplasm Bank of the Centro de Investigación y Formación Agraria (CIFA) "Alameda del Obispo" in Cordoba (Spain). A total of 126 polymorphisms (6.0 polymorphic markers per primer) out of 135 reproducible products (6.4 fragments per primer) were obtained from the 21 primers used. The number of bands per primer ranged from 4 to 11, whereas the number of polymorphic bands ranged from 3 to 10, corresponding to 83% of the amplification products. The dendrogram based on unweighted pair-group cluster analysis using Jaccard's index includes three major groups according to their origin: (1) cultivars from the Eastern and Central Mediterranean areas, (2) some Italian and Spanish cultivars, and (3) cultivars from the Western Mediterranean zone. The pattern of genetic variation among olive cultivars from three different Mediterranean zones (West, Centre and East) was analysed by means of the analysis of molecular variance (AMOVA). Although most of the genetic diversity was attributable to differences of cultivars within Mediterranean zones (96.86%) significant phi-values among zones (phi(st) = 0.031; p < 0.001) suggested the existence of phenotypic differentiation. Furthermore, the AMOVA analysis was used to partition the phenotypic variation of Spain, Italy (Western region), Greece and Turkey (Eastern region) into four categories: among regions, among countries (within regions), within countries, and among and within countries of each region. Most of the genetic diversity was attributable to differences among genotypes within a country. These results are consistent with the predominantly allogamous nature of Olea europaea L. species. This paper indicates the importance of the study of the amount and distribution of genetic diversity for a better exploration of olive genetic resources and the design of plant breeding programmes.  相似文献   

11.
Accurate identification of Populus clones and cultivars is essential for effective selection, breeding, and genetic resource management programs. The unit of cultivation and breeding in poplars is a clone, and individual cultivars are normally represented by a single clone. Microsatellite DNA markers of 10 simple sequence repeat loci were used for genetic fingerprinting and differentiation of 96 clones/cultivars and varieties belonging to six Populus species (P. deltoides, P. nigra, P. balsamifera, P. trichocarpa, P. grandidentata, and P maximowiczii) from three sections of the genus. All 96 clones/cultivars could be uniquely fingerprinted based on their single- or multilocus microsatellite genotypes. The five P. grandidentata clones could be differentiated based on their single-locus genotypes, while six clones of P. trichocarpa and 11 clones of P. maximowiczii could be identified by their two-locus genotypes. Twenty clones of P. deltoides and 25 clones of P. nigra could be differentiated by their multilocus genotypes employing three loci, and 29 clones of P. balsamifera required the use of multilocus genotypes at five loci for their genetic fingerprinting and differentiation. The loci PTR3, PTR5, and PTR7 were found to be the most informative for genetic fingerprinting and differentiation of the clones. The mean number of alleles per locus ranged from 2.9 in P. trichocarpa or P. grandidentata to 6.0 in P. balsamifera and 11.2 in 96 clones of the six species. The mean number of observed genotypes per locus ranged from 2.4 in P. grandidentata to 7.4 in P. balsamifera and 19.6 in 96 clones of the six species. The mean number of unique genotypes per locus ranged from 1.3 in P. grandidentata to 3.9 in P. deltoides and 8.8 in 96 clones of the six species. The power of discrimination of the microsatellite DNA markers in the 96 clones ranged from 0.726 for PTR4 to 0.939 for PTR7, with a mean of 0.832 over the 10 simple sequence repeat loci. Clones/cultivars from the same species showed higher microsatellite DNA similarities than the clones from the different species. A UPGMA cluster plot constructed from the microsatellite genotypic similarities separated the 96 clones into six major groups corresponding to their species. Populus nigra var. italica clones were genetically differentiated from the P. nigra var. nigra clones. Microsatellite DNA markers could be useful in genetic fingerprinting, identification, classification, certification, and registration of clones, clultivars, and varieties as well as genetic resource management and protection of plant breeders' rights in Populus.  相似文献   

12.
The Mediterranean fruit fly, Ceratitis capitata, is a pest of major economic importance and has become a model for the development of SIT control programs for insect pests. Significant information has been accumulated on classical and population genetics of this species during the past 2 decades. However, the availability of molecular markers is limited. Here, we present the isolation and characterization of 159 microsatellite clones and the development of 108 polymorphic microsatellite markers for this insect pest. Mapping by in situ hybridization to polytene chromosomes of 21 microsatellite clones enriched the cytogenetic map that was previously constructed by our group. The enriched map provides a large number of STSs for future genome mapping projects. Cross-species amplification of these microsatellite loci in 12 Tephritidae species and sequence analysis of several amplification products indicated a varying degree of transferability and their possible usefulness as molecular and genetic markers in these species where genetic and molecular tools are limited. E. E. Stratikopoulos and A. A. Augustinos contributed equally to this work.  相似文献   

13.
The genus Oryza comprises 22 species which are potentially useful as a source of genetic variability that can be introgressed into the worldwide cultivated rice, Oryza sativa. Molecular markers are useful tools for monitoring gene introgressions and for detecting polymorphism among species. In this study, cross-amplification was estimated among 28 accessions of 16 Oryza species, representing the genomes AA, BB, CC, BBCC and CCDD, using 59 microsatellite (OG, OS and RM series) and 15 STS (Sequence Tagged Sites) markers. All markers amplified at least one Oryza species, indicating different levels of transferability across species. Markers based on microsatellite sequences amplified 37 % of the accessions, with an average of 6.58 alleles per locus and an average polymorphism information content (PIC) of 70 %. For STS markers, the amplification level was 53.3 %, and the average number of alleles and PIC values were 1.6 and 10 %, respectively. These Results showed that although the STS markers detected a reduced level of genetic diversity, the transferability was higher, indicating that they can be used for genetic analysis when evaluating less genetically related species of Oryza. Among the microsatellite markers, an analysis of species with an AA genome showed that the OG markers produced the highest level of polymorphic loci (54.6 %), followed by RM markers (48 %). Highly polymorphic and transferable molecular markers in Oryza can be useful for exploiting the genetic resources of this genus, for detecting allelic variants in loci associated with important agronomic traits, and for monitoring alleles introgressed from wild relatives to cultivated rice.  相似文献   

14.
? Premise of the study: A new set of microsatellite primers was developed for Avena sativa and characterized to assess the level of genetic diversity among cultivars and wild genotypes. ? Methods and Results: Using an enrichment genomic library, 14 simple sequence repeat markers were identified. The loci of these markers were characterized and found to be polymorphic in size among 48 genotypes of oat from diverse geographical locations. The number of alleles per locus ranged from two to eight, while the observed heterozygosity ranged from 0.031 to 0.75. ? Conclusions: These newly identified microsatellite markers will facilitate genetic diversity studies, fingerprinting, and genetic mapping of oat. Moreover, these new primers for A. sativa will aid future studies of polyploidy and hybridization in other species in this genus.  相似文献   

15.
? Premise of the study: Polymorphic microsatellite markers were developed for Momordica charantia L. to investigate the genetic diversity and population structure within and between M. charantia and its four related species (Cucurbita pepo L., Luffa cylindrical L., Lagenaria siceraria L., and Cucumis sativus L.). ? Methods and Results: Using the Fast Isolation by AFLP of Sequence COntaining Repeats (FIASCO) method, 16 polymorphic microsatellite loci were identified in 36 individuals of M. charantia. Across all the M. charantia samples, the number of alleles per locus ranged from three to eight. Seven primers successfully amplified in the four related species. ? Conclusions: These markers will be useful to study population ecology and population differentiation among M. charantia species and its related species.  相似文献   

16.
Chinese alligator (Alligator sinensis) is a critically endangered species endemic to China. In this study, the extent of genetic variation in the captive alligators of the Changxing Reserve Center was investigated using microsatellite markers derived from American alligators. Out of 22 loci employed, 21 were successfully amplified in the Chinese alligator. Sequence analysis showed loci in American alligators had a bigger average size than that of the Chinese alligators and the longest allele of an individual locus almost always existed in the species with longer stretch of repeat units. Eight of the 22 loci were found to be polymorphic with a total of 26 alleles present among 32 animals scored, yielding an average of 3.25 alleles per polymorphic locus. The expected heterozygosity (H E) ranged at a moderate level from 0.4385 to 0.7163 in this population. Compared to that in the American alligators, a lower level of microsatellite diversity existed in the Changxing population as revealed by about 46% fewer alleles per locus and smaller H E at the homologous loci. The average exclusion power and the ability to detect shared genotypes and multiple paternity were evaluated for those markers. Results suggested that when the polymorphic loci were combined, they could be sensitive markers in genetic diversity study and relatedness inference within the Chinese alligator populations. The level of genetic diversity present in the current Changxing population indicated an important resource to complement reintroductions based on the individuals from the other population. In addition, the microsatellite markers and their associated diversity characterized in this population could be utilized to further investigate the genetic status of this species.  相似文献   

17.
Twelve polymorphic microsatellite loci were developed for Dendrocopos medius. Polymorphism was assessed for 27 individuals from the southwesternmost population of this woodpecker species. The number of alleles per locus ranged from three to seven, with observed heterozygosity values from 0.444 to 0.852. Genotypic frequencies conformed to Hardy-Weinberg equilibrium, and no evidence for linkage disequilibrium was observed. Multilocus genotypes resulting from this set of markers will be useful to determine genetic diversity and differentiation within and among habitat patches inhabited by D. medius. Three of the loci were polymorphic for Picoides articus.  相似文献   

18.
The process of vegetative propagation used to multiply grapevine varieties produces, in most cases, clones genetically identical to the parental plant. Nevertheless, spontaneous somatic mutations can occur in the regenerative cells that give rise to the clones, leading to consider varieties as populations of clones that conform to a panel of phenotypic traits. Using two sets of nuclear microsatellite markers, the present work aimed at evaluating and comparing the intravarietal genetic diversity within seven wine grape varieties: Cabernet franc, Cabernet Sauvignon, Chenin blanc, Grolleau, Pinot noir, Riesling, Savagnin, comprising a total number of 344 accessions of certified clones and introductions preserved in French repositories. Ten accessions resulted in being either self-progeny, possible offspring of the expected variety or misclassified varieties. Out of the 334 remaining accessions, 83 displayed genotypes different from the varietal reference, i.e., the microsatellite profile shared by the larger number of accessions. They showed a similarity value ranging from 0.923 to 0.992, and thus were considered as polymorphic monozygotic clones. The fraction of polymorphic clones ranged from 2 to 75% depending on the variety and the set of markers, the widest clonal diversity being observed within the Savagnin. Among the 83 polymorphic clones, 29 had unique genotype making them distinguishable; others were classified in 21 groups sharing the same genotype. All microsatellite markers were not equally efficient to show diversity within clone collections and a standard set of five microsatellite markers (VMC3a9, VMC5g7, VVS2, VVMD30, and VVMD 32) relevant to reveal clonal polymorphism is proposed.  相似文献   

19.
A sound knowledge of the genetic diversity among germplasm is vital for strategic germplasm collection, maintenance, conservation and utilisation. Genomic simple sequence repeats (SSRs) and random amplified microsatellite polymorphism (RAMPO) markers were used to analyse diversity and relationships among 48 pepper (Capsicum spp.) genotypes originating from nine countries. These genotypes covered 4 species including 13 germplasm accessions, 30 improved lines of 4 domesticated species and 5 landraces derived from natural interspecific crosses. Out of 106 SSR markers, 25 polymorphic SSR markers (24 %) detected a total of 76 alleles (average, 3.04; range, 2–5). The average polymorphic information content (PIC) was 0.69 (range, 0.29–0.92). Seventeen RAMPO markers produced 87 polymorphic fragments with average PIC of 0.63 (range, 0.44–0.81). Dendrograms based on SSRs and RAMPOs generated two clusters. All 38 Capsicum annuum genotypes and an interspecific landrace clustered together, whereas nine non-annuum (three Capsicum frutescens, one Capsicum chinense, one Capsicum baccatum and four interspecific landraces) genotypes clustered separately. Genetic variation within non-annuum genotypes was greater than the C. annuum genotypes. Distinctness of interspecific derivative landraces grown in northeast India was validated; natural crossing between sympatric Capsicum species has been proposed as the mechanism of their origin.  相似文献   

20.
Type I markers are useful for comparative mapping and other genetic analyses, but relatively difficult to develop. In the present study a microsatellite (SSR)-enriched cDNA library was constructed for the first time using the fast isolation by AFLP of sequences containing repeats (FIASCO) method in a small fish, Chinese rare minnow (Gobiocypris rarus). A total of 97.4% of the expressed sequence tags (ESTs) contained targeted CA-repeats, in which 29 unique EST-SSRs were identified. Ten out of the 28 loci for which primer pairs were designed were polymorphic with alleles ranging from three to seven (mean 4.50). Some of these EST-SSRs can be amplified in other species. These results proved that cDNA-FIASCO is an efficient way to isolate novel EST-SSRs in a fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号